Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Supporting Information:

## Methanesulfonyl-Polarized Halogen Bonding Enables Strong Halide Recognition in an Arylethynyl

### **Anion Receptor**

Jessica A. Lohrman, Chun-Lin Deng, Trevor A. Shear, Lev N. Zakharov, Michael M. Haley\*, and Darren W. Johnson\*

| Table of Contents                                                 | Page |
|-------------------------------------------------------------------|------|
| S1. Experimental Procedures                                       | S2   |
| General Procedures                                                | S2   |
| Receptor Synthesis                                                | S2   |
| S2. Titrations                                                    | S6   |
| UV-Vis Titration of I <sup>–</sup> with <b>1·PF</b> <sub>6</sub>  | S7   |
| UV-Vis Titration of Br <sup>-</sup> with <b>1·PF</b> <sub>6</sub> | S8   |
| UV-Vis Titration of $Cl^-$ with $1 \cdot PF_6$                    | S9   |
| S3. X-Ray Crystallography                                         | S11  |
| S4. Computational Details                                         | S14  |
| S5. References                                                    | S20  |
| S6. NMR Spectra                                                   | S21  |
|                                                                   |      |

#### **S1** Experimental Procedures

**General Procedures.** <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained on a Varian 500 MHz spectrometer (<sup>1</sup>H 500.10 MHz, <sup>13</sup>C 125.75 MHz). <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts ( $\delta$ ) are reported in parts per million (ppm) and referenced to residual solvent resonances (CDCl<sub>3</sub>: <sup>1</sup>H 7.26 ppm, <sup>13</sup>C 77.16 ppm; (CD<sub>3</sub>)<sub>2</sub>CO: <sup>1</sup>H 2.05 ppm, <sup>13</sup>C 29.84 ppm & 206.26 ppm; DMSO-*d*<sub>6</sub>: <sup>1</sup>H 2.50 ppm, <sup>13</sup>C 39.52 ppm). Masses for new compounds were determined with a Waters Xevo G2-XS ToF spectrometer. Compound UV-Vis spectra were recorded on an Agilent Carey 100 UV-Vis spectrophotometer. Additional details regarding UV-Vis titrations are provided in Section 2. Spectroscopic data were collected in DMSO-1.5±0.5 wt% water.<sup>1</sup> Unless otherwise specified, all reagents were purchased and used as received. Tetrabutylammonium salts were dried under vacuum for 24 h.

#### Synthesis



**4-(Methanesulfonyl)aniline**. To a solution of 4-(methylthio)benzenamine (4.48 g, 32.2 mmol) in MeOH (70 mL) was added ZnCl (0.451 g, 3.22 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (1.2 mL, 8.04 mmol). 30% H<sub>2</sub>O<sub>2</sub> solution (20 mL) was slowly added, then the reaction was refluxed for 8 h. After cooling to room temperature, the solution was diluted with H<sub>2</sub>O (60 mL) and the product was extracted with CH<sub>2</sub>Cl<sub>2</sub> (4x). The combined organics were dried (MgSO<sub>4</sub>), filtered and concentrated to give the desired sulfone (3.15 g, 57%) whose spectral data matched that previously reported.<sup>2</sup> <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.19 (d, *J* = 8.0 Hz, 2H), 6.64 (d, *J* = 8.0 Hz, 2H), 3.63 (s, 2H), 2.41 (s, 3H).



**2-Iodo-4-(methanesulfonyl)aniline (2)**. To a solution of 4-(methanesulfonyl)aniline (3.15 g, 18.4 mmol) in MeOH (60 mL) was added a mixture of KI (2.05 g, 12.3 mmol) and KIO<sub>3</sub> (1.38 g, 6.45 mmol) in deionized water (100 mL). HCI (1M, 20.3 mL) was slowly added dropwise over 30 min as the solution turned dark red. The reaction was then stirred overnight at room temperature. The product was extracted

EtOAc (4x) and the combined organic layers were washed twice each with sat. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution, water and brine, and then dried (MgSO<sub>4</sub>). The crude product was purified by column chromatography (5:1 CH<sub>2</sub>Cl<sub>2</sub>:EtOAc) to afford **1** (2.72 g, 50%) as an orange solid. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (s, 1H), 7.67 (d, *J* = 8.2 Hz, 1H), 6.77 (d, *J* = 8.2 Hz, 1H), 4.68 (s, 2H), 3.02 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151.24, 138.69, 130.21, 128.97, 113.35, 81.98, 45.02; HRMS (TOF-MS-ES+) for C<sub>7</sub>H<sub>9</sub>INO<sub>2</sub>S [M+H]<sup>+</sup>: calcd 297.9399, found 297.9429.



**4-(Methanesulfonyl)-2-((trimethylsilyl)ethynyl)aniline (3)**. Iodoaniline **2** (2.48 g, 8.33 mmol) was dissolved in a degassed solution of THF (30 mL) and *i*-Pr<sub>2</sub>NH (30 mL) under N<sub>2</sub>. Cul (71.2 mg, 0.333 mmol), Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (111 mg, 0.167 mmol), and (trimethylsilyl)acetylene (TMSA, 4.6 mL, 33.3 mmol) were added to the solution and the reaction was then stirred at 50 °C under N<sub>2</sub> for 12 h. After cooling the solvent was removed *in vacuo*. The resultant solid was dissolved in minimal CH<sub>2</sub>Cl<sub>2</sub> and then purified through a silica plug to yield **2** (1.31 g, 59%) as a brown solid. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.86 (s, 1H), 7.62 (d, *J* = 8.6 Hz, 1H), 6.74 (d, *J* = 8.6 Hz, 1H), 4.78 (s, 2H), 2.99 (s, 3H), 0.27 (s, 9H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 152.06, 132.35, 128.89, 128.32, 113.36, 107.52, 102.02, 99.21, 44.80, -0.17; HRMS (TOF-MS-ES+) for C<sub>12</sub>H<sub>18</sub>NO<sub>2</sub>SSi [M+H]<sup>+</sup>: calcd 268.0828, found 268.0847.



