Supporting Information for

Facile Synthesis of Chiral [2,3]-Fused Hydrobenzofuran *via* Asymmetric Cu(I)-Catalyzed Dearomative 1,3-Dipolar Cycloaddition

Lei Liang,^a Hong-Ying Niu,^c Dong-Chao Wang,^{*,b} Xin-He Yang,^b Gui-Rong Qu,^b and Hai-Ming Guo^{*,a,b}

^aSchool of Environment and ^bHenan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan Province 453007, China

^cSchool of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China

E-mail: ghm@htu.edu.cn

1. General information	S2
2. The preparation of starting materials	
3. Typical producdure for the asymmetric dearomatization reaction	
4. Synthetic transformations of products	S6
5. Condition optimization	
6. Characterization of compounds	S10
7. Copies of NMR spectra	\$25
8. Copies of HPLC spectra for racemic and chiral compounds	
9. Crystal data and structure refinement for 3ah	S78
10. Copies of HSQC, HMBC and Noesy	S80

1. General information:

¹H NMR spectra were recorded on Bruker Avance III HD 600 or Avance 400 MHz spectrometer. Chemical shifts are recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quaternary, br = broad), coupling constants (Hz), integration. ¹³C NMR data were collected on Bruker Avance III HD 150 or Avance 100 MHz spectrometer. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. Enantiomer excesses were determined by chiral HPLC analysis on Chiralcel IA/IE/ID/ODH in comparison with the authentic racemates. Chiral HPLC analysis recorded on Thermo scientific Dionex Ultimate 3000 and Agilent Technologies 1260 Infinity. Optical rotations were reported as follows: $[\alpha]_D^T$ (c: g/100 mL, in solvent). Optical rotations recorded on Autopol Automatic Polarimeter. HRMS was recorded on an ABI/Sciex QStar Mass Spectrometer (ESI). All regents and solvents were purchased from commercial sources and purified commonly before used.

2. Synthesis of starting materials

Synthesis of Variously Functionalized 2-Nitrobenzofurans (1a-1k):

To a 25 mL flask were added nitromethane (5.0 mL), NH₄OAc (77 mg, 1.0 mmol), and acetic acid (2.0 mL). The mixture was stirred at 90 °C for 15 min before addition of salicylaldehyde (0.61 g, 5.0 mmol). The reaction mixture was heated at 135 °C for 3 h. After cooling to ambient temperature, the reaction was worked up with Et₂O (50 mL) and brine (50 mL). Purification by column chromatography on silica gel (n-pentane/EtOAc: 8/1) yielded product **A** (0.58 g, 70%) as a yellow solid.

NaBH₄ (45 mg, 1.2 mmol) was suspended in a mixture of 1,4-dioxane and EtOH (4.0 mL, 3:1). **A** (165 mg, 1 mmol) dissolved in 1,4-dioxane (3.0 mL) was added dropwise at 0 °C. The reaction mixture was stirred at 0 °C for 1 h, quenched with saturated aqueous NH₄Cl solution (10 mL), extracted with Et₂O (3 × 25 mL), washed with brine (50 mL), and dried over Na₂SO₄. The organic phase was removed under vacuum to afford the crude **B**.

To a 25 mL flask were added crude **B**, Bu_4NI (923 mg, 2.5 mmol), NEt_3 (202 mg, 2.0 mmol), $PhI(OAc)_2$ (966 mg, 3.0 equiv), and acetonitrile (10.0 mL). The mixture was stirred at 35 °C for 30 min, extracted with Et_2O (50 mL) and brine (3 × 25 mL), dried over Na_2SO_4 . Purification by column chromatography on silica gel (n-pentane/ Et_2O : 20/1) yielded 2-nitrobenzofuran **1a** (98 mg, 60%) as a light yellow solid. **1b-1k** were synthesized in the same reaction conditions

Synthesis of α -iminoesters (2a-2k):

$$R_{1}CHO + H_{2}N \xrightarrow{O} HCI \xrightarrow{MgSO_{4} (2.0 \text{ equiv}), Et_{3}N (1.1 \text{ equiv})}{DCM, rt, overnight} R_{1} \xrightarrow{O} CO_{2}Me$$
1 equiv 1.5 equiv

To a suspension of glycine methyl ester hydrochloride (1.5 equiv) and MgSO₄ (2.0 equiv) in CH_2Cl_2 was added Et_3N (1.1 equiv). Then, this solution was stirred at room temperature for 1 h. Subsequently, the aldehyde (1.0 equiv) was added and the reaction was stirred at room temperature overnight. Work up: MgSO₄ was removed by filtration and the filtrate was washed once with H_2O . The aqueous phase was extracted once with CH_2Cl_2 and the combined organic layers were washed with brine. The organic phase was dried over Na₂SO₄, filtered and concentrated. Due to their instability, most of the α -iminoesters, once isolated, were immediately

used in the 1,3-dipolar cycloaddition reactions. But if necessary, further purification can be obtained via recrystallization from ethanol.

3. Typical producdure for the asymmetric dearomatization reaction

1) Procedure A: Synthesis of Chiral [2,3]-fused Hydrobenzofuranpyrrolidines (3aa-3ka)

In a test tube, **L8** (5.3 mg, 0.011 mmol) and Cu(MeCN)₄ClO₄ (3.3 mg, 0.01 mmol) were dissolved in MTBE (2.0 mL) and stirred for 60 min at ambient temperature. Then, 2-nitrobenzofuran **1a** (32.6 mg, 0.2 mmol), N-benzylidene glycine methyl ester **2a** (53.1 mg, 0.3 mmol) and Cs₂CO₃ (6.5 mg, 0.02 mmol, 10 mol%) were added. The reaction mixture was stirred at 0 °C for 12 h. Upon consumption of 2-nitrobenzofuran **1a** (determined by TLC), The mixture was concentrated and the residue was purified by column chromatography (eluent: ethyl acetate/petroleum ether = 1:5) to afford the cycloadduct **3aa** in 83% yield (56.5 mg). Chiral **3ab-3ka** were synthesized in the same reaction conditions.

