Supplementary Information

Oxidative Tandem Annulation of 1-(2-Ethynylaryl)prop-2-en-1-ones Catalyzed by Cooperative Iodine and TBHP

Bang Liu, Jiang Cheng, Yang Li,* and Jin-Heng Li*

Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle,

Nanchang Hangkong University, Nanchang 330063, China, and School of Petrochemical

Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou

University, Changzhou 213164, China

E-mail: liyang8825490@126.com and jhli@hnu.edu.cn

List of Contents

- (A) Typical experimental procedures
- (B) Analytical data
- (C) References
- (D) Spectra
- (E) The X-ray single-crystal diffraction analysis

(A) Typical experimental procedures(a) General

The ¹H and ¹³C NMR spectra were recorded in CDCl₃ solvent on a NMR spectrometer using TMS as internal standard. HRMS was measured on an electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometry. Melting points are uncorrected. The instrument for electrolysis is DC power source (PM3005B) (made in China). Cyclic voltammograms were obtained on a CHI 605E potentiostat. The anode electrode is graphite rod (Φ 6mm×80mm) and cathode electrode is platinum electrodes (1.0×1.0 cm²). Starting materials (1-(2-ethynylaryl)prop-2-en-1-ones) **1** were synthesized according to the literature procedures.¹⁻⁴.

(b) General procedure for the oxidative tandem annulation of 1-(2ethynylaryl)prop-2-en-1-ones (1):

To a 25 mL Schlenk tube were added I₂ (40 mol %), 1,6-enyne **1a** (0.2 mmol), and 1,4-dioxane/H₂O (v/v=10/1; 3.3 mL). Then TBHP (70%w in water) 4 equiv. was added to the solution. The mixture was stirred at 80 °C under argon atmosphere for 14 h until complete consumption of starting material as monitored by TLC and/or GC-MS analysis. After the reaction was finished, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and washed with Na₂S₂O₃ and saturated NaCl. The aqueous phase was extracted twice with ethyl acetate and washed with saturated

NaCl. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated, then purified by column chromatography (petroleum ether/ethyl acetate, v/v=15/1) to afford **2a** (86% yield, 55.7 mg).

1 mmol scale

To a 25 mL Schlenk tube were added I₂ (40 mol %), 1,6-enyne **1a** (1 mmol), and 1,4-dioxane/H₂O (v/v=10/1; 5.5 mL). Then TBHP (70% solution in water) 4 equiv. was added to the solution. The mixture was stirred at 80 °C under argon atmosphere for 14 h until complete consumption of starting material as monitored by TLC and/or GC-MS analysis. After the reaction was finished, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and washed with Na₂S₂O₃ and saturated NaCl. The aqueous phase was extracted twice with ethyl acetate and washed with saturated NaCl. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated, then purified by column chromatography (petroleum ether/ethyl acetate, v/v=15/1) to afford **2a** (90% yield, 290 mg).

(B) Analytical data

1,1a-Diphenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2a)⁵

86% yield, 55.7mg; ¹H NMR (400 MHz, CDCl₃) δ 8.22 - 8.07 (m, 2H), 7.80 - 7.79 (m, 2H), 7.25 - 7.23 (m, 3H), 7.15 - 7.07 (m, 5H), 6.76 (d, *J* = 7.2 Hz, 2H), 3.67 (d, *J* = 5.6 Hz, 1H), 3.42 (d, *J* = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.7,

191.0, 134.4, 134.2, 133.3, 132.5, 132.5, 131.8, 131.6, 128.1, 128.0, 128.0, 127.5, 126.8, 50.9, 43.0, 39.9; LRMS (EI, 70 eV) *m/z* (%): 324 (M⁺, 100), 279 (35), 265 (29).

[MS Spectrum]

of Peaks 355

Raw Spectrum 21.190 (scan: 3539) Base Peak m/z 323.80 (Inten: 600,271)

Background No Background Spectrum

m/z Absolute Intensity Relative Intensity

49.90	18330	3.05	119.40	12695	2.11	165.85	37295	6.21
50.90	22326	3.72	124.95	8651	1.44	166.90	10342	1.72
62.85	20419	3.40	125.90	25985	4.33	175.90	25602	4.27
74.90	13190	2.20	130.85	10613	1.77	176.95	12573	2.09
75.90	68526	11.42	131.75	20036	3.34	177.90	33713	5.62
76.90	64575	10.76	132.80	63236	10.53	186.85	16856	2.81
77.90	12158	2.03	133.85	7749	1.29	187.95	25220	4.20
87.95	6209	1.03	137.85	24615	4.10	188.85	200216	33.35
88.90	24804	4.13	138.85	25546	4.26	189.95	77938	12.98
94.50	13274	2.21	150.90	15892	2.65	190.90	206598	34.42
103.85	35828	5.97	151.90	30815	5.13	191.90	49271	8.21
104.85	66537	11.08	152.80	15529	2.59	192.95	18814	3.13
112.90	17210	2.87	161.95	9506	1.58	193.85	70114	11.68
113.85	7261	1.21	162.85	30461	5.07	194.85	11564	1.93
114.85	31311	5.22	163.95	30939	5.15	200.95	12372	2.06
118.35	7110	1.18	164.90	177426	29.56	201.85	35618	5.93

202.85	48457	8.07	264.80	176126	29.34	304.80	33825	5.63
206.80	14335	2.39	265.85	56345	9.39	305.85	24486	4.08
216.85	20343	3.39	266.80	53759	8.96	306.75	82405	13.73
217.80	48740	8.12	267.85	17565	2.93	307.85	22277	3.71
218.80	29214	4.87	275.80	46030	7.67	308.80	48942	8.15
221.80	24351	4.06	276.80	64530	10.75	309.80	11658	1.94
238.80	33607	5.60	277.85	84608	14.09	322.85	59601	9.93
245.80	54130	9.02	278.85	212884	35.46	<u>323.80</u>	600271	<u>100.00</u>
246.80	54606	9.10	279.80	88430	14.73	324.80	158519	26.41
251.80	118204	19.69	280.80	42150	7.02	<u>325.80</u>	22094	<u>3.68</u>
252.80	52425	8.73	288.80	12177	2.03	326.80	3698	0.62
262.80	40951	6.82	294.80	55617	9.27	327.80	130	0.02
263.85	28845	4.81	295.80	28553	4.76			