**Bis-aniline 4**. Ethynylaniline **3** (1.305 g, 4.87 mmol) was dissolved in a solution of THF (20 mL) and MeOH (20 mL) with 5 equiv. of  $K_2CO_3$  (3.37 g, 24.4 mmol) was added and the mixture was stirred for 1 h. The solvent was removed *in vacuo* then the residue was redissolved in CH<sub>2</sub>Cl<sub>2</sub>. The organic solution was

washed twice with water and with brine, dried (MgSO<sub>4</sub>), then concentrated *in vacuo*. The deprotected residue was dissolved in a degassed solution of THF (25 mL) and *i*-Pr<sub>2</sub>NH (25 mL) under N<sub>2</sub>. A solution of 3,5-dibromopyridine (417 mg, 1.77 mmol), CuI (64.2 mg, 0.4 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (217 mg, 0.188 mmol) in degassed THF (30 mL) and *i*-Pr<sub>2</sub>NH (30 mL) was prepared under N<sub>2</sub> to which the deprotected aniline was added via cannula. The reaction was heated at 50 °C and stirred for 12 h. After cooling the solvent was removed *in vacuo*. The resultant solid was dissolved in minimal CH<sub>2</sub>Cl<sub>2</sub> and then purified through a silica plug eluting with EtOAc as well to remove impurities. The desired product was removed from the plug using with acetone and concentrated *in vacuo* to yield **3** (863 mg, 60%) as a yellow solid. <sup>1</sup>H NMR (500 MHz, (CD<sub>3</sub>)<sub>2</sub>CO)  $\delta$  8.79 (s, 2H), 8.26 (s, 1H), 7.85 (s, 2H), 7.65 (d, *J* = 8.7 Hz, 2H), 6.97 (d, *J* = 8.7 Hz, 2H), 6.21 (s, 4H), 3.05 (s, 6H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  154.53, 151.63, 141.13, 133.26, 130.45, 129.16, 120.69, 114.64, 105.96, 91.92, 89.37, 44.88; HRMS (TOF-MS-ES+) for C<sub>23</sub>H<sub>20</sub>N<sub>3</sub>O<sub>4</sub>S<sub>2</sub> [M+H]<sup>+</sup>: calcd 466.0895, found 466.0923.



**Diiodide 5.** Bis-aniline **4** (863 mg, 1.85 mmol) was dissolved in CH<sub>3</sub>CN (7 mL) and concentrated HCl (5 mL) was added to the solution. After cooling to 0 °C, a solution of NaNO<sub>2</sub> (549 mg, 7.95 mmol) in CH<sub>3</sub>CN (5 mL) and H<sub>2</sub>O (15 mL) was added dropwise to the dianiline solution, which was stirred at room temperature for 1 h. The reaction was then transferred to a 0 °C solution of Kl (1.539 g, 9.27 mmol) in H<sub>2</sub>O (50 mL) and CH<sub>3</sub>CN (10 mL) and the mixture stirred overnight allowing to return to room temperature. The product was extracted with CH<sub>2</sub>Cl<sub>2</sub> (4x) then washed twice each with a saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution, H<sub>2</sub>O, and brine. After drying (MgSO<sub>4</sub>), the solution was purified though a silica plug to yield **4** (376 mg, 30%) as an off white solid. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.82 (s, 2H), 8.15 (d, *J* = 8.4 Hz, 2H), 8.09 (s, 2H), 8.06 (s, 1H), 7.59 (d, *J* = 8.4 Hz, 2H), 3.09 (s, 6H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  151.84, 141.02, 140.91,

140.29, 131.16, 130.77, 128.01, 119.38, 108.21, 93.94, 90.86, 44.62; HRMS (TOF-MS-ES+) for C<sub>23</sub>H<sub>16</sub>I<sub>2</sub>NO<sub>4</sub>S<sub>2</sub> [M+H]<sup>+</sup>: calcd 687.8610, found 687.8631.



**Compound 1-I.** Diiodide **5** (166 mg, 0.242 mmol) was added to an N<sub>2</sub>-purged bomb flask containing excess iodomethane (5 mL). The flask was seal, then heated to 100 °C, and stirred for 10 h. After cooling to room temperature, the yellow precipitate was collected by filtration, washed with  $CH_2Cl_2$ , then dried under vacuum to yield **1-I** (200 mg, 99.7%) as a bright yellow solid. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.45 (s, 2H), 9.04 (s, 1H), 8.34 (d, *J* = 8.1 Hz, 2H), 8.20 (s, 2H), 7.77 (d, *J* = 8.1 Hz, 2H), 4.40 (s, 3H), 3.32 (s, 6H); <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  147.83, 147.52, 141.21, 140.32, 131.43, 129.34, 127.96, 122.03, 108.44, 96.83, 86.24, 48.58, 43.25; HRMS (TOF-MS-ES+) for C<sub>24</sub>H<sub>18</sub>I<sub>3</sub>NO<sub>4</sub>S<sub>2</sub> [M+H]<sup>+</sup>: calcd 829.7890, found 829.7834.



**Receptor 1·PF<sub>6</sub>.** Compound **1·I** (24.8 mg, 0.0293 mmol) was dissolved in acetone (40 mL) and deionized H<sub>2</sub>O (15 mL). AgPF<sub>6</sub> (18.8 mg, 0.0746 mmol) was added and the solution was then stirred at room temperature for 30 min over which time a gray precipitate formed. The precipitate was filtered off and the filtrate was concentrated *in vacuo* to remove the acetone, which allowed **1·PF<sub>6</sub>** to precipitate out of the remaining water as a white solid. The white solid was filtered and washed with deionized H<sub>2</sub>O (3 x 10 mL) and then hexanes (3 x 10 mL). The white solid was dried under vacuum to yield pure **1·PF<sub>6</sub>** (18.6 mg, 75%). <sup>1</sup>H NMR (500 MHz, (CD<sub>3</sub>)<sub>2</sub>CO)  $\delta$  9.55 (s, 2H), 9.13 (s, 1H), 8.36 (d, *J* = 8.3 Hz, 2H), 8.16 (s, 2H),

7.81 (d, *J* = 8.3 Hz, 2H), 4.79 (s, 3H), 3.23 (s, 6H); <sup>13</sup>C NMR (126 MHz, (CD<sub>3</sub>)<sub>2</sub>CO) δ 148.89, 148.02, 142.69, 141.25, 132.33, 130.28, 129.18, 124.29, 107.31, 98.21, 86.46, 49.81, 43.82.