2) Procedure B: Synthesis of Racemic [2,3]-fused Hydrobenzofuranpyrrolidines (3aa-3ka)

In a test tube. *rac*-Binap (6.8 mg, 0.011 mmol), Cu(CH₃CN)₄ClO₄ (3.3 mg, 0.005 mmol), 2-nitrobenzofuran **1a** (32.6 mg, 0.02 mmol), N-benzylidene glycine methyl ester **2a** (53.1 mg, 0.3 mmol) and Cs₂CO₃ (6.5 mg, 0.02 mmol, 10 mol%) were added. The reaction tube was placed under vacuum and backfilled with argon three times. After that, MTBE (2.0 mL, 0.1 M) were added *via* syringe. The resulting mixture was stirred at rt for 6 h. The mixture was concentrated and the residue was purified by column chromatography. The mixture was concentrated and the residue was purified by column chromatography (eluent: ethyl acetate/petroleum ether = 1:5) to afford the corresponding racemic products. Racemic **3ab-3ka** were synthesized in the same reaction conditions.

4. Synthetic transformations of products.

Reduction of the nitro group (3aa-4aa)

A suspension of the cycloadduct **3aa** (51 mg, 0.15 mmol) in methanol (2.0 mL) and concentrated HCl (0.12 mL) was carefully treated with zinc dust (0.39 g, 6 mmol) at 0 °C. The suspension was stirred at 0 °C for 30 min. A saturated aqueous NaHCO₃ solution was slowly added (until pH = 9). The mixture was filtered through celite, eluting with EtOAc. The filtrate was dried over Na₂SO₄, filtered, and evaporated. Purification by flash chromatography (CH₂Cl₂/methanol = 40:1) gave the product **4aa** (33 mg, 71%) as a yellow solid.

Reduction of ester group (3ia-4ia):

A solution of **3ia** (55.5 mg, 0.15 mmol) in dry Et_2O (1.5 mL) under nitrogen was cooled to -78 °C, then 0.3 mL LiAlH₄ (1 M in THF) was added *via* syringe slowly. The reaction mixture was stirred at -78 °C for 30 min and moved to -40 °C for another 10 min. Then water (0.2 mL) and 15% aqueous sodium hydroxide (0.2 mL) was added carefully. The mixture was filtered over anhydrous MgSO₄, and the filtrate was concentrated. The residue was subjected to the preparative thin layer chromatography (DCM/MeOH = 50:1) to afford **4ia** (38.5 mg, 75%) as light brown oil.

Suzuki-Myiyaura Cross-Coupling (**3fa-4fa**):

3fa (41.8 mg, 0.1 mmol), PhB(OH)₂ (18.5 mg, 0.15 mmol), Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 10 mol%), K₂CO₃ (21 mg, 0.15 mmol, 1.5 equiv) were stirred in Toluene (2 mL) under N₂ atmosphere at 105 °C for 12 h. The reaction mixture was partitioned between ethyl acetate and water. The combined organic phases were dried (Na₂SO₄), filtered and concentrated in vacuo to afford a crude oil. Purification by flash column chromatography (V_{PE}/V_{EA} = 8:1 as eluent) furnished desired product **4fa** (36.6 mg, 88%) as a colorless oil.

5. Condition optimization

la la	}_NO₂ + Ph [^] N [∕] 2a	Cu(MeCN) ₄ ClO ₄ (x (CO ₂ Me <u>L8 (5.5 mol %), Cs₂CO₃</u> MTBE, T °C, 0.1 _M ,	nol%) <u>(y %mol)</u> 12 h 3aa	H F Ph 2 (S,	S_p)-Phosferrox
entry	x: y	T (°C)	yield ^b	dr ^c	ee^{d} (%)
1	5:5.5	0	83	9:1	98
2	3:3.3	0	62	8:1	95
^e 3	5:5.5	25	81	7:1	94
4	5:5.5	-20	79	9:1	98
5	5:5.5	-40	69	8:1	94

Table S1: Condition optimizations^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Cu(MeCN)₄ClO₄ (5 mol%), **L8** (5.5 mol%) and Cs₂CO₃ (10 mol%) in MTBE (2.0 mL), T °C, N₂, 2 h. ^{*b*}Yields of isolated product. ^{*c*}Determined by ¹H NMR analysis of the crude mixture. ^{*d*} Determined by chiral HPLC analysis. ^{*e*} 8 h.

Table S2: Solvents and Bases^a

DCE

CHCl₃

MTBE

MTBE

MTBE

MTBE

MTBE

 Cs_2CO_3

 Cs_2CO_3

Na₂CO₃

 K_2CO_3

Et₃N

DIPEA

DBU

7

8

9

10

11

12

13

35

66

55

73

trace

trace

39

6:1

6:1

8:1

6:1

5:1

96

94

93

91

82

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Cu(MeCN)₄ClO₄ (5 mol%), **L** (5.5 mol%) and base (10 mol%) in solvent (2.0 mL), 0 °C, N₂, 12 h. ^{*b*}Yields of isolated product. ^{*c*}Determined by ¹H NMR analysis of the crude mixture. ^{*d*}Determined by chiral HPLC analysis.

6. Characterization of compounds

methyl (1S,3S,3aS,8bS)-3a-nitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro[2,3-c]pyrrole

-1-carboxylate (3aa)

3aa

Colorless oil. 56.5 mg, 83% yield, 9:1 dr, 96% ee.

 $[a]_D^{25} = 152.37 (c = 1.15, CH_2Cl_2).$

m.p.: 143.2-146.5 °C

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature =

25 °C, $\lambda = 254$ nm, retention time: 9.880 min (major), 15.672 min (minor).

TLC: Rf = 0.30 (petroleum ether:ethyl acetate = 5:1) [UV]

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 3H), 7.33-7.31 (m, 2H), 7.30 – 7.24 (m, 1H), 7.07

(d, *J* = 7.2 Hz, 1H), 7.00-6.97 (m, 2H), 5.13 (s, 1H), 4.74 (d, *J* = 8.4 Hz, 1H), 4.68 (d, *J* = 8.4 Hz,

1H), 3.73 (s, 3H), 2.69 (br s, 1H).

 ^{13}C NMR (100 MHz, CDCl_3) δ 168.7 , 132.2 , 130.5 , 129.1 , 128.7 , 127.7 , 124.9 , 123.3 , 123.0 ,

122.7, 110.6, 69.9, 64.2, 58.4, 52.3.