[MS Spectrum]# of Peaks 301

Raw Spectrum 19.225 (scan : 3146) Base Peak m/z 323.90 (Inten : 395,810) Background 19.445 (scan : 3190)

m/z Absolute Intensity Relative Intensity

103.95	33656	8.50	201.95	28353	7.16	277.90	56691	14.32
104.95	72841	18.40	202.95	40051	10.12	278.95	149500	37.77
132.90	55141	13.93	217.90	33743	8.53	279.90	61387	15.51
164.95	139240	35.18	218.90	23316	5.89	294.90	37176	9.39
165.95	28554	7.21	245.85	34356	8.68	308.90	33366	8.43
177.95	29145	7.36	246.85	38966	9.84	309.90	8259	2.09
188.95	161143	40.71	251.90	86600	21.88	322.95	28594	7.22
189.95	57412	14.50	252.90	34767	8.78	<u>323.90</u>	<u>395810</u>	<u>100.00</u>
190.95	180596	45.63	264.90	119643	30.23	324.90	103563	26.16
191.95	41701	10.54	265.90	39259	9.92	<u>325.90</u>	47484	<u>12.00</u>
192.95	12070	3.05	266.90	40517	10.24	326.90	9842	2.49
193.95	63472	16.04	276.90	44764	11.31	327.85	1382	0.35

- [MS Spectrum]
- # of Peaks 287

Raw Spectrum 19.230 (scan : 3147) Base Peak m/z 323.90 (Inten : 223,890) Background 19.450 (scan : 3191)

m/z Absolute Intensity Relative Intensity

49.90	10922	4.88	88.90	20321	9.08	163.95	16218	7.24
50.95	16690	7.45	103.90	18699	8.35	164.90	102989	46.00
61.95	3675	1.64	104.90	40581	18.13	165.95	22137	9.89
62.90	16224	7.25	114.90	19398	8.66	166.85	5179	2.31
75.90	39853	17.80	125.90	19111	8.54	175.95	14518	6.48
76.95	47783	21.34	162.90	18116	8.09	176.95	7857	3.51

177.90	20952	9.36	245.85	19559	8.74	279.90	48336	21.59
179.00	6133	2.74	246.85	21391	9.55	280.90	15477	6.91
186.95	9000	4.02	247.80	13689	6.11	288.90	4966	2.22
187.95	10215	4.56	248.85	11297	5.05	294.85	25182	11.25
188.95	108560	48.49	249.85	8870	3.96	295.90	12866	5.75
189.95	41044	18.33	250.95	4874	2.18	296.90	7278	3.25
190.95	121895	54.44	251.90	65157	29.10	305.95	10900	4.87
191.95	29561	13.20	252.85	24889	11.12	306.90	40030	17.88
192.90	6788	3.03	253.85	5334	2.38	307.90	12230	5.46
193.90	38009	16.98	263.95	13098	5.85	308.85	25198	11.25
194.95	7379	3.30	264.85	95389	42.61	309.85	6322	2.82
195.85	8627	3.85	265.85	27590	12.32	310.85	9863	4.41
200.90	6558	2.93	266.90	29263	13.07	322.95	23033	10.29
201.90	20552	9.18	267.90	9329	4.17	<u>323.90</u>	223890	<u>100.00</u>
202.90	28249	12.62	275.90	22199	9.92	324.95	68170	30.45
217.90	23340	10.42	276.85	32022	14.30	<u>325.90</u>	115300	<u>51.50</u>
218.85	16237	7.25	277.95	44650	19.94	326.85	30403	13.58
219.85	8064	3.60	278.85	116895	52.21	327.90	9166	4.09

1-Phenyl-1a-(p-tolyl)-1a,7a-dihydro-1H-cyclopropa[b]naphthalene-2,7-dione (2b)

83% yield, 56.1 mg; ¹H NMR (400 MHz, CDCl₃) δ 8.17 -8.09 (m, 2H), 7.79 - 7.77 (m, 2H), 7.14 - 7.08 (m, 3H), 7.05 -7.00 (m, 4H), 6.77 (d, J = 7.2 Hz, 2H), 3.63 (d, J = 5.2 Hz, 1H), 3.40 (d, J = 5.2 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 192.8, 191.3, 137.7, 134.4, 134.1, 133.5, 132.5, 131.6, 128.8, 128.5, 128.0, 128.0, 127.4, 126.7, 50.6, 43.1, 40.1, 21.2; LRMS (EI, 70 eV) *m/z* (%): 338 (M⁺, 100), 323 (25), 279 (20); HRMS (ESI): calcd for C₂₄H₁₉O₂ [M+H⁺] 339.1380, found 339.1387.

1a-(4-Chlorophenyl)-1-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7dione (2c)

128.3, 128.2, 128.0, 127.9, 127.7, 126.8, 50.0, 42.9, 39.5; LRMS (EI, 70 eV) *m/z* (%): 360 (M⁺+2, 36), 358 (M⁺, 100), 323 (37); HRMS (ESI): calcd for C₂₃H₁₆³⁵ClO₂ [M+H⁺] 359.0833, found 359.0846.

Methyl 4-(2,7-dioxo-1-phenyl-1,2,7,7a-tetrahydro-1a*H*-cyclopropa[*b*]naphthalen-1a-yl)-3-methylbenzoate (2d)

81% yield; 64.1 mg ¹H NMR (400 MHz, CDCl₃) δ 8.15 -8.07 (m, 2.8H), 7.91 (d, J = 8.8 Hz, 1.4H), 7.81 - 7.77 (m, 2.8H), 7.69 (s, 0.8H), 7.55 - 7.50 (m, 1.4H), 7.22 - 7.11 (m, 2.4H), 7.04 (t, J = 7.2 Hz, 2H), 6.82 (d, J = 7.6 Hz, 0.8H), 6.65 (d, J = 8.0 Hz, 2H), 6.57 (d, J = 8.0 Hz, 0.4H), 3.89 (s, 3H), 3.86 (s, 1.2H), 3.58 (d, J = 5.6 Hz, 1H), 3.53 (d, J =

5.6 Hz, 0.4H), 3.48 (d, *J* = 5.6 Hz, 1H), 3.39 (d, *J* = 5.6 Hz, 0.4H), 2.37 (s, 1.2H), 1.85 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 192.3, 191.2, 190.0, 166.8, 141.1, 138.7, 136.2, 135.6, 134.5, 134.4, 134.2, 133.5, 133.4, 133.3, 132.5, 132.4, 132.3, 132.2, 131.8, 131.5, 131.1, 130.0, 129.7, 128.3, 128.2, 127.9, 127.9, 127.9, 127.7, 127.4, 127.0, 126.8, 126.6, 126.0, 52.1, 52.0, 50.5, 48.6, 43.5, 43.1, 41.8, 41.1, 20.0, 19.6; LRMS (EI, 70 eV) *m/z* (%): 396 (M⁺, 100), 337 (23), 293 (14); HRMS (ESI): calcd for C₂₆H₂₁O₄ [M+H⁺] 397.1434, found 397.1432.