#### **S2.** Titrations

**General Titration Procedures**. A stock solution of  $1 \cdot PF_6$  (0.1 mM) was prepared in DMSO-1.4 wt% water and sonicated for 1 minute. The stock solution was then used to prepare experimental host solutions at 30 ± 0.1 µM of which 1.75 mL was transferred to a septum sealed cuvette. To maintain a constant host concentration, remaining experimental host solution was then used to dissolve NBu<sub>4</sub>X salts which were prepared in septa-sealed vials. Aliquots of NBu<sub>4</sub>X were added to the host cuvette with a gastight syringe, and a spectrum was recorded after each addition. Binding constants were determined by non-linear regression fit to a 1:1 model using the Bindfit binding program.<sup>3</sup> Titrations with each anion were performed in triplicate and the average of the resulting binding constants were reported with under 15% error.



**Fig. S1.** UV-Vis spectroscopic titration of  $1 \cdot PF_6$  with TBA<sup>+</sup>I<sup>-</sup> in wet DMSO (1.4% water w/w) at a concentration of 30  $\mu$ M. Inset shows the absorption binding isotherm upon addition of TBA<sup>+</sup>I<sup>-</sup> at 430 nm).

**Table S1.** Calculated association constants ( $K_a$ ) for **1·PF**<sub>6</sub> in DMSO (1.4% water w/w) obtained by fitting to a 1:1 host-guest model in Bindfit. Error is less than ±15%.<sup>54</sup>

| Guest | K <sub>a</sub> (M <sup>-1</sup> ) <sup>a</sup> |
|-------|------------------------------------------------|
| Cl⁻   | 940                                            |
| Br⁻   | 690                                            |
| F     | 3900                                           |

# UV-Vis Titration of I<sup>-</sup> with $1 \cdot PF_6$

| Table 2S. Titratior | of <b>1.PF</b> 6 \ | with I⁻. (Sto | ck [I⁻] | = 5.0 ± 0.2 mM) |
|---------------------|--------------------|---------------|---------|-----------------|
|---------------------|--------------------|---------------|---------|-----------------|

|    | Guest<br>Added<br>(µL) | Equiv.<br>Guest | Host<br>Conc [M] | Guest<br>Conc [M] | Abs at<br>430nm | Abs at<br>380nm | Abs at<br>414nm |
|----|------------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|
| 1  | 0                      | 0.00            | 2.96E-05         | 0.00E+00          | 0.036070        | 0.060334        | 0.041649        |
| 2  | 5                      | 0.50            | 2.96E-05         | 1.51E-05          | 0.036676        | 0.061389        | 0.042183        |
| 3  | 10                     | 1.00            | 2.96E-05         | 3.01E-05          | 0.039053        | 0.064685        | 0.045038        |
| 4  | 20                     | 1.99            | 2.96E-05         | 5.99E-05          | 0.043239        | 0.069963        | 0.049232        |
| 5  | 40                     | 3.94            | 2.96E-05         | 1.18E-04          | 0.047425        | 0.076012        | 0.053750        |
| 6  | 60                     | 5.84            | 2.96E-05         | 1.76E-04          | 0.050363        | 0.079453        | 0.057026        |
| 7  | 80                     | 7.71            | 2.96E-05         | 2.32E-04          | 0.053660        | 0.083928        | 0.060616        |
| 8  | 100                    | 9.53            | 2.96E-05         | 2.86E-04          | 0.056323        | 0.086863        | 0.063051        |
| 9  | 125                    | 11.75           | 2.96E-05         | 3.53E-04          | 0.059144        | 0.089881        | 0.066107        |
| 10 | 150                    | 13.92           | 2.96E-05         | 4.18E-04          | 0.061516        | 0.092103        | 0.068279        |
| 11 | 200                    | 18.08           | 2.96E-05         | 5.43E-04          | 0.062929        | 0.093400        | 0.069748        |
| 12 | 250                    | 22.04           | 2.96E-05         | 6.62E-04          | 0.064585        | 0.095203        | 0.071472        |
| 13 | 300                    | 25.80           | 2.96E-05         | 7.75E-04          | 0.065807        | 0.095883        | 0.072272        |
| 14 | 350                    | 29.38           | 2.96E-05         | 8.83E-04          | 0.067098        | 0.097283        | 0.073663        |
| 15 | 400                    | 32.80           | 2.96E-05         | 9.86E-04          | 0.067759        | 0.097173        | 0.074048        |
| 16 | 500                    | 39.17           | 2.96E-05         | 1.18E-03          | 0.068250        | 0.098463        | 0.074765        |
| 17 | 600                    | 45.01           | 2.96E-05         | 1.35E-03          | 0.069275        | 0.099647        | 0.076093        |
| 18 | 700                    | 50.37           | 2.96E-05         | 1.51E-03          | 0.069568        | 0.100833        | 0.076376        |
| 19 | 900                    | 59.87           | 4.70E-06         | 1.80E-03          | 0.070444        | 0.102412        | 0.076990        |
| 20 | 1100                   | 68.04           | 5.74E-06         | 2.04E-03          | 0.071747        | 0.105058        | 0.078748        |



**Fig. S2** Representative binding isotherm for  $I^-$  titration of **1**·**PF**<sub>6</sub> in DMSO-1.4 wt% water determined by UV-Vis spectroscopy.