HRMS (ESI): m/z calcd. For $C_{18}H_{17}N_2O_5$ $[M+H]^+$ 341.1132, found m/z 341.1136.

methyl (1S,3S,3aS,8bS)-3a-nitro-3-(p-tolyl)-2,3,3a,8b-tetrahydro-1H-benzofuro[2,3-c]

pyrrole-1-carboxylate (3ab)

Light yellow oil. 57.3 mg, 81% yield, 8:1 dr, 99% ee.

 $[a]_D^{25} = 15.15 (c = 1.30, CH_2Cl_2).$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = 25 °C, $\lambda = 254$ nm, retention time: 9.658 min (major), 20.653 min (minor).

¹**H NMR** (600 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 7.20 (s, 4H), 7.07 (d, *J* = 7.2 Hz, 1H), 7.02 – 6.95 (m, 2H), 5.06 (s, 1H), 4.73 (d, *J* = 8.4 Hz, 1H), 4.66 (d, *J* = 8.4 Hz, 1H), 3.73 (s, 3H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 168.9, 158.9, 139.1, 130.5, 129.5, 129.3, 127.6, 125.0, 123.3, 123.2, 122.9, 110.7, 70.0, 64.4, 58.5, 52.4, 21.4.

HRMS (ESI): m/z calcd. For $C_{19}H_{18}N_2NaO_5 [M+Na]^+$ 377.1108, found m/z 377.1106.

methyl (15,35,3a5,8b5)-3-(4-methoxyphenyl)-3a-nitro-2,3,3a,8b-tetrahydro-1H-benzofuro

```
[2,3-c]pyrrole-1-carboxylate (3ac)
```


Light yellow oil. 62.9 mg, 85% yield, 10:1 dr, 98% ee.

 $[a]_D^{25} = 15.15 (c = 1.30, CH_2Cl_2).$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, temperature =

25 °C, $\lambda = 254$ nm, retention time: 19.098 min (major), 23.383 min (minor).

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.23 (m, 3H), 7.09-7.06 (m, 1H), 7.03 – 6.98 (m, 2H), 6.94 – 6.90 (m, 2H), 5.06 (s, 1H), 4.74 (d, *J* = 8.4 Hz, 1H), 4.67 (d, *J* = 8.4 Hz, 1H), 3.82 (s, 3H), 3.73 (s, 3H), 2.74 (br s, 1H).

¹³**C NMR** (150 MHz, CDCl₃) δ 168.9, 160.3, 158.9, 130.5, 129.1, 125.0, 124.4, 123.3, 123.2, 123.0, 114.2, 110.6, 77.4, 77.2, 77.0, 69.8, 64.3, 58.3, 55.4, 52.4.

HRMS (ESI): m/z calcd. For $C_{19}H_{18}N_2NaO_6 [M+Na]^+$ 393.1057, found m/z 393.1061.

methyl (1S,3S,3aS,8bS)-3-(4-chlorophenyl)-3a-nitro-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3ad)

Light yellow oil. 62.1 mg, 83% yield, 8:1 dr, 99% ee.

 $[a]_D^{25} = 51.46 (c = 1.30, CH_2Cl_2).$

HPLC CHIRALCEL OJH, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = 25 °C, λ = 254 nm, retention time: 25.693 min (major), 35.565 min (minor).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.30 – 7.24 (m, 3H), 7.07 (d, *J* = 7.6 Hz, 1H), 7.03-6.96 (m, 2H), 5.07 (d, *J* = 11.2 Hz, 1H), 4.72 (d, *J* = 8.4 Hz, 1H), 4.65 (t, *J* = 8.8 Hz, 1H), 3.74 (s, 3H), 2.91 (t, *J* = 10.4 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 168.7, 158.9, 135.2, 131.1, 130.6, 129.2, 129.0, 129.0, 127.6, 125.0, 123.4, 122.7, 122.7, 110.6, 69.3, 64.2, 58.2, 29.8.

HRMS (ESI): m/z calcd. For C₁₈H₁₅ClN₂NaO₅ [M+Na]⁺ 397.0562, found m/z 397.0556.

methyl (15,35,3a5,8b5)-3-(4-bromophenyl)-3a-nitro-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3ae)

Light brown oil. 66.8 mg, 80% yield, 7:1 dr, 96% ee.

 $[a]_D^{25} = 49.55 (c = 1.85, CH_2Cl_2).$

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = 25 $^{\circ}$ C, $\lambda = 254$ nm, retention time: 18.290 min (minor), 19.733 min (major).

¹**H NMR** (600 MHz, CDCl₃) δ 7.52 (d, J = 7.2 Hz, 2H), 7.29 – 7.24 (m, 1H), 7.20 (d, J = 7.8 Hz,

2H), 7.07 (d, J = 7.8 Hz, 1H), 7.02-6.96 (m, 2H), 5.05 (d, J = 10.8 Hz, 1H), 4.72 (d, J = 8.4 Hz,

1H), 4.64 (t, *J* = 9.0 Hz, 1H), 3.73 (s, 3H), 2.91 (t, *J* = 10.2 Hz, 1H).

¹³**C NMR** (150 MHz, CDCl₃) δ 168.7, 158.9, 132.0, 131.6, 130.6, 129.5, 125.0, 123.5, 123.4, 122.7, 122.6, 110.7, 69.4, 64.2, 58.2, 52.4.

HRMS (ESI): m/z calcd. For C₁₈H₁₅BrN₂NaO₅ [M+Na]⁺ 441.0057, found m/z 441.0062.

methyl (15,35,3a5,8b5)-3-(4-(methoxycarbonyl)phenyl)-3a-nitro-2,3,3a,8b-tetrahydro

-1H-benzofuro[2,3-c]pyrrole-1-carboxylate (3af)

Colorless oil. 59.7 mg, 75% yield, 9:1 dr, 98% ee.

 $[a]_D^{25} = 51.46 (c = 1.30, CH_2Cl_2).$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = 25 °C, λ = 254 nm, retention time: 15.827 min (major), 23.255 min (minor).

¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.30 – 7.24 (m, 1H), 7.07 (d, *J* = 7.2 Hz, 1H), 7.01 (td, *J* = 7.2, 0.4 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 5.16 (d, *J* = 11.6 Hz, 1H), 4.73 (d, *J* = 8.3 Hz, 1H), 4.71 – 4.64 (m, 1H), 3.93 (s, 3H), 3.75 (s, 3H), 2.99 (t, *J* = 9.0 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 168.6, 166.6, 158.8, 137.4, 130.8, 130.5, 129.9, 127.7, 124.9, 123.4, 122.6, 122.5, 110.6, 69.5, 64.2, 58.3, 52.3, 52.3.

HRMS (ESI): m/z calcd. For $C_{20}H_{18}N_2NaO_7 [M+Na]^+ 421.1006$, found m/z 421.1011.

methyl (1S,3S,3aS,8bS)-3a-nitro-3-(m-tolyl)-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3ag)

3ag

Colorless oil. 51.7 mg, 73% yield, 5:1 dr, 97% ee.

 $[a]_D^{25} = 76.80 (c = 0.60, CH_2Cl_2).$

HPLC CHIRALCEL IA, n-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, temperature = 25

^oC, $\lambda = 254$ nm, retention time: 15.355 min (major), 17.308 min (minor).

¹**H NMR** (600 MHz, CDCl₃) δ 7.27 (q, J = 7.8 Hz, 2H), 7.19 (d, J = 7.8 Hz, 1H), 7.11 – 7.05 (m,

3H), 7.02 – 6.96 (m, 2H), 5.06 (d, *J* = 12.0 Hz, 1H), 4.72 (d, *J* = 8.4 Hz, 1H), 4.65 (t, *J* = 9.6 Hz,

1H), 3.73 (s, 3H), 3.00 (t, *J* = 10.8 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 168.9, 158.9, 138.5, 132.3, 130.5, 129.9, 128.6, 128.3, 124.9, 124.7, 123.3, 123.2, 122.9, 110.7, 70.0, 64.3, 58.6, 52.4, 29.8, 21.6.

HRMS (ESI): m/z calcd. For C₁₉H₁₈N₂NaO₅ [M+Na]⁺ 377.1108, found m/z 377.1108.

methyl (1S,3S,3aS,8bS)-3-(3-chlorophenyl)-3a-nitro-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3ah)

White solid. 53.8 mg, 72% yield, 5:1 dr, 92% ee.

 $[a]_D^{25} = -99.24$ (c = 0.35, CH₂Cl₂).

m.p.: 225.3-227.1 °C

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature =

25 °C, $\lambda = 254$ nm, retention time: 9.770 min (major), 11.933 min (minor).

¹**H** NMR (600 MHz, CDCl₃) δ 7.39 – 7.25 (m, 4H), 7.19 (d, J = 7.2 Hz, 1H), 7.08 (d, J = 7.8 Hz, 1H), 7.03 – 6.97 (m, 2H), 5.08 (d, J = 11.3 Hz, 1H), 4.72 (d, J = 8.4 Hz, 1H), 4.65 (t, J = 9.0 Hz,

1H), 3.74 (s, 3H), 2.92 (t, *J* = 10.2 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 168.7, 158.9, 134.8, 134.6, 130.6, 130.0, 129.4, 128.1, 126.1, 125.1, 123.5, 122.7, 122.6, 110.7, 69.3, 64.2, 58.3, 52.4.

HRMS (ESI): m/z calcd. For $C_{18}H_{16}ClN_2O_5 [M+H]^+$ 375.0742, found m/z 375.0738.

methyl (1S,3R,3aS,8bS)-3a-nitro-3-(thiophen-2-yl)-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3ai)

Light brown oil. 49.1 mg, 71% yield, 10:1 dr, 98% ee.

 $[a]_D^{25} = 88.95 (c = 0.65, CH_2Cl_2).$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, temperature = $25 \text{ }^{\circ}\text{C}$, $\lambda = 254 \text{ nm}$, retention time: 11.742 min (major), 19.582 min (minor).

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (dd, *J* = 5.2, 1.1 Hz, 1H), 7.32 – 7.27 (m, 1H), 7.13 (d, *J* = 3.6 Hz, 1H), 7.10 – 6.98 (m, 4H), 5.34 (d, *J* = 12.0 Hz, 1H), 4.74 (d, *J* = 8.0 Hz, 1H), 4.64 (d, *J* = 9.6 Hz, 1H), 3.71 (s, 3H), 2.99 (t, *J* = 11.2 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 168.5, 158.9, 134.1, 130.6, 127.5, 127.0, 126.9, 125.0, 123.5, 122.7, 122.5, 110.8, 66.5, 64.4, 58.5, 52.4.

HRMS (ESI): m/z calcd. For $C_{16}H_{14}N_2NaO_5S$ [M+Na]⁺ 369.0516, found m/z 369.0511.

methyl (15,35,3a5,8b5)-3-(naphthalen-1-yl)-3a-nitro-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3aj)

Light brown oil. 63.2 mg, 81% yield, 8:1 dr, 98% ee.

 $[a]_D^{25} = 39.57 (c = 1.3, CH_2Cl_2).$

HPLC CHIRALCEL IE, n-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, temperature = 25 $^{\circ}$ C, $\lambda = 254$ nm, retention time: 11.742 min (major), 19.582 min (minor).

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.81 (m, 4H), 7.53 – 7.48 (m, 2H), 7.38 (dd, *J* = 8.8, 1.8 Hz, 1H), 7.30 – 7.24 (m, 1H), 7.09 (d, *J* = 7.2 Hz, 1H), 7.01 (td, *J* = 7.5, 0.8 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 5.29 (d, *J* = 10.8 Hz, 1H), 4.77 (d, *J* = 8.4 Hz, 1H), 4.72 (t, *J* = 8.6 Hz, 1H), 3.12 (t, *J* = 10.4 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 168.8, 158.9, 133.5, 133.1, 130.4, 129.8, 128.4, 128.2, 127.7, 127.2, 126.6, 126.5, 124.9, 124.8, 123.3, 123.1, 122.7, 110.6, 70.0, 64.3, 58.5, 52.3.

HRMS (ESI): m/z calcd. For $C_{22}H_{18}N_2NaO_5 [M+Na]^+ 413.1108$, found m/z 413.1105.

methyl (*1S*,*3S*,*3aS*,*8bS*)-3-cyclohexyl-3a-nitro-2,3,3a,8b-tetrahydro-1H-benzofuro [2,3-c] pyrrole-1-carboxylate (3ak)

Light yellow oil. 56.1 mg, 81% yield, 7:1 dr, 96% ee.