1a-Cyclopropyl-1-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2e)

50% yield, 28.8 mg; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 7.2 Hz, 1H), 8.02 (d, J = 6.8 Hz, 1H), 7.79 - 7.72 (m, 2H), 7.34 - 7.25 (m, 5H), 3.24 (d, J = 5.6 Hz, 1H), 2.97 (d, J = 5.6 Hz, 1H), 1.29 - 1.22 (m, 1H), 0.82 - 0.74 (m, 1H), 0.31 - 0.20

(m, 2H), 0.15 - 0.08 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 193.4, 134.2, 134.0, 133.7, 132.5, 132.1, 128.9, 128.3, 127.5, 127.5, 126.6, 45.4, 42.7, 36.5, 8.6, 4.4; LRMS (EI, 70 eV) *m*/*z* (%): 288 (M⁺, 52), 273 (23), 91 (100); HRMS (ESI): calcd for C₂₀H₁₇O₂ [M+H⁺] 289.1223, found 289.1237.

1a-Butyl-1-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2f)

80% yield; 48.6 mg ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 6.8 Hz, 1H), 8.03 (d, J = 7.2 Hz, 1H), 7.78 - 7.72 (m, 2H), 7.35 - 7.27 (m, 3H), 7.22 (d, J = 7.2 Hz, 2H), 3.25 (d, J = 5.6 Hz, 1H), 3.06 (d, J = 5.6 Hz, 1H), 2.37 - 2.30 (m, 1H), 1.52 -

1.17 (m, 4H), 0.81 (t, J = 7.2 Hz, 3H), 0.76 - 0.68 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 193.8, 134.1, 134.0, 133.6, 132.6, 132.5, 128.8, 128.5, 127.7, 127.4, 126.6, 44.6, 42.7, 38.3, 29.3, 27.0, 22.7, 13.9; LRMS (EI, 70 eV) m/z (%): 304 (M⁺, 100), 247 (47), 203 (62); HRMS (ESI): calcd for C₂₁H₂₁O₂ [M+H⁺] 305.1536, found 305.1543.

2-(2,7-Dioxo-1-phenyl-1,2,7,7a-tetrahydro-1a*H*-cyclopropa[*b*]naphthalen-1ayl)ethyl benzoate (2g)

73% yield, 57.8 mg; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J
7.2 Hz, 1H), 8.04 (d, J = 6.8 Hz, 1H), 7.91 (d, J = 7.6 Hz, 2H), 7.78 - 7.73 (m, 2H), 7.52 (t, J = 7.2 Hz, 1H), 7.41 - 7.28 (m, 5H), 7.24 (d, J = 7.6 Hz, 2H), 4.59 - 4.53 (m, 1H), 4.42 - 4.36 (m, 1H), 3.28 (d, J = 5.6 Hz, 1H), 3.22 (d, J = 5.6 Hz, 1H),

2.84 - 2.78 (m, 1H), 1.26 - 1.17 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 192.8, 166.4, 134.2, 134.1, 133.0, 132.9, 132.4, 132.3, 129.8, 129.5, 128.8, 128.7, 128.3, 128.0, 127.4, 126.7, 62.2, 41.3, 41.3, 38.0, 26.9; LRMS (EI, 70 eV) *m/z* (%): 396 (M⁺, 3), 274 (100), 229 (16); HRMS (ESI): calculated for C₂₆H₂₁O₄ [M+H⁺] 397.1434, found 397.1440.

1a-Phenyl-1-(p-tolyl)-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2h)⁵

89% yield, 60.1 mg; ¹H NMR (400 MHz, CDCl₃) δ 8.17 -8.09 (m, 2H), 7.78 - 7.77 (m, 2H), 7.24 - 7.15(m, 5H), 6.88 (d, *J* = 7.6 Hz, 2H), 6.62 (d, *J* = 7.6 Hz, 2H), 3.63 (d, *J* = 5.2 Hz, 1H), 3.39 (d, *J* = 5.2 Hz, 1H), 2.21 (s, 3H); ¹³C NMR

(100 MHz, CDCl₃) δ 192.8, 191.1, 137.3, 134.4, 134.1, 132.5, 131.8, 131.7, 130.3, 128.7, 128.0, 128.0, 127.9, 127.8, 126.7, 50.9, 43.0, 40.1, 21.0; LRMS (EI, 70 eV) *m/z*(%): 338 (M⁺, 100), 279 (53), 293 (23).

1-(4-(Methylthio)phenyl)-1a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2i)

1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 190.9, 138.1, 134.5, 134.2, 132.4, 131.8, 131.5, 130.0, 128.4, 128.2, 128.1, 126.8, 125.7, 50.9, 42.7, 40.2, 15.4; LRMS (EI, 70 eV) *m/z* (%): 370 (M⁺, 100), 326 (18), 279 (51); HRMS (ESI): calculated for C₂₄H₁₉O₂S [M+H⁺] 371.1100, found 371.1113.

1-(4-Chlorophenyl)-1a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7dione (2j)

95% yield, 68.0 mg; ¹H NMR (400 MHz, CDCl₃) δ 8.17 8.09 (m, 2H), 7.80 - 7.78 (m, 2H), 7.26 - 7.13 (m, 5H),
7.06 (d, J = 8.0 Hz, 2H), 6.67 (d, J = 8.0 Hz, 2H), 3.61 (d,
J = 5.2 Hz, 1H), 3.38 (d, J = 5.2 Hz, 1H); ¹³C NMR (100

MHz, CDCl₃) δ 192.3, 190.7, 134.5, 134.3, 133.4, 132.3, 132.3, 132.0, 131.8, 131.2, 129.2, 128.2, 128.2, 128.2, 128.1, 126.8, 50.6, 42.1, 39.9; LRMS (EI, 70 eV) *m/z* (%): 360 (M⁺+2, 36), 358 (M⁺, 100), 323 (15); HRMS (ESI): calculated for C₂₃H₁₆³⁵ClO₂ [M+H⁺] 359.0833, found 359.0841.