## UV-Vis Titration of $Br^-$ with $1 \cdot PF_6$

Table S3. Titration of  $1 \cdot PF_6$  with Br<sup>-</sup>. (Stock [Br<sup>-</sup>] = 5.1 ± 0.7 mM)

|    | Guest<br>Added<br>(µL) | Equiv.<br>Guest | Host<br>Conc [M] | Guest<br>Conc [M] | Abs at<br>430nm | Abs at<br>380nm | Abs at<br>414nm |
|----|------------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|
| 1  | 0                      | 0.00            | 2.96E-05         | 0.00E+00          | 0.046561        | 0.073172        | 0.052984        |
| 2  | 5                      | 0.57            | 2.96E-05         | 1.69E-05          | 0.047132        | 0.073774        | 0.053700        |
| 3  | 10                     | 1.14            | 2.96E-05         | 3.37E-05          | 0.048172        | 0.0748          | 0.054473        |
| 4  | 20                     | 2.26            | 2.96E-05         | 6.71E-05          | 0.049047        | 0.075502        | 0.055346        |
| 5  | 40                     | 4.48            | 2.96E-05         | 1.33E-04          | 0.051469        | 0.078229        | 0.057868        |
| 6  | 60                     | 6.64            | 2.96E-05         | 1.97E-04          | 0.054131        | 0.081509        | 0.060412        |
| 7  | 80                     | 8.76            | 2.96E-05         | 2.59E-04          | 0.055564        | 0.083381        | 0.062042        |
| 8  | 100                    | 10.83           | 2.96E-05         | 3.21E-04          | 0.057097        | 0.085191        | 0.063635        |
| 9  | 125                    | 13.36           | 2.96E-05         | 3.96E-04          | 0.058981        | 0.087514        | 0.065643        |
| 10 | 150                    | 15.82           | 2.96E-05         | 4.69E-04          | 0.060908        | 0.089861        | 0.067461        |

| 11 | 200  | 20.55 | 2.96E-05 | 6.09E-04 | 0.063129 | 0.092288 | 0.069840 |
|----|------|-------|----------|----------|----------|----------|----------|
| 12 | 250  | 25.04 | 2.96E-05 | 7.42E-04 | 0.065631 | 0.094813 | 0.072298 |
| 13 | 300  | 29.32 | 2.96E-05 | 8.69E-04 | 0.067444 | 0.096967 | 0.074137 |
| 14 | 350  | 33.39 | 2.96E-05 | 9.89E-04 | 0.069428 | 0.099662 | 0.076310 |
| 15 | 400  | 37.27 | 2.96E-05 | 1.10E-03 | 0.070554 | 0.101284 | 0.077205 |
| 16 | 500  | 44.52 | 2.96E-05 | 1.32E-03 | 0.072513 | 0.104910 | 0.079745 |
| 17 | 600  | 51.15 | 2.96E-05 | 1.52E-03 | 0.074517 | 0.108016 | 0.081932 |
| 18 | 700  | 57.24 | 2.96E-05 | 1.70E-03 | 0.076821 | 0.111062 | 0.084230 |
| 19 | 900  | 68.04 | 2.96E-05 | 2.02E-03 | 0.078521 | 0.114307 | 0.086145 |
| 20 | 1100 | 77.33 | 2.96E-05 | 2.74E-03 | 0.080512 | 0.117874 | 0.088661 |



**Fig. S3** Representative binding isotherm for  $Br^-$  titration of **1·PF**<sub>6</sub> in DMSO-1.4 wt% water determined by UV-Vis spectroscopy.

## UV-Vis Titration of Cl<sup>-</sup> with 1. PF<sub>6</sub>

Table S4. Titration of  $1 \cdot PF_6$  with Cl<sup>-</sup>. (Stock [Cl<sup>-</sup>] =  $5.0 \pm 1.0 \text{ mM}$ )

|   | Guest<br>Added<br>(µL) | Equiv.<br>Guest | Host<br>Conc [M] | Guest<br>Conc [M] | Abs at<br>430nm | Abs at<br>380nm | Abs at<br>414nm |
|---|------------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|
| 1 | 0                      | 0.00            | 2.96E-05         | 0.00E+00          | 0.047583        | 0.059292        | 0.049926        |

| 2  | 5    | 0.46  | 2 96F-05 | 1 35E-05 | 0.0/18717 | 0 060809 | 0.050813 |
|----|------|-------|----------|----------|-----------|----------|----------|
| 2  | J    | 0.40  | 2.301-03 | 1.336-03 | 0.040717  | 0.000009 | 0.00010  |
| 3  | 10   | 0.91  | 2.96E-05 | 2.69E-05 | 0.049710  | 0.061000 | 0.051383 |
| 4  | 20   | 1.80  | 2.96E-05 | 5.35E-05 | 0.050999  | 0.062343 | 0.052381 |
| 5  | 40   | 3.57  | 2.96E-05 | 1.06E-04 | 0.053042  | 0.064519 | 0.054489 |
| 6  | 60   | 5.29  | 2.96E-05 | 1.57E-04 | 0.054029  | 0.065232 | 0.055247 |
| 7  | 80   | 6.98  | 2.96E-05 | 2.07E-04 | 0.055211  | 0.066604 | 0.057027 |
| 8  | 100  | 8.63  | 2.96E-05 | 2.56E-04 | 0.057021  | 0.069085 | 0.058683 |
| 9  | 125  | 10.65 | 2.96E-05 | 3.15E-04 | 0.058143  | 0.070495 | 0.059819 |
| 10 | 150  | 12.61 | 2.96E-05 | 3.74E-04 | 0.060231  | 0.072777 | 0.061763 |
| 11 | 200  | 16.38 | 2.96E-05 | 4.85E-04 | 0.060864  | 0.073135 | 0.062298 |
| 12 | 250  | 19.97 | 2.96E-05 | 5.91E-04 | 0.061986  | 0.074720 | 0.063737 |
| 13 | 300  | 23.37 | 2.96E-05 | 6.92E-04 | 0.063037  | 0.076083 | 0.064809 |
| 14 | 350  | 26.62 | 2.96E-05 | 7.89E-04 | 0.064137  | 0.077728 | 0.065924 |
| 15 | 400  | 29.72 | 2.96E-05 | 8.80E-04 | 0.065021  | 0.079145 | 0.067072 |
| 16 | 500  | 35.49 | 2.96E-05 | 1.05E-03 | 0.066267  | 0.081133 | 0.068374 |
| 17 | 600  | 40.78 | 2.96E-05 | 1.21E-03 | 0.067405  | 0.083067 | 0.069659 |
| 18 | 800  | 50.11 | 2.96E-05 | 1.48E-03 | 0.068722  | 0.085426 | 0.071280 |
| 19 | 900  | 54.25 | 2.96E-05 | 1.61E-03 | 0.074790  | 0.098192 | 0.078932 |
| 20 | 1100 | 61.65 | 2.96E-05 | 1.83E-03 | 0.077444  | 0.103316 | 0.082143 |



**Fig. S4** Representative binding isotherm for Cl<sup>-</sup> titration of **1**·**PF**<sub>6</sub> in DMSO-1.4 wt% water determined by UV-Vis spectroscopy.