 $[a]_D^{25} = 97.16 (c = 0.95, CH_2Cl_2).$

HPLC CHIRALCEL ID, n-hexane/2-propanol = 90/10, flow rate = 0.8 mL/min, temperature = 25 $^{\circ}$ C, $\lambda = 254$ nm, retention time: 9.266 min (minor), 10.217 min (major).

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.25,(m, 1H), 7.06 (d, *J* = 8.4 Hz, 1H), 6.99 – 6.95 (m, 2H), 4.48 (s, 2H), 3.83 (d, *J* = 9.2 Hz, 1H), 3.67 (s, 3H), 2.30 (br s, 1H), 2.00 (d, J = 12.4 Hz, 1H), 1.83 – 1.63 (m, 5H), 1.35 – 1.11 (m, 5H), 1.07 – 0.90 (m, 1H).

¹³C NMR (100MHz, CDCl₃) δ 168.9, 159.1 130.5, 124.9 123.3 123.0, 122.6, 110.6, 64.4, 60.5, 52.3, 37.7, 31.1, 29.8, 28.6, 26.1, 25.8, 25.6.

HRMS (ESI): m/z calcd. For C₁₈H₂₂N₂NaO₅ [M+Na]⁺ 369.1421, found m/z 369.1425.

methyl (*1S*,*3S*,*3aS*,*8bS*)-3a-nitro-3-((*E*)-styryl)-2,3,3a,8b-tetrahydro-1H-benzofuro[2,3-c] pyrrole-1-carboxylate (3al)

Colorless oil. 51.2 mg, 70% yield, 6:1 dr, 96% ee.

 $[a]_D^{25} = 128.01 \text{ (c} = 0.60, \text{CH}_2\text{Cl}_2\text{)}.$

HPLC CHIRALCEL IA, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = 25 $^{\circ}$ C, $\lambda = 254$ nm, retention time: 14.337 min (minor), 16.935 min (major).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (d, *J* = 6.8 Hz, 2H), 7.37 – 7.27 (m, 4H), 7.09 – 7.05 (m, 2H), 7.01 (t, *J* = 7.8 Hz, 1H), 6.77 (d, *J* = 16.0 Hz, 1H), 6.28 (dd, *J* = 16.0, 7.6 Hz, 1H), 4.73 (d, *J* = 8.4 Hz, 1H), 4.66 – 4.63 (m, 2H), 3.70 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 158.9, 136.7, 135.8, 130.6, 129.3, 128.8, 128.6, 127.0, 124.9, 123.8, 123.4, 122.9, 119.9, 110.8, 77.5, 77.2, 76.8, 69.4, 64.8, 58.4, 52.4.

HRMS (ESI): m/z calcd. For $C_{20}H_{18}N_2NaO_5 [M+Na]^+$ 389.1108, found m/z 389.1113.

methyl (*1S*,*3S*,*3aS*,*8bS*)-7-methyl-3a-nitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro [2,3-c]pyrrole-1-carboxylate (3ba)

Light yellow oil. 56.7 mg, 80% yield, 7:1 dr, 97% ee.

 $[a]_D^{25} = 99.01 (c = 1.0, CH_2Cl_2).$

HPLC CHIRALCEL IA, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = 25

^oC, $\lambda = 254$ nm, retention time: 14.882 min (minor), 16.022 min (major).

¹**H NMR** (600 MHz, CDCl₃) δ 7.39 – 7.38 (m, 3H), 7.31 – 7.29 (m, 2H), 7.06 (d, *J* = 8.4 Hz, 1H), 6.85 (d, *J* = 7.9 Hz, 2H), 5.09 (d, *J* = 12.0 Hz, 1H), 4.69 (d, *J* = 8.4 Hz, 1H), 4.65 (m, *J* = 8.4 Hz, 1H),

1H), 3.73 (s, 3H), 3.01 (t, *J* = 11.1 Hz, 1H), 2.28 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 168.9, 156.9, 132.9, 132.5, 130.9, 129.2, 128.8, 127.8, 125.4, 123.4, 122.8, 110.2, 70.0, 64.4, 58.8, 52.3, 21.0.

HRMS (ESI): m/z calcd. For $C_{19}H_{19}N_2O_5 [M+H]^+$ 355.1288, found m/z 355.1282.

methyl (1S,3S,3aS,8bS)-7-methoxy-3a-nitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3ca)

Colorless oil. 60.7 mg, 82% yield, 10:1 dr, 94% ee.

 $[a]_D^{25} = -113.20 (c = 1.0, CH_2Cl_2).$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, temperature =

25 °C, $\lambda = 254$ nm, retention time: 18.992 min (major), 35.137 min (minor).

¹**H NMR** (600 MHz, CDCl₃) δ 7.39 – 7.38(m, 3H), 7.31 – 7.29 (m, 2H), 6.88 (d, *J* = 8.4 Hz, 1H),

6.79 (dd, J = 8.4, 2.7 Hz, 1 H), 6.62 (d, J = 2.6 Hz, 1 H), 5.08 (d, J = 12.1 Hz, 1 H), 4.70 (d, J = 9.0 Hz, 1 H)

Hz, 1H), 4.65 (t, *J* = 9.3 Hz 1H), 3.76 (s, 3H), 3.74 (s, 3H), 3.06 – 2.99 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 168.9, 156.1, 153.0, 132.5, 129.2, 128.8, 127.8, 123.8, 123.7,

115.4, 111.0, 110.8, 70.0, 64.3, 58.9, 56.1, 52.5, 29.9.

HRMS (ESI): m/z calcd. For $C_{19}H_{18}N_2NaO_6 [M+Na]^+$ 393.1057, found m/z 393.1061.

methyl (1S,3S,3aS,8bS)-7-fluoro-3a-nitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3da)

Light yellow oil. 53.7 mg, 75% yield, 9:1 dr, 95% ee.

 $[a]_D^{25} = -113.20 (c = 1.0, CH_2Cl_2).$

HPLC CHIRALCEL IE, n-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, temperature = 25 $^{\circ}$ C, $\lambda = 254$ nm, retention time: 13.230 min (minor), 14.932 min (major).