1-(4-Nitrophenyl)-1a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7dione (2k)

Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 190.1, 147.0, 141.1, 134.8, 134.5, 132.2, 132.1, 131.7, 130.6, 128.7, 128.6, 128.4, 128.2, 126.9, 123.2, 50.8, 41.5, 40.0; LRMS (EI, 70 eV) *m/z* (%): 369 (M⁺, 100), 339 (10), 278 (39); HRMS (ESI): calculated for C₂₃H₁₆NO₄ [M+H⁺] 370.1074, found 370.1080.

1-(2-Bromophenyl)-1a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7dione (2l)

84 yield%, 67.5 mg; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 6.4 Hz, 1H), 8.11 (d, *J* = 7.6 Hz, 1H), 7.83 - 7.77 (m, 2H), 7.51 (d, *J* = 7.2 Hz, 1H), 7.25 - 7.18 (m, 5H), 7.01 - 6.94 (m, 2H), 6.64 (d, *J* = 7.6 Hz, 1H), 3.81 (d, *J* = 6.0 Hz, 1H), 3.74 (d, *J* = 6.0 Hz,

1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 190.8, 134.6, 134.2,
132.7, 132.6, 132.5, 132.4, 131.5, 131.2, 129.0, 128.1, 128.0,
128.0, 127.6, 127.1, 126.7, 126.3, 49.4, 43.6, 37.7; LRMS (EI,
70 eV) *m/z* (%): 404 (M⁺+2, 96), 402 (M⁺, 100), 323 (60), 265

(58); HRMS (ESI): calculated for $C_{23}H_{16}^{79}BrO_2 [M+H^+] 403.0328$, found 403.0335.

1-(Naphthalen-1-yl)-1a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7dione (2m)⁵

86% yield, 64.3 mg; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 7.2 Hz, 1H), 8.14 (d, J = 7.2 Hz, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.85 - 7.78 (m, 3H), 7.61 (d, J = 8.4 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H),

7.06 – 6.96 (m, 6H), 4.01 (d, J = 5.6 Hz, 1H), 3.97 (d, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 191.5, 134.5, 134.3, 133.3, 132.7, 132.6, 132.5, 131.7, 130.9, 128.8, 128.8, 128.5, 128.1, 127.8, 127.7, 126.8, 126.8, 126.0, 125.0, 124.3, 123.0, 50.2, 41.1, 37.5; LRMS (EI, 70 eV) m/z (%): 374 (M⁺, 100), 357 (10), 329 (51).

1-(Furan-2-yl)-1a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2n)

38% yield, 23.9 mg; ¹H NMR (400 MHz, CDCl₃) δ 8.12 - 8.09 (m, 2H), 7.79 - 7.78 (m, 2H), 7.28 - 7.21 (m, 5H), 7.10 (s, 1H), 6.14 - 6.13 (m, 1H), 5.88 - 5.86 (m, 1H), 3.64 (d, *J* = 5.6 Hz, 1H), 3.44 (d, *J* = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ

192.1, 190.6, 147.6, 142.2, 134.5, 134.3, 132.4, 132.2, 131.1, 128.1, 128.0, 126.8, 110.6, 108.9, 49.4, 38.9, 35.8; LRMS (EI, 70 eV) *m/z* (%): 314 (M⁺, 100), 285 (16), 257 (24); HRMS (ESI): calculated for C₂₁H₁₅O₃ [M+H⁺] 315.1016, found 315.1028.

(*E*)-1a-phenyl-1-styryl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (20)

80% yield, 56.0 mg ; ¹H NMR (400 MHz, CDCl₃) δ 8.13 - 8.09 (m, 2H), 7.79 - 7.76 (m, 2H), 7.44 - 7.37 (m, 5H), 7.25 - 7.17 (m, 3H), 7.11 (d, *J* = 7.2 Hz, 2H), 6.61 (d, *J* = 15.6 Hz, 1H), 5.32 (dd, *J* = 15.6, 9.2 Hz, 1H), 3.28 (d, *J* =

4.8 Hz, 1H), 3.06 (t, *J* = 9.2, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 191.1, 136.1, 134.4, 134.2, 132.5, 132.4, 132.4, 131.5, 128.6, 128.4, 128.3, 127.9, 126.7, 126.2, 125.1, 49.1, 42.6, 41.5; LRMS (EI, 70 eV) *m/z* (%): 350 (M⁺, 100), 331 (14), 259 (53); HRMS (ESI): calculated for C₂₅H₁₉O₂ [M+H⁺] 351.1380, found 351.1387.

1-Butyl-1a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2p)

40% yield, 24.3 mg; ¹H NMR (400 MHz, CDCl₃) δ 8.09 - 8.04 (m, 2H), 7.75 - 7.71 (m, 2H), 7.44 - 7.35 (m, 5H), 2.92 (d, J = 5.2 Hz, 1H), 2.23 - 2.18 (m, 1H), 1.60 - 1.52 (m, 1H), 1.42 - 1.35 (m, 2H), 1.26 - 1.17 (m, 2H), 0.90 - 0.78 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 192.2,

134.1, 133.9, 132.8, 132.6, 132.4, 131.2, 128.2, 128.0, 127.8, 126.5, 48.4, 40.7, 40.4, 30.9, 29.9, 22.2, 13.8; LRMS (EI, 70 eV) *m/z* (%): 304 (M⁺, 100), 261 (42), 247 (47); HRMS (ESI): calculated for C₂₁H₂₁O₂ [M+H⁺] 305.1536, found 305.1543

1a-Methyl-7a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2q)

79% yield; 41.4 mg ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.2 Hz, 1H), 7.99 (d, J = 7.2 Hz, 1H), 7.75 - 7.68 (m, 2H), 7.43 - 7.35 (m, 3H), 7.25 (d, J = 7.2 Hz, 2H), 2.22 (d, J = 4.8 Hz, 1H), 2.01 (d, J = 4.8 Hz, 1H), 1.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.6,

194.4, 134.0, 133.9, 133.7, 132.5, 132.1, 128.6, 128.1, 127.0, 126.7, 48.4, 38.9, 32.3, 15.4; LRMS (EI, 70 eV) *m/z* (%): 262 (M⁺, 75), 247 (100), 233 (46); HRMS (ESI):

calculated for C₁₈H₁₅O₂ [M+H⁺] 263.1067, found 263.1073.