#### S3. X-ray Crystallography

**General**. Diffraction intensities for **1·PF**<sub>6</sub>, **1·Cl**, **1·Br**, and **1·I** were collected at 173 K on a Bruker Apex2 DUO CCD diffractometer using CuK $\alpha$  radiation,  $\lambda$ = 1.54178 Å. Absorption corrections were applied by SADABS.<sup>4</sup> Space groups were determined based on intensity statistics (**1·Cl**, **1·Br**, **1·I**) and systematic absences (**1·PF**<sub>6</sub>). Structures were solved by direct methods and Fourier techniques and refined on *F*<sup>2</sup> using full matrix least-squares procedures. All non-H atoms were refined with anisotropic thermal parameters. H atoms were refined in calculated positions in a rigid group model. H atoms in solvent water molecule in **1·Cl** were not found and not taken into consideration. H atoms in solvent water in **1·Br** were found on the residual density map and refined with restrictions on O-H bond distances. All calculations were performed by the Bruker SHELXL-2014/7 package. <sup>5</sup> CCDC 1868183-1868185, 1875924 contain the supplementary crystallographic data for these compounds. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data\_request/cif</u>.

Crystals suitable for x-ray diffraction were grown as follows: (a) for  $1 \cdot PF_6$  through slow evaporation of the compound in acetone over time; (b) for  $1 \cdot I$  through slow evaporation of the compound in a MeOH/MeCN solvent mixture; (c) for  $1 \cdot CI$  and  $1 \cdot Br$  by dissolving  $1 \cdot PF_6$  in acetone and adding 2 equiv. of TBA<sup>+</sup>Cl<sup>-</sup> or TBA<sup>+</sup>Br<sup>-</sup>, then filtering the resulting precipitated  $1 \cdot CI$  and  $1 \cdot Br$  salts, which were then redissolved in a MeOH/MeCN mixture and evaporated slowly over time.

**X-ray Structure of Analysis of 1·Br**. A nearly identical binding mode was observed in the crystal structure of **1·Br**. While the adopted conformation remains the same as found in **1·Cl**, the Br<sup>-</sup> is held at a distance and angle of 3.407(4) Å and 167°, respectively, owing to an 14% reduction of the ionic and van der Waals radii (Fig. S8).<sup>6</sup> A second Br<sup>-</sup> species is found in the molecular plane forming a hydrogen bond with a pyridinium C(H) on the side opposite to the halogen bonding at a C(H)… Br<sup>-</sup> distance of 3.495 Å, thus balancing the complex charge between the two receptors and two anions. The second halogen bond donor is pointed inward towards the central pocked and halogen bonding with the methanesulfonyl oxygen from an adjacent receptor scaffold in the stack.



Fig. S5 ORTEP representation (50% probability ellipsoid) of the X-ray crystal structure of 1·Br.

| Compound                          | 1.1                            | 1·Cl                          | 1·Br                    | 1.PFc                   |
|-----------------------------------|--------------------------------|-------------------------------|-------------------------|-------------------------|
| Empirical formula                 | $C_{24}H_{18}I_{2}NO_{4}S_{2}$ | C₂₄H₂₀Cll₂NO₅S₂               | C₂₄H₂₀Brl₂NO₅S₂         | C27H24F6J2NO5PS2        |
| Formula weight                    | 829.21                         | 755.78                        | 800.24                  | 905.36                  |
| Temperature                       | 173(2) K                       | 173(2) K                      | 173(2) K                | 173(2) K                |
| Wavelength                        | 1.54178 Å                      | 1.54178 Å                     | 1.54178 Å               | 1.54178 Å               |
| Crystal system                    | Triclinic                      | Triclinic                     | Triclinic               | Monoclinic              |
| Space group                       | P-1                            | P-1                           | P-1                     | P2₁/n                   |
| Unit cell dimensions              | a = 8.5565(5) Å                | a = 5.057(3) Å                | a = 5.1366(3) Å         | a = 15.0002(8) Å        |
|                                   | b = 13.3964(8) Å               | b = 15.197(9) Å               | b = 15.3534(7) Å        | b = 8.6636(5) Å         |
|                                   | c = 13.6335(8) Å               | c = 17.789(11) Å              | c = 17.7446(9) Å        | c = 25.9025(10) Å       |
|                                   | $\alpha = 64.031(4)^{\circ}$   | $\alpha = 79.501(15)^{\circ}$ | α = 78.460(3)°          | <i>α</i> = 90°          |
|                                   | <i>β</i> = 79.229(4)°          | <i>β</i> = 89.107(15)°        | <i>β</i> = 89.369(4)°   | <i>β</i> = 102.518(3)°  |
|                                   | γ = 86.953(4)°                 | γ = 85.63(2)°                 | γ = 86.064(4)°          | γ = 90°                 |
| Volume                            | 1379.49(15) ų                  | 1340.3(14) ų                  | 1367.89(12) ų           | 3286.2(3) ų             |
| Ζ                                 | 2                              | 2                             | 2                       | 4                       |
| Density (calculated)              | 1.996 Mg/m <sup>3</sup>        | 1.873 Mg/m <sup>3</sup>       | 1.943 Mg/m <sup>3</sup> | 1.830 Mg/m <sup>3</sup> |
| Absorption coefficient            | 28.358 mm <sup>-1</sup>        | 21.106 mm <sup>-1</sup>       | 21.494 mm <sup>-1</sup> | 17.326 mm <sup>−1</sup> |
| F(000)                            | 784                            | 732                           | 768                     | 1760                    |
| I range for data                  | 3.667 to 66.871°               | 2.526 to 67.081°              | 2.541 to 66.650°        | 3.142 to 66.712°        |
| collection                        |                                |                               |                         |                         |
| Reflections collected             | 13406                          | 14065                         | 15563                   | 21649                   |
| Independent                       | 4799 [R(int) =                 | 4611 [R(int) =                | 4812 [R(int) =          | 5781 [R(int) =          |
| reflections                       | 0.0634]                        | 0.1041]                       | 0.0624]                 | 0.0978]                 |
| Completeness to =                 | 97.9%                          | 96.6%                         | 99.6%                   | 99.2%                   |
| Max and min                       | 0 7528 and                     | 0 7528 and                    | 0 5842 and 0 3375       | 0 7528 and              |
| transmission                      | 0.4856                         | 0.4651                        | 0.50+2 414 0.5575       | 0.5144                  |
| Data / restraints /               | 4799 / 0 / 307                 | 4611/0/319                    | 4812 / 2 / 327          | 5781/0/397              |
| parameters                        |                                |                               |                         |                         |
| Goodness-of-fit on F <sup>2</sup> | 1.057                          | 1.062                         | 1.029                   | 1.005                   |
| Final R indices [I>22(I)]         | R1 = 0.0394                    | R1 = 0.0681                   | R1 = 0.0389             | R1 = 0.0636             |
|                                   | wR2 = 0.0973                   | wR2 = 0.1670                  | wR2 = 0.0841            | wR2 = 0.1439            |
| R indices (all data)              | R1 = 0.0535                    | R1 = 0.1023                   | R1 = 0.0580             | R1 = 0.1026             |
|                                   | wR2 = 0.1037                   | wR2 = 0.1913                  | wR2 = 0.0907            | wR2 = 0.1654            |
| Residual e <sup>–</sup> density   | 0.924/-0.899                   | 0.917/-1.294                  | 0.732/-0.643            | 1.529/-1.029            |