¹**H NMR** (600 MHz, CDCl₃) δ 7.41 – 7.38 (m, 3H), 7.32 – 7.30 (m, 2H), 6.97 (td, *J* = 8.7, 2.6 Hz, 1H), 6.91 (dd, *J* = 8.9, 4.1 Hz, 1H), 6.79 (dd, *J* = 7.7, 2.6 Hz, 1H), 5.10 (s, 1H), 4.71 (d, *J* = 8.5 Hz, 1H), 4.67 (d, *J* = 8.5 Hz, 1H), 3.78 (s, 3H), 2.29 (br s, 1H).

¹³**C NMR** (150 MHz, CDCl₃) δ 168.7, 158.9 (d, $J_{C-F} = 238.5$ Hz), 154.9, 132.2, 129.3, 128.9, 128.8, 127.8, 126.2, 124.3 (d, $J_{C-F} = 9.0$ Hz), 123.6, 117.1 (d, $J_{C-F} = 25.5$ Hz), 112.3 (d, $J_{C-F} = 25.5$ Hz), 111.3, (d, $J_{C-F} = 9.0$ Hz), 69.9, 64.1, 58.4, 52.6, 29.8.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -120.1 (s).

HRMS (ESI): m/z calcd. For $C_{18}H_{16}FN_2O_5 [M+H]^+$ 359.1038, found m/z 359.1038.

methyl (1S,3S,3aS,8bS)-7-chloro-3a-nitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3ea)

Light yellow oil. 59.1 mg, 79% yield, 8:1 dr, 98% ee.

 $[a]_D^{25} = 80.67 (c = 0.65, CH_2Cl_2).$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 70/30, flow rate = 0.6 mL/min, temperature = 25 °C, λ = 254 nm, retention time: 10.952 min (major), 16.840 min (minor).

¹**H NMR** (600 MHz, CDCl₃) δ 7.42 – 7.38 (m, 3H), 7.32– 7.30 (m, 2H), 7.24 (dd, J = 8.6, 2.3 Hz,

1H), 7.05 (s, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 5.13 (s, 1H), 5.02 (s, 0H), 4.72 – 4.67 (m, 2H), 4.00 (s, 0H), 3.78 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃) δ 168.6, 157.5, 131.9, 130.6, 129.4, 128.9, 128.5, 127.8, 125.3, 124.7, 123.2, 111.7, 58.1, 52.6, 29.9.

HRMS (ESI): m/z calcd. For $C_{18}H_{15}ClN_2NaO_5$ [M+Na]⁺ 397.0562, found m/z 397.0560.

methyl (1S,3S,3aS,8bS)-7-bromo-3a-nitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3fa)

Light yellow oil. 65.2 mg, 78% yield, 6:1 dr, 97% ee.

 $[a]_D^{25} = 40.33 (c = 0.60, CH_2Cl_2).$

m.p.: 160.3-162.8 °C

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, temperature = $25 \,^{\circ}$ C, $\lambda = 254 \,$ nm, retention time: 14.892 min (major), 25.466 min (minor).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 4H), 7.32 – 7.27 (m, 2H), 7.20 (s, 1H), 6.86 (d, J =

8.8 Hz, 1H), 5.10 (d, J = 11.2 Hz, 1H), 4.70 (t, J = 6.8 Hz, 1H), 4.65 (d, J = 9.0 Hz, 1H), 3.77 (s,

3H), 3.04 – 2.96 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 168.7, 158.0, 133.4, 132.2, 129.3, 128.8, 128.2, 127.7, 125.3, 123.2, 115.4, 112.2, 69.9, 64.2, 58.1, 52.5.

HRMS (ESI): m/z calcd. For $C_{18}H_{15}BrN_2NaO_5 [M+Na]^+ 441.0057$, found m/z 441.0059.

methyl (*1S*,*3S*,*3aS*,*8bS*)-3a,7-dinitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro[2,3-c] pyrrole-1-carboxylate (3ga)

Light yellow oil. 57.0 mg, 74% yield, 15:1 dr, 99% ee.

 $[a]_D^{25} = 103.03 (c = 0.43, CH_2Cl_2).$

HPLC CHIRALCEL IA, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = 25

^oC, $\lambda = 254$ nm, retention time: 14.002 min (major), 15.212 min (minor).

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (dd, *J* = 9.2, 2.4 Hz, 1H), 8.03 (d, *J* = 2.4 Hz, 1H), 7.42-7.39 (m, 3H), 7.32-7.30 (m, 2H), 7.07 (d, *J* = 9.2 Hz, 1H), 5.16 (s, 1H), 4.78-4.72 (m, 2H), 3.83 (s, 3H), 2.65 (br s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 163.3, 144.1, 131.7, 129.6, 128.9, 127.8, 127.5, 124.8, 123.3, 121.6, 110.9, 56.9, 52.8.

HRMS (ESI): m/z calcd. For C₁₈H₁₅N₃NaO₇ [M+Na]⁺ 408.0802, found m/z 408.0798.

methyl (1S,3S,3aS,8bS)-6-bromo-3a-nitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3ha)

Light yellow oil. 69.4 mg, 83% yield, 8:1 dr, 95% ee.

 $[a]_D^{25} = 86.14 (c = 0.45, CH_2Cl_2).$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature =

25 °C, $\lambda = 254$ nm, retention time: 11.603 min (major), 17.175 min (minor).

¹**H** NMR (600 MHz, CDCl₃) δ 7.41 – 7.37 (m, 3H), 7.30 – 7.29 (m, 2H), 7.15 – 7.13 (m, 2H),

6.94 (d, *J* = 8.4Hz, 1H), 5.10 (d, *J* = 11.3 Hz, 1H), 4.66 – 4.64 (m, 2H), 3.74 (s, 3H), 2.99-2.93 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 168.7, 159.6, 132.2, 129.3, 128.8, 127.8, 126.6, 126.1, 123.8, 123.3, 122.2, 114.4, 69.9, 64.1, 57.9, 52.5.

HRMS (ESI): m/z calcd. For $C_{18}H_{15}BrN_2NaO_5 [M+Na]^+ 441.0057$, found m/z 441.0058.

methyl (1S,3S,3aS,8bS)-6-methyl-3a-nitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3ia)

Light yellow oil. 60.9 mg, 86% yield, 11:1 dr, 99% ee.