4-Methyl-1,1a-diphenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2r)

3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 191.3, 145.7, 135.1, 133.4, 132.4, 131.9, 131.7, 130.1, 128.2, 128.0, 128.0, 127.9, 127.4, 126.9, 50.8, 43.2, 39.8, 21.9; LRMS (EI, 70 eV) *m/z* (%): 338 (M⁺, 100), 323 (16), 279 (35); HRMS (ESI): calculated for C₂₄H₁₉O₂ [M+H⁺] 339.1380, found 339.1395.

5-Nitro-1,1a-diphenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2s)

 $\begin{array}{c} 82\% \text{ yield, } 60.7 \text{ mg; } ^{1}\text{H NMR (400 MHz, CDCl_3) } \delta 8.92 \\ \text{(s, 1H), } 8.57 \text{ (d, } J = 8.4 \text{ Hz, 1H), } 8.37 \text{ (d, } J = 8.4 \text{ Hz, 1H), } \\ 7.27 - 7.26 \text{ (m, 3H), } 7.17 - 7.09 \text{ (m, 5H), } 6.75 \text{ (d, } J = 7.6 \\ \text{Hz, 2H), } 3.78 \text{ (d, } J = 5.2 \text{ Hz, 1H), } 3.44 \text{ (d, } J = 5.6 \text{ Hz, } \end{array}$

1H); ¹³C NMR (100 MHz, CDCl₃) δ 190.3, 189.4, 151.4, 136.3, 133.8, 132.4, 131.7, 130.7, 130.2, 128.4, 128.3, 128.2, 128.2, 128.0, 127.9, 122.4, 51.4, 42.7, 40.3; LRMS (EI, 70 eV) *m/z* (%): 369 (M⁺, 100), 322 (19), 265 (29); HRMS (ESI): calculated for C₂₃H₁₆NO₄ [M+H⁺] 370.1074, found 370.1081.

2,7-Dioxo-1,7a-diphenyl-1a,2,7,7a-tetrahydro-1*H*-cyclopropa[*b*]naphthalen-4-yl acetate (2t)

3.66 (d, J = 5.6 Hz, 1H), 3.46 (d, J = 5.6 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 190.0, 168.6, 155.3, 134.2, 133.1, 131.8, 131.4, 130.2, 130.0, 128.0, 128.0, 127.8, 127.6, 119.6, 50.8, 42.9, 40.1, 21.0; LRMS (EI, 70 eV) m/z (%): 382 (M⁺, 100), 340 (93), 295 (31); HRMS (ESI): calculated for C₂₅H₁₉O4 [M+H⁺] 383.1278, found 383.1290.

(C) References

(1) Wang, Z.-Q.; Zhang, W.-W.; Gong, L.-B.; Tang, R.-Y.; Yang, X.-H.; Liu, Y.; Li, J.-H. Angew. Chem. Int. Ed. 2011, 50, 8968.

(2) Wang, Y.-H.; Zhu, L.-L.; Zhang, Y.-X.; Chen, Z. Chem. Commun. 2010, 46, 577.

(3) Liang, G.; Xu, Y.; Seiple, I. B.; Trauner, D. J. Am. Chem. Soc. 2006, 128, 11022.

(4) Petrone, D. A.; Malik, H. A.; Clemenceau, A.; Lautens, M. Org. Lett. 2012, 14, 4806.

(5) Zheng, L.; Zhou, B.; Jin, H.; Li, T.; Liu, Y. Org. Lett. **2018**, 20, DOI: 10.1021/acs.orglett.8b03007.

(D) Spectra

1,1a-Diphenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2a)

Phenyl-1a-(*p*-tolyl)-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2b)

120 110 100 90 80 20161117-ljh-lb.32.fid — 4-Me

1a-(4-Chlorophenyl)-1-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7dione (2c)

Methyl 4-(2,7-dioxo-1-phenyl-1,2,7,7a-tetrahydro-1a*H*-cyclopropa[*b*]naphthalen-1a-yl)-3-methylbenzoate (2d)

120 110 100 90 80 20170419-ljh-lb.64.fid — propane

1a-Butyl-1-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2f)

120 110 100 90 80 20170419-ljh-lb.53.fid — hexyne

2-(2,7-Dioxo-1-phenyl-1,2,7,7a-tetrahydro-1a*H*-cyclopropa[*b*]naphthalen-1ayl)ethyl benzoate (2g)

1a-Phenyl-1-(*p*-tolyl)-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2h)

1-(4-(Methylthio)phenyl)-1a-phenyl-1a,7a-dihydro-1H-

cyclopropa[b]naphthalene-2,7-dione (2i)

1-(4-Chlorophenyl)-1a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7dione (2j)

1-(4-Nitrophenyl)-1a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-

1-(2-Bromophenyl)-1a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7dione (2l)

1-(Naphthalen-1-yl)-1a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7dione (2m)

(*E*)-1a-phenyl-1-styryl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (20)

1-Butyl-1a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2p)

1a-Methyl-7a-phenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2q)

4-Methyl-1,1a-diphenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2r)

5-Nitro-1,1a-diphenyl-1a,7a-dihydro-1*H*-cyclopropa[*b*]naphthalene-2,7-dione (2s)

120 110 100 90 80 20170427-LJH-LB.65.fid — 3-NO2

HSQC

3'-NO2

HMBC

NOE

2,7-Dioxo-1,7a-diphenyl-1a,2,7,7a-tetrahydro-1*H*-cyclopropa[*b*]naphthalen-4-yl acetate (2t)

(E) The X-ray single-crystal diffraction analysis of 2m (CCDC 1875958):

Table S1. Crystal data and structure refinement for ljh053_0m.

Identification code	ljh053_0m	
Empirical formula	C27 H18 O2	
Formula weight	374.41	
Temperature	296(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic, P2(1)/	′c
Unit cell dimensions	a = 12.883(2) A	alpha = 90 deg.
	b = 10.655(2) A	beta = $93.427(3)$ deg.
	c = 13.918(3) A	gamma = 90 deg.
Volume	1907.1(6) A^3	
Z, Calculated density	4, 1.304 Mg/m^3	
Absorption coefficient	0.081 mm^-1	
F(000)	784	
Crystal size	0.23 x 0.21 x 0.20	mm

Theta range for data collection	1.58 to 27.27 deg.
Limiting indices	-16<=h<=16, -13<=k<=13, -17<=l<=10
Reflections collected / unique	10897 / 4242 [R(int) = 0.0258]
Completeness to theta $= 27.27$	99.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9840 and 0.9816
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4242 / 0 / 263
Goodness-of-fit on F^2	1.026
Final R indices [I>2sigma(I)]	R1 = 0.0421, wR2 = 0.1004
R indices (all data)	R1 = 0.0662, wR2 = 0.1122
Extinction coefficient	0.0062(9)
Largest diff. peak and hole	0.158 and -0.165 e.A^-3

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (A² x 10³) for ljh053_0m.