Table S5. X-ray diffraction details for 1●I, 1●Cl, 1●Br, and 1●PF<sub>6</sub>.

#### **S4.** Computational Details

**General**. Receptors **1**, **5** was optimized by carrying out the DFT calculations using the B97-D3 functional<sup>7</sup> along with the Def2-TZVP basis set<sup>8</sup> in gas phase, which were performed with Gaussian 09 software package.<sup>9</sup> The frequency calculation was also performed on the structure to ensure no imaginary frequency. Electrostatic potential surface (ESP) was created at the B97-D3/Def2-TZVP level of theory and determined at an electron density of 0.001 electrons bohr<sup>-3</sup>. The most positive  $V_{\rm S}(r)$  values ( $V_{\rm S,max}$ ) for electrostatic potential surface energies were calculated using the Multiwfn program.<sup>10</sup>

Table S6 Cartesian coordinates for 1



X Y

Ζ

| С | -1.18353656 | 3.79589889  | -0.05903917 |
|---|-------------|-------------|-------------|
| С | -1.21935095 | 2.39133654  | 0.00445153  |
| С | 0.00320209  | 1.69879330  | 0.03591823  |
| С | 1.22374198  | 2.39877106  | 0.00483574  |
| С | 1.18025355  | 3.80074636  | -0.05870542 |
| Ν | -0.00444254 | 4.45007784  | -0.08954520 |
| С | -2.44300974 | 1.69895279  | 0.02604350  |
| С | 2.44880299  | 1.70869284  | 0.02695670  |
| С | -3.43697616 | 0.99575807  | 0.03007039  |
| С | 3.44128022  | 1.00348094  | 0.03123757  |
| С | -4.58838950 | 0.18300330  | 0.01556854  |
| С | 4.59040761  | 0.18740515  | 0.01702968  |
| С | -5.86580439 | 0.78517831  | 0.01934902  |
| С | -7.00480238 | -0.00188494 | -0.03029290 |
| С | -6.91351957 | -1.39535730 | -0.08712520 |
| С | -5.66182413 | -2.00931781 | -0.07377718 |
| С | -4.50516499 | -1.23208284 | -0.02187823 |
| С | 4.50254717  | -1.22743212 | -0.01806177 |
| С | 5.65656374  | -2.00855994 | -0.06970905 |

| С | 6.91022994   | -1.39868199 | -0.08518167 |
|---|--------------|-------------|-------------|
| С | 7.00612067   | -0.00545255 | -0.03081338 |
| С | 5.86971956   | 0.78544922  | 0.01860762  |
| I | -2.63179811  | -2.20442215 | -0.02012742 |
| I | 2.62592880   | -2.19366207 | -0.01305789 |
| S | -8.62018594  | 0.79846288  | -0.09467893 |
| S | 8.62415953   | 0.78926441  | -0.09824434 |
| С | 0.01078308   | 5.93311156  | -0.14973617 |
| С | -9.22252359  | 0.63093691  | 1.58516603  |
| 0 | -8.38813875  | 2.20528276  | -0.35512354 |
| 0 | -9.45866491  | -0.00456133 | -0.95885963 |
| С | 9.22710674   | 0.62375370  | 1.58159011  |
| 0 | 9.45925219   | -0.01876904 | -0.96103835 |
| 0 | 8.39676583   | 2.19621789  | -0.36196502 |
| Н | -2.08321748  | 4.39618331  | -0.08934529 |
| Н | 0.00662454   | 0.61491424  | 0.08047578  |
| Н | 2.07438890   | 4.41044201  | -0.08913494 |
| Н | -5.95481163  | 1.86637705  | 0.03630773  |
| н | -7.81512753  | -1.99565767 | -0.16475951 |
| н | -5.58883461  | -3.09080354 | -0.11697436 |
| Н | 5.58003740   | -3.08986964 | -0.11104214 |
| Н | 7.80981539   | -2.00204466 | -0.16254355 |
| н | 5.96218350   | 1.86638942  | 0.03363355  |
| Н | -1.00991824  | 6.29479664  | -0.26278342 |
| Н | 0.44336532   | 6.32118438  | 0.77475131  |
| Н | 0.61108317   | 6.24591532  | -1.00585839 |
| Н | -10.21049148 | 1.09962416  | 1.59387710  |
| Н | -9.30230468  | -0.42907411 | 1.83404149  |
| Н | -8.54403506  | 1.15278111  | 2.26278073  |
| н | 10.21660432  | 1.08923130  | 1.58849760  |
| н | 8.55079720   | 1.14945045  | 2.25840551  |
| Н | 9.30357475   | -0.43591613 | 1.83294595  |