 $[a]_D^{25} = 86.14 (c = 0.45, CH_2Cl_2).$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = $25 \,^{\circ}$ C, $\lambda = 254$ nm, retention time: 9.420 min (major), 15.513 min (minor).

¹**H NMR** (600 MHz, CDCl₃) δ 7.41 – 7.37 (m, 3H), 7.32 (m, 2H), 6.93 (d, *J* = 7.8 Hz, 1H), 6.81 (d, *J* = 9.0 Hz, 2H), 5.13 (s, 1H), 4.69 (d, *J* = 8.4 Hz, 1H), 4.66 (d, *J* = 8.4 Hz, 1H), 3.74 (s, 3H), 2.78 (br s, 1H), 2.32 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 168.9, 159.2, 141.2, 132.3, 129.2, 128.8, 127.8, 124.5, 124.2, 123.3, 119.7, 111.3, 69.8, 64.2, 58.3, 52.4, 29.8, 21.7.

HRMS (ESI): m/z calcd. For $C_{19}H_{19}N_2O_5 [M+H]^+$ 355.1288, found m/z 355.1283.

methyl (1S,3S,3aS,8bS)-6-methoxy-3a-nitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3ja)

Colorless oil. 61.4 mg, 83% yield, 10:1 dr, 99% ee.

 $[a]_D^{25} = 34.30 (c = 0.85, CH_2Cl_2).$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature =

25 °C, $\lambda = 254$ nm, retention time: 9.420 min (major), 15.513 min (minor).

¹**H NMR** (600 MHz, CDCl₃) δ 7.34 – 7.30 (m, 3H), 7.27 – 7.22 (m, 2H), 6.86 (d, *J* = 7.8 Hz, 1H), 6.47 (m, 2H), 5.06 (s, 1H), 4.59 (d, *J* = 8.4 Hz, 1H), 4.57 (d, *J* = 8.4 Hz, 1H), 3.68 (s, 3H), 3.66 (s, 3H), 2.91 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 168.9, 162.1, 160.2, 132.2, 129.3, 128.8, 127.8, 125.2, 123.7, 114.2, 109.8, 96.8, 69.7, 64.2, 58.0, 55.7, 52.5.

HRMS (ESI): m/z calcd. For $C_{19}H_{18}N_2NaO_6 [M+Na]^+$ 393.1057, found m/z 393.1053.

methyl (1S,3S,3aS,8bS)-5-bromo-3a-nitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3ka)

Light yellow oil. 66.0 mg, 79% yield, 9:1 dr, 98% ee.

 $[a]_D^{25} = 95.14 (c = 0.50, CH_2Cl_2).$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = $25 \,^{\circ}$ C, $\lambda = 254 \,$ nm, retention time: 11.717 min (major), 14.002 min (minor).

¹**H NMR** (600 MHz, CDCl₃) δ 7.43 (d, J = 7.8 Hz, 1H), 7.41 – 7.39 (m, 3H), 7.38 – 7.36 (m, 2H),

7.01 (d, *J* = 7.8 Hz, 1H), 6.89 (t, *J* = 7.8 Hz, 1H), 5.11 (s, 1H), 4.80 (d, *J* = 8.4 Hz, 1H), 4.67 (d, *J* = 7.8 Hz, 1H), 3.73 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃) δ 168.5, 156.4, 133.7, 131.9, 129.4, 128.8, 128.3, 124.5, 124.2, 123.9, 122.1, 103.3, 70.1, 64.3, 59.0, 52.5.

HRMS (ESI): m/z calcd. For $C_{18}H_{15}BrN_2NaO_5$ [M+Na]⁺ 441.0057, found m/z 441.0060.

methyl (1S,3S,3aS,8bS)-8-chloro-3a-nitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro

[2,3-c]pyrrole-1-carboxylate (3la)

Light yellow oil. 61.3 mg, 82% yield, 10:1 dr, 92% ee.

 $[a]_D^{25} = 100.33 (c = 0.70, CH_2Cl_2).$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = 25 °C, $\lambda = 254$ nm, retention time: 9.168 min (major), 11.119 min (minor).

¹**H NMR** (600 MHz, $CDCl_3$) δ 7.42 – 7.39 (m, 3H), 7.33 –7.31 (m, 2H), 7.22 (t, *J* = 8.1 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 5.16 (s, 1H), 4.82 (d, *J* = 8.4 Hz, 1H), 4.62 (d, *J* = 8.4 Hz, 1H), 3.93 (s, 0H), 3.71 (s, 3H), 2.96 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 169.5, 159.3, 131.8, 131.7, 130.7, 129.3, 128.9, 128.9, 127.6, 126.0, 123.9, 123.5, 122.3, 109.4, 69.4, 63.5, 58.9, 52.8.

HRMS (ESI): m/z calcd. For $C_{18}H_{16}ClN_2O_5 [M+H]^+$ 375.0742, found m/z 375.0741.

methyl (*1S*,*3S*,*3aS*,*8bS*)-3a-amino-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro[2,3-c] pyrrole-1-carboxylate (4aa)

White solid. 33 mg, 71% yield, 99% ee.

 $[a]_D^{25} = -30.05 (c = 0.92, CH_2Cl_2).$

m.p.: 121.7-124.5 °C

HPLC CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = 25 $^{\circ}$ C, $\lambda = 254$ nm, retention time: 18.477 min (major), 24.298 min (minor).

¹**H NMR** (600 MHz, CDCl₃) δ 7.47 (d, *J* = 7.2 Hz, 2H), 7.26 – 7.14 (m, 4H), 7.01 (t, *J* = 6.6 Hz, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 6.67 (t, *J* = 6.9 Hz, 1H), 4.65 (s, 1H), 4.41 (d, *J* = 6.6 Hz, 1H), 4.14 (d, *J* = 6.6 Hz, 1H), 3.33 (s, 3H).

¹³C NMR (150 MHz, MeOD) δ 171.6, 163.2, 155.9, 139.1, 133.7, 132.7, 129.9, 129.8, 129.7, 129.3, 129.2, 129.0, 128.9, 128.4, 124.8, 120.1, 116.9, 65.1, 64.4, 52.1.