	X	У	Z	U(eq)
O(2)	1136(1)	-690(1)	782(1)	75(1)
O(1)	4295(1)	2270(1)	1950(1)	72(1)
C(24)	3464(2)	6066(2)	-1609(1)	62(1)
C(23)	2416(2)	6064(2)	-1732(1)	60(1)
C(22)	1801(1)	5149(1)	-1303(1)	49(1)
C(27)	2302(1)	4203(1)	-721(1)	40(1)
C(18)	1684(1)	3277(1)	-287(1)	40(1)
C(3)	2221(1)	2221(1)	241(1)	38(1)
C(2)	2556(1)	2265(1)	1319(1)	38(1)
C(1)	3598(1)	1684(1)	1539(1)	43(1)
C(11)	3772(1)	372(1)	1220(1)	44(1)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(10)	4779(1)	-101(2)	1304(1)	55(1)
C(9)	4970(2)	-1328(2)	1067(1)	66(1)
C(21)	713(2)	5132(2)	-1443(1)	65(1)
C(20)	142(1)	4251(2)	-1027(1)	65(1)
C(19)	627(1)	3308(2)	-441(1)	52(1)
C(4)	1687(1)	1397(1)	941(1)	42(1)
C(5)	1861(1)	34(2)	868(1)	49(1)
C(6)	2956(1)	-410(1)	895(1)	46(1)
C(8)	4173(2)	-2086(2)	729(1)	73(1)
C(7)	3168(2)	-1644(2)	643(1)	63(1)
C(12)	2300(1)	3380(1)	1918(1)	39(1)
C(17)	1569(1)	3291(1)	2602(1)	45(1)
C(16)	1372(1)	4306(2)	3189(1)	53(1)
C(15)	1905(1)	5404(2)	3100(1)	57(1)
C(14)	2635(1)	5508(2)	2421(1)	59(1)
C(13)	2830(1)	4503(2)	1834(1)	52(1)
C(26)	3398(1)	4230(1)	-615(1)	45(1)
C(25)	3957(1)	5130(2)	-1048(1)	54(1)

Table S3. Bond lengths [A] and angles [deg] for ljh053_0m.

O(2)-C(5)	1.2120(18)
O(1)-C(1)	1.2082(17)
C(24)-C(23)	1.351(3)
C(24)-C(25)	1.397(2)
C(24)-H(24)	0.9300
C(23)-C(22)	1.411(2)
C(23)-H(23)	0.9300
C(22)-C(21)	1.403(2)
C(22)-C(27)	1.424(2)

C(27)-C(26)	1.411(2)
C(27)-C(18)	1.424(2)
C(18)-C(19)	1.366(2)
C(18)-C(3)	1.4913(19)
C(3)-C(4)	1.507(2)
C(3)-C(2)	1.5373(19)
C(3)-H(3)	0.9800
C(2)-C(1)	1.494(2)
C(2)-C(12)	1.4985(19)
C(2)-C(4)	1.5213(19)
C(1)-C(11)	1.488(2)
C(11)-C(10)	1.390(2)
C(11)-C(6)	1.395(2)
C(10)-C(9)	1.374(2)
C(10)-H(10)	0.9300
C(9)-C(8)	1.368(3)
C(9)-H(11)	0.9300
C(21)-C(20)	1.345(3)
C(21)-H(21)	0.9300
C(20)-C(19)	1.415(2)
C(20)-H(20)	0.9300
C(19)-H(19)	0.9300
C(4)-C(5)	1.474(2)
C(4)-H(4)	0.9800
C(5)-C(6)	1.487(2)
C(6)-C(7)	1.392(2)
C(8)-C(7)	1.377(3)
C(8)-H(8)	0.9300
C(7)-H(7)	0.9300

C(12)-C(17)	1.382(2)
C(12)-C(13)	1.387(2)
C(17)-C(16)	1.388(2)
С(17)-Н(17)	0.9300
C(16)-C(15)	1.366(2)
С(16)-Н(16)	0.9300
C(15)-C(14)	1.377(2)
C(15)-H(15)	0.9300
C(14)-C(13)	1.378(2)
C(14)-H(14)	0.9300
С(13)-Н(13)	0.9300
C(26)-C(25)	1.361(2)
C(26)-H(26)	0.9300
C(25)-H(25)	0.9300
C(23)-C(24)-C(25)	119.18(16)
C(23)-C(24)-H(24)	120.4
C(25)-C(24)-H(24)	120.4
C(24)-C(23)-C(22)	122.01(16)
C(24)-C(23)-H(23)	119.0
C(22)-C(23)-H(23)	119.0
C(21)-C(22)-C(23)	122.12(16)
C(21)-C(22)-C(27)	118.99(16)
C(23)-C(22)-C(27)	118.89(15)
C(26)-C(27)-C(22)	117.50(14)
C(26)-C(27)-C(18)	123.45(13)
C(22)-C(27)-C(18)	119.05(13)
C(19)-C(18)-C(27)	119.62(14)
C(19)-C(18)-C(3)	121.59(14)
C(27)-C(18)-C(3)	118.48(12)

C(18)-C(3)-C(4)	122.83(12)
C(18)-C(3)-C(2)	123.58(12)
C(4)-C(3)-C(2)	59.95(9)
C(18)-C(3)-H(3)	113.4
C(4)-C(3)-H(3)	113.4
C(2)-C(3)-H(3)	113.4
C(1)-C(2)-C(12)	116.06(11)
C(1)-C(2)-C(4)	116.94(12)
C(12)-C(2)-C(4)	119.49(12)
C(1)-C(2)-C(3)	112.59(11)
C(12)-C(2)-C(3)	120.57(11)
C(4)-C(2)-C(3)	59.04(9)
O(1)-C(1)-C(11)	120.39(14)
O(1)-C(1)-C(2)	121.07(14)
C(11)-C(1)-C(2)	118.53(12)
C(10)-C(11)-C(6)	119.47(15)
C(10)-C(11)-C(1)	118.15(14)
C(6)-C(11)-C(1)	122.28(13)
C(9)-C(10)-C(11)	120.25(17)
C(9)-C(10)-H(10)	119.9
С(11)-С(10)-Н(10)	119.9
C(8)-C(9)-C(10)	120.25(17)
C(8)-C(9)-H(11)	119.9
C(10)-C(9)-H(11)	119.9
C(20)-C(21)-C(22)	121.12(16)
C(20)-C(21)-H(21)	119.4
C(22)-C(21)-H(21)	119.4
C(21)-C(20)-C(19)	120.64(16)
C(21)-C(20)-H(20)	119.7