Table S7 Cartesian coordinates for 1 without methanesulfonyl substituents

|   | х           | Y           | Z           |  |
|---|-------------|-------------|-------------|--|
| С | 1.18211091  | 4.10737866  | -0.00067763 |  |
| С | 1.22219170  | 2.70212823  | -0.00468481 |  |
| С | -0.00026685 | 2.00590902  | 0.00550140  |  |
| С | -1.22267767 | 2.70219970  | 0.01854435  |  |
| С | -1.18250631 | 4.10745099  | 0.02207490  |  |
| Ν | -0.00015346 | 4.75927184  | 0.01281708  |  |
| С | 2.44300556  | 2.00625468  | -0.01469848 |  |
| С | -2.44345871 | 2.00627265  | 0.02901310  |  |
| С | 3.41980488  | 1.27825563  | -0.02134719 |  |
| С | -3.42019519 | 1.27816187  | 0.03278422  |  |
| С | 4.53431602  | 0.41746547  | -0.02890619 |  |
| С | -4.53453255 | 0.41711202  | 0.03636628  |  |
| С | 5.84185483  | 0.95384551  | -0.07873359 |  |
| С | 6.95033559  | 0.12063741  | -0.08870561 |  |
| С | 6.77754716  | -1.26535676 | -0.04836926 |  |
| С | 5.49786179  | -1.82234568 | 0.00192233  |  |
| С | 4.38151573  | -0.99130889 | 0.01165137  |  |
| С | -4.38142096 | -0.99140983 | -0.01165288 |  |
| С | -5.49755608 | -1.82275995 | -0.00632629 |  |
| С | -6.77735977 | -1.26634888 | 0.04718589  |  |
| С | -6.95044217 | 0.11936660  | 0.09507953  |  |
| С | -5.84216213 | 0.95289102  | 0.08934152  |  |
| I | 2.45999189  | -1.87305909 | 0.09107121  |  |
| I | -2.45969773 | -1.87232078 | -0.09610468 |  |
| C | -0.00020114 | 6.24152384  | -0.03768847 |  |
| Н | 2.07829816  | 4.71383597  | -0.00882177 |  |
| Н | -0.00033516 | 0.92092422  | 0.00546971  |  |
| Н | -2.07865560 | 4.71393355  | 0.03028904  |  |
| Н | 5.95768702  | 2.03299854  | -0.10954764 |  |

| Н | 7.64156803  | -1.92395702 | -0.05569604 |
|---|-------------|-------------|-------------|
| н | 5.37442828  | -2.89961048 | 0.03337201  |
| Н | -5.37388704 | -2.89981019 | -0.04371108 |
| н | -7.64122719 | -1.92518095 | 0.05113422  |
| н | -5.95825980 | 2.03183450  | 0.12595471  |
| н | 0.89240030  | 6.61361207  | 0.46493706  |
| н | -0.00369151 | 6.56214127  | -1.08223766 |
| н | -0.88923997 | 6.61383877  | 0.47093996  |
| н | -7.94832679 | 0.54501050  | 0.13657671  |
| н | 7.94813671  | 0.54671951  | -0.12765156 |
|   |             |             |             |

# Table S8 Cartesian coordinates for 5



| С | -1.14515546 | 3.90010676  | -0.23089188 |
|---|-------------|-------------|-------------|
| С | -1.20946353 | 2.48991625  | -0.16988730 |
| С | -0.00001788 | 1.78085473  | -0.13991571 |
| С | 1.20943736  | 2.48990864  | -0.16971430 |
| С | 1.14514316  | 3.90010056  | -0.23072255 |
| Ν | -0.00000204 | 4.58337779  | -0.26033890 |
| С | -2.44268466 | 1.79833907  | -0.13758173 |
| С | 2.44265683  | 1.79833767  | -0.13720892 |
| С | -3.46159516 | 1.13438611  | -0.10600783 |
| С | 3.46158476  | 1.13441607  | -0.10552536 |
| С | -4.63101905 | 0.34341883  | -0.06426834 |
| С | 4.63101167  | 0.34343781  | -0.06405193 |
| С | -5.90089016 | 0.95863084  | -0.04983131 |
| С | -7.05479672 | 0.18754866  | -0.00589179 |
| С | -6.99451099 | -1.20730146 | 0.01371305  |
| С | -5.75035326 | -1.83539268 | -0.00277465 |
| С | -4.58304665 | -1.07319462 | -0.03605326 |