HRMS (ESI): m/z calcd. For $C_{18}H_{19}N_2O_3$ $[M+H]^+$ 311.1390, found m/z 311.1384.

methyl(*1S*,*3S*,*3aS*,*8bS*)-3a-nitro-3,7-diphenyl-2,3,3a,8b-tetrahydro-1H-benzofuro[2,3-c] pyrrole-1-carboxylate (4fa)

Colorless oil. 36.6 mg, 88% yield, 96% ee.

 $[a]_D^{25} = 167.11 \text{ (c} = 0.40, \text{CH}_2\text{Cl}_2\text{)}.$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = $25 \,^{\circ}$ C, $\lambda = 254$ nm, retention time: 11.760 min (major), 19.002 min (minor).

¹**H NMR** (600 MHz, CDCl₃) δ 7.50 – 7.45 (m, 3H), 7.44 – 7.41 (m, 5H), 7.36 – 7.33 (m, 3H), 7.30 (s, 1H), 7.05 (d, *J* = 9.0 Hz, 1H), 5.17 (s, 1H), 4.79 (d, *J* = 9.0 Hz, 1H), 4.74 (d, *J* = 9.0 Hz, 1H), 3.72 (s, 3H), 2.22 (s, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 168.6, 158.4, 140.4, 137.2, 131.9, 129.8, 129.4, 129.0, 128.9, 127.9, 127.5, 126.9, 123.9, 123.4, 123.1, 110.9, 69.8, 64.2, 58.2, 52.6.

HRMS (ESI): m/z calcd. For $C_{24}H_{21}N_2O_5$ $[M+H]^+$ 417.1445, found m/z 417.1442.

((*1S*,*3S*,*3aS*,*8bS*)-6-methoxy-3a-nitro-3-phenyl-2,3,3a,8b-tetrahydro-1H-benzofuro[2,3-c]pyr rol-1-yl)methanol (4ia)

Light yellow oil. 38.5 mg, 75% yield, 96% ee.

 $[a]_D^{25} = 50.43 (c = 0.60, CH_2Cl_2).$

HPLC CHIRALCEL ODH, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, temperature = 25 °C, $\lambda = 254$ nm, retention time: 11.760 min (major), 19.002 min (minor).

¹**H NMR** (600 MHz, CDCl₃) δ 7.37 (s, 3H), 7.33 (s, 2H), 7.13 (d, *J* = 7.8 Hz, 1H), 6.57 (d, *J* = 9.0 Hz, 2H), 5.11 (s, 1H), 4.41 (d, *J* = 7.8 Hz, 1H), 3.96 (q, *J* = 6.0 Hz, 1H), 3.80 (dd, *J* = 10.8, 5.4 Hz, 1H), 3.77 (s, 3H), 3.69 (dd, *J* = 10.2, 6.0 Hz, 1H), 2.51 (s, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 161.7, 160.3, 133.3, 129.8, 129.2, 128.6, 128.2, 125.6, 123.8, 115.4, 114.4, 109.4, 96.8, 69.9, 62.1, 61.9, 56.4, 55.7, 29.8.

HRMS (ESI): m/z calcd. For C₁₈H₁₈N₂NaO₅ [M+Na]⁺ 365.1108, found m/z 365.1115.

7. Copies of NMR spectra

¹H NMR of 3aa

¹³C NMR of 3ad

¹³C NMR of 3ae

¹H NMR of 3ak

¹³C NMR of 3ak

¹³C NMR of 3ba

¹H NMR of 3da

¹³C NMR of 3da

¹³C NMR of 3ea

S42

50 40 30 20

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm) -500

-10

10 0

¹H NMR of 4aa

¹³C NMR of 4aa

¹³C NMR of 4ia

8. Copies of HPLC spectra for racemic and chiral compounds

#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.290	BV	0.3825	594.98419	23.87268	0.8770
2	19.733	VV	0.5244	6.72474e4	1889.38611	99.1230

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	9.373	BV	0.2092	7241.98730	533.86945	49.3536
2	10.066	VV	0.2232	7431.68945	507.80945	50.6464

2

16.022 VB

0.3732 327.40701

12.90335

1.7270

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.992	VB	0.6123	7160.63574	177.88194	97.0050
2	35.137	BB	0.8725	221.08228	2.99099	2.9950

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	11.603	BB	0.4036	9459.96191	362.35269	97.5978	
2	17.175	BB	0.5756	232.84355	5.77000	2.4022	

1<u>8</u>

序号 Name	RetTime	Area	Height	Area	Height	样品量
	min	mAU*min	mAU	%	%	n.a.
1	11.392	21.927	48.967	50.71	64.01	n.a.
2	18.208	21.314	27.532	49.29	35.99	n.a.
总和:		43.241	76.499	100.00	100.00	

S73

9. Crystal data and structure refinement for 3ah

Table 1 Crystal data and structure refinement for LL_1.

Identification code	LL_1
Empirical formula	$C_{18}H_{15}ClN_2O_5$
Formula weight	374.77
Temperature/K	120.00(10)
Crystal system	trigonal
Space group	P3 ₂
a/Å	11.0671(2)
b/Å	11.0671(2)
c/Å	11.8214(2)
α/°	90
β/°	90
γ/°	120
Volume/Å ³	1253.91(5)
Z	3
$\rho_{calc}g/cm^3$	1.489
μ/mm^{-1}	2.329
F(000)	582.0
Crystal size/mm ³	$0.16\times 0.14\times 0.12$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/ $\!\!\!\!^{c}$	9.228 to 146.992
Index ranges	$\textbf{-8} \leq h \leq 13, \textbf{-13} \leq k \leq 12, \textbf{-14} \leq l \leq 14$
Reflections collected	8112
Independent reflections	$3098 \ [R_{int} = 0.0270, R_{sigma} = 0.0245]$
Data/restraints/parameters	3098/1/240
Goodness-of-fit on F ²	1.050
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0307, wR_2 = 0.0775$
Final R indexes [all data]	$R_1 = 0.0308, wR_2 = 0.0775$

Largest diff. peak/hole / e Å⁻³ 0.20/-0.30 Flack parameter 0.007(7)/0.007(5)

10. Copies of HSQC, HMBC and Noesy

HSQC of 3aa

HMBC of 3aa

Noesy of 3aa

HSQC of 4

HMBC of 4

Noesy of 4