C(19)-C(20)-H(20)	119.7
C(18)-C(19)-C(20)	120.57(16)
C(18)-C(19)-H(19)	119.7
C(20)-C(19)-H(19)	119.7
C(5)-C(4)-C(3)	116.92(13)
C(5)-C(4)-C(2)	120.75(13)
C(3)-C(4)-C(2)	61.01(9)
C(5)-C(4)-H(4)	115.7
C(3)-C(4)-H(4)	115.7
C(2)-C(4)-H(4)	115.7
O(2)-C(5)-C(4)	121.04(15)
O(2)-C(5)-C(6)	121.60(15)
C(4)-C(5)-C(6)	117.36(13)
C(7)-C(6)-C(11)	119.39(15)
C(7)-C(6)-C(5)	119.62(15)
C(11)-C(6)-C(5)	120.90(13)
C(9)-C(8)-C(7)	120.68(17)
C(9)-C(8)-H(8)	119.7
C(7)-C(8)-H(8)	119.7
C(8)-C(7)-C(6)	119.93(18)
C(8)-C(7)-H(7)	120.0
C(6)-C(7)-H(7)	120.0
C(17)-C(12)-C(13)	118.40(14)
C(17)-C(12)-C(2)	120.73(13)
C(13)-C(12)-C(2)	120.78(13)
C(12)-C(17)-C(16)	120.56(15)
С(12)-С(17)-Н(17)	119.7
C(16)-C(17)-H(17)	119.7
C(15)-C(16)-C(17)	120.24(15)

C(15)-C(16)-H(16)	119.9
C(17)-C(16)-H(16)	119.9
C(16)-C(15)-C(14)	119.91(15)
C(16)-C(15)-H(15)	120.0
C(14)-C(15)-H(15)	120.0
C(15)-C(14)-C(13)	120.02(16)
C(15)-C(14)-H(14)	120.0
C(13)-C(14)-H(14)	120.0
C(14)-C(13)-C(12)	120.86(15)
C(14)-C(13)-H(13)	119.6
С(12)-С(13)-Н(13)	119.6
C(25)-C(26)-C(27)	121.40(14)
C(25)-C(26)-H(26)	119.3
C(27)-C(26)-H(26)	119.3
C(26)-C(25)-C(24)	121.03(16)
C(26)-C(25)-H(25)	119.5
C(24)-C(25)-H(25)	119.5

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters (A² x 10³) for ljh053_0m.

	U11	U22	U33	U23	U13	U12
O(2)	66(1)	52(1)	107(1)	-3(1)	1(1)	-22(1)
O(1)	50(1)	66(1)	98(1)	-22(1)	-24(1)	3(1)
C(24)	88(1)	47(1)	50(1)	4(1)	2(1)	-9(1)
C(23)	94(1)	40(1)	46(1)	5(1)	-5(1)	9(1)
C(22)	63(1)	44(1)	40(1)	-5(1)	-6(1)	13(1)
C(27)	48(1)	37(1)	34(1)	-5(1)	-4(1)	7(1)