S17

| С | 4.58304444  | -1.07318019 | -0.03602375 |
|---|-------------|-------------|-------------|
| С | 5.75035511  | -1.83538166 | -0.00296554 |
| С | 6.99451411  | -1.20729137 | 0.01348335  |
| С | 7.05479598  | 0.18756136  | -0.00593039 |
| С | 5.90088366  | 0.95864862  | -0.04965121 |
| I | -2.72234952 | -2.07712550 | -0.05393270 |
| I | 2.72234819  | -2.07710897 | -0.05382658 |
| S | -8.65288073 | 1.00410936  | 0.02903728  |
| S | 8.65288200  | 1.00411980  | 0.02896537  |
| С | -8.93641888 | 1.23175510  | 1.78784281  |
| 0 | -8.50158033 | 2.31669480  | -0.56795499 |
| 0 | -9.64350446 | 0.06622329  | -0.46288071 |
| С | 8.93657462  | 1.23153467  | 1.78777556  |
| 0 | 9.64346382  | 0.06629926  | -0.46316220 |
| 0 | 8.50152757  | 2.31678338  | -0.56784133 |
| Н | -2.06639325 | 4.47957932  | -0.25679824 |
| Н | -0.00003075 | 0.69673595  | -0.09362516 |
| Н | 2.06638826  | 4.47956718  | -0.25648598 |
| Н | -5.96772298 | 2.04073711  | -0.09126455 |
| Н | -7.90998134 | -1.79006381 | 0.02120756  |
| Н | -5.69004044 | -2.91866090 | 0.00526549  |
| Н | 5.69004473  | -2.91865121 | 0.00493560  |
| Н | 7.90998568  | -1.79005424 | 0.02080861  |
| Н | 5.96771128  | 2.04076121  | -0.09093317 |
| Н | -9.90555420 | 1.73040991  | 1.87448164  |
| Н | -8.96138086 | 0.25442523  | 2.27386721  |
| Н | -8.14228332 | 1.85965995  | 2.19658807  |
| Н | 9.90571745  | 1.73017838  | 1.87439412  |
| Н | 8.14247510  | 1.85938572  | 2.19667357  |
| Н | 8.96157956  | 0.25414079  | 2.27366904  |
|   |             |             |             |

 Table S9 Cartesian coordinates for 5 without methanesulfonyl substituents.



|   | Х           | Y           | Z           |  |
|---|-------------|-------------|-------------|--|
|   |             |             |             |  |
| C | 1.14524966  | 4.29065789  | 0.00014357  |  |
| C | 1.21021832  | 2.87937426  | 0.00019317  |  |
| C | 0.00002348  | 2.17046557  | 0.00005627  |  |
| C | -1.21017437 | 2.87936859  | -0.00011879 |  |
| С | -1.14521184 | 4.29065290  | -0.00014282 |  |
| Ν | 0.00001722  | 4.97507954  | -0.00001652 |  |
| С | 2.44166166  | 2.18354551  | 0.00038253  |  |
| С | -2.44161452 | 2.18353421  | -0.00027193 |  |
| С | 3.45162654  | 1.50483414  | 0.00047930  |  |
| С | -3.45157981 | 1.50482345  | -0.00036079 |  |
| С | 4.60614225  | 0.69036327  | 0.00026154  |  |
| С | -4.60611554 | 0.69038103  | -0.00027723 |  |
| С | 5.89155029  | 1.27739207  | 0.00042520  |  |
| С | 7.03933130  | 0.49597552  | 0.00024403  |  |
| С | 6.93548185  | -0.89654466 | -0.00011124 |  |
| С | 5.67996025  | -1.50633558 | -0.00027595 |  |
| С | 4.52823315  | -0.72304235 | -0.00009119 |  |
| С | -4.52824081 | -0.72302661 | 0.00003337  |  |
| С | -5.67998803 | -1.50629088 | 0.00009770  |  |
| С | -6.93549434 | -0.89646880 | -0.00014838 |  |
| С | -7.03930934 | 0.49605410  | -0.00046206 |  |
| C | -5.89150896 | 1.27744192  | -0.00052333 |  |
| I | 2.64394813  | -1.69329696 | -0.00034558 |  |
| I | -2.64397922 | -1.69332867 | 0.00041664  |  |
| Н | 2.06657337  | 4.87078408  | 0.00025008  |  |
| Н | 0.00002589  | 1.08535016  | 0.00008379  |  |
| Н | -2.06653849 | 4.87077455  | -0.00027806 |  |
| Н | 5.95868198  | 2.36130347  | 0.00070199  |  |
| н | 7.82889604  | -1.51514729 | -0.00025743 |  |

| Н | 5.59848542  | -2.58835071 | -0.00054730 |
|---|-------------|-------------|-------------|
| Н | -5.59854019 | -2.58830805 | 0.00033932  |
| н | -7.82892413 | -1.51504908 | -0.00009580 |
| Н | -5.95861351 | 2.36135492  | -0.00076595 |
| Н | -8.01589045 | 0.97202935  | -0.00065807 |
| Н | 8.01592400  | 0.97192700  | 0.00037886  |
|   |             |             |             |

### **S5** References

- 1 E. Kang, H.-R. Park, J. Yoon, H.-Y. Yu, S.-K. Chang, B. Kim, K. Choi, S. Ahn, *Microchem. J.* **2018**, *138*, 395-400.
- 2 J.-B. Feng, J.-L. Gong, X-F. Wu, RSC Adv. 2014, 4, 29273-29275.
- 3 http://app.supramolecular.org/bindfit/
- 4 G. M. Sheldrick, *Bruker/Siemens Area Detector Absorption Correction Program*, Bruker AXS, Madison, WI, **1998**.
- 5 G. M. Sheldrick, Acta Cryst. C 2015, 71, 3-8.
- 6 Shannon, Acta Crystallogr., Sect. A, 1976, A32, 751.
- 7 S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
- 8 F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.
- 10 T. Lu, F. Chen, J. Comput. Chem. **2012**, *33*, 580-592.



**Fig. S6** <sup>1</sup>H NMR spectrum **2** (500 MHz, CDCl<sub>3</sub>, 298 K).





Fig. S8  $^1\text{H}$  NMR spectrum of 3 (500 MHz, CDCl\_3, 298 K).





Figure S10. <sup>1</sup>H NMR spectrum of 4 (500 MHz, (CD<sub>3</sub>)<sub>2</sub>CO, 298 K).







**Fig. S13** <sup>13</sup>C NMR spectrum of **5** (126 MHz, CDCl<sub>3</sub>, 298 K).



**Fig. S15** <sup>13</sup>C NMR spectrum of **1**·I (126 MHz, DMSO-*d*<sub>6</sub>, 298 K).



**Fig. S17** <sup>13</sup>C NMR spectrum of **1·PF**<sub>6</sub> (126 MHz, (CD<sub>3</sub>)<sub>2</sub>CO, 298 K).