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

C(18) $39(1)$ $43(1)$ $36(1)$ $-8(1)$ $-3(1)$ $7(1)$ $C(3)$ $37(1)$ $39(1)$ $37(1)$ $-3(1)$ $0(1)$ $2(1)$ $C(2)$ $38(1)$ $38(1)$ $38(1)$ $-1(1)$ $1(1)$ $-1(1)$ $C(1)$ $43(1)$ $44(1)$ $43(1)$ $0(1)$ $-1(1)$ $0(1)$ $C(1)$ $43(1)$ $44(1)$ $36(1)$ $5(1)$ $2(1)$ $6(1)$ $C(1)$ $51(1)$ $44(1)$ $36(1)$ $5(1)$ $2(1)$ $6(1)$ $C(10)$ $57(1)$ $59(1)$ $48(1)$ $5(1)$ $1(1)$ $14(1)$ $C(9)$ $72(1)$ $67(1)$ $60(1)$ $4(1)$ $-12(1)$ $24(1)$ $C(20)$ $44(1)$ $85(1)$ $64(1)$ $-8(1)$ $-10(1)$ $23(1)$ $C(19)$ $42(1)$ $61(1)$ $50(1)$ $-6(1)$ $-2(1)$ $7(1)$ $C(4)$ $38(1)$ $44(1)$ $45(1)$ $-3(1)$ $1(1)$ $-4(1)$ $C(5)$ $56(1)$ $44(1)$ $47(1)$ $1(1)$ $1(1)$ $-10(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(7)$ $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(7)$ $84(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(15)$ $80(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $1(1)$ $C(16)$ <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
C(3) $37(1)$ $39(1)$ $37(1)$ $-3(1)$ $0(1)$ $2(1)$ $C(2)$ $38(1)$ $38(1)$ $38(1)$ $-1(1)$ $1(1)$ $-1(1)$ $C(1)$ $43(1)$ $44(1)$ $43(1)$ $0(1)$ $-1(1)$ $0(1)$ $C(1)$ $51(1)$ $44(1)$ $36(1)$ $5(1)$ $2(1)$ $6(1)$ $C(10)$ $57(1)$ $59(1)$ $48(1)$ $5(1)$ $1(1)$ $14(1)$ $C(9)$ $72(1)$ $67(1)$ $60(1)$ $6(1)$ $7(1)$ $27(1)$ $C(21)$ $68(1)$ $65(1)$ $60(1)$ $4(1)$ $-12(1)$ $24(1)$ $C(20)$ $44(1)$ $85(1)$ $64(1)$ $-8(1)$ $-10(1)$ $23(1)$ $C(19)$ $42(1)$ $61(1)$ $50(1)$ $-6(1)$ $-2(1)$ $7(1)$ $C(4)$ $38(1)$ $44(1)$ $45(1)$ $-3(1)$ $1(1)$ $-4(1)$ $C(5)$ $56(1)$ $44(1)$ $47(1)$ $1(1)$ $1(1)$ $-10(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(7)$ $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(17)$ $49(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $3(1)$ $C(16)$ $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(16)$ <td>C(18)</td> <td>39(1)</td> <td>43(1)</td> <td>36(1)</td> <td>-8(1)</td> <td>-3(1)</td> <td>7(1)</td>	C(18)	39(1)	43(1)	36(1)	-8(1)	-3(1)	7(1)
C(2) $38(1)$ $38(1)$ $38(1)$ $-1(1)$ $1(1)$ $-1(1)$ $C(1)$ $43(1)$ $44(1)$ $43(1)$ $0(1)$ $-1(1)$ $0(1)$ $C(11)$ $51(1)$ $44(1)$ $36(1)$ $5(1)$ $2(1)$ $6(1)$ $C(10)$ $57(1)$ $59(1)$ $48(1)$ $5(1)$ $1(1)$ $14(1)$ $C(9)$ $72(1)$ $67(1)$ $60(1)$ $6(1)$ $7(1)$ $27(1)$ $C(21)$ $68(1)$ $65(1)$ $60(1)$ $4(1)$ $-12(1)$ $24(1)$ $C(20)$ $44(1)$ $85(1)$ $64(1)$ $-8(1)$ $-10(1)$ $23(1)$ $C(19)$ $42(1)$ $61(1)$ $50(1)$ $-6(1)$ $-2(1)$ $7(1)$ $C(4)$ $38(1)$ $44(1)$ $45(1)$ $-3(1)$ $1(1)$ $-10(1)$ $C(5)$ $56(1)$ $44(1)$ $47(1)$ $1(1)$ $1(1)$ $-10(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(7)$ $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(17)$ $49(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $3(1)$ $C(16)$ $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(15)$ $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-2(1)$ $14(1)$ $C(16)$	C(3)	37(1)	39(1)	37(1)	-3(1)	0(1)	2(1)
C(1) $43(1)$ $44(1)$ $43(1)$ $0(1)$ $-1(1)$ $0(1)$ $C(11)$ $51(1)$ $44(1)$ $36(1)$ $5(1)$ $2(1)$ $6(1)$ $C(10)$ $57(1)$ $59(1)$ $48(1)$ $5(1)$ $1(1)$ $14(1)$ $C(9)$ $72(1)$ $67(1)$ $60(1)$ $6(1)$ $7(1)$ $27(1)$ $C(21)$ $68(1)$ $65(1)$ $60(1)$ $4(1)$ $-12(1)$ $24(1)$ $C(20)$ $44(1)$ $85(1)$ $64(1)$ $-8(1)$ $-10(1)$ $23(1)$ $C(19)$ $42(1)$ $61(1)$ $50(1)$ $-6(1)$ $-2(1)$ $7(1)$ $C(4)$ $38(1)$ $44(1)$ $45(1)$ $-3(1)$ $1(1)$ $-4(1)$ $C(5)$ $56(1)$ $44(1)$ $47(1)$ $1(1)$ $1(1)$ $-10(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(7)$ $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(7)$ $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(17)$ $49(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $3(1)$ $C(16)$ $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $14(1)$ $C(15)$ $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(14)$ <	C(2)	38(1)	38(1)	38(1)	-1(1)	1(1)	-1(1)
C(11) $51(1)$ $44(1)$ $36(1)$ $5(1)$ $2(1)$ $6(1)$ $C(10)$ $57(1)$ $59(1)$ $48(1)$ $5(1)$ $1(1)$ $14(1)$ $C(9)$ $72(1)$ $67(1)$ $60(1)$ $6(1)$ $7(1)$ $27(1)$ $C(21)$ $68(1)$ $65(1)$ $60(1)$ $4(1)$ $-12(1)$ $24(1)$ $C(20)$ $44(1)$ $85(1)$ $64(1)$ $-8(1)$ $-10(1)$ $23(1)$ $C(19)$ $42(1)$ $61(1)$ $50(1)$ $-6(1)$ $-2(1)$ $7(1)$ $C(4)$ $38(1)$ $44(1)$ $45(1)$ $-3(1)$ $1(1)$ $-4(1)$ $C(5)$ $56(1)$ $44(1)$ $47(1)$ $1(1)$ $1(1)$ $-10(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(8)$ $98(2)$ $51(1)$ $70(1)$ $-2(1)$ $8(1)$ $26(1)$ $C(7)$ $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(17)$ $49(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $3(1)$ $C(16)$ $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(15)$ $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-2(1)$ $14(1)$ $C(14)$ $73(1)$ $42(1)$ $60(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(25)$ $59(1)$ $53(1)$ $51(1)$ $0(1)$ $4(1)$ $-6(1)$ </td <td>C(1)</td> <td>43(1)</td> <td>44(1)</td> <td>43(1)</td> <td>0(1)</td> <td>-1(1)</td> <td>0(1)</td>	C(1)	43(1)	44(1)	43(1)	0(1)	-1(1)	0(1)
C(10) $57(1)$ $59(1)$ $48(1)$ $5(1)$ $1(1)$ $14(1)$ $C(9)$ $72(1)$ $67(1)$ $60(1)$ $6(1)$ $7(1)$ $27(1)$ $C(21)$ $68(1)$ $65(1)$ $60(1)$ $4(1)$ $-12(1)$ $24(1)$ $C(20)$ $44(1)$ $85(1)$ $64(1)$ $-8(1)$ $-10(1)$ $23(1)$ $C(19)$ $42(1)$ $61(1)$ $50(1)$ $-6(1)$ $-2(1)$ $7(1)$ $C(4)$ $38(1)$ $44(1)$ $45(1)$ $-3(1)$ $1(1)$ $-4(1)$ $C(5)$ $56(1)$ $44(1)$ $47(1)$ $1(1)$ $1(1)$ $-10(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(8)$ $98(2)$ $51(1)$ $70(1)$ $-2(1)$ $8(1)$ $26(1)$ $C(7)$ $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(17)$ $84(1)$ $44(1)$ $30(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(17)$ $49(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $3(1)$ $C(15)$ $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-2(1)$ $14(1)$ $C(14)$ $73(1)$ $42(1)$ $60(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(13)$ $55(1)$ $48(1)$ $52(1)$ $-6(1)$ $6(1)$ $-5(1)$	C(11)	51(1)	44(1)	36(1)	5(1)	2(1)	6(1)
C(9) $72(1)$ $67(1)$ $60(1)$ $6(1)$ $7(1)$ $27(1)$ $C(21)$ $68(1)$ $65(1)$ $60(1)$ $4(1)$ $-12(1)$ $24(1)$ $C(20)$ $44(1)$ $85(1)$ $64(1)$ $-8(1)$ $-10(1)$ $23(1)$ $C(19)$ $42(1)$ $61(1)$ $50(1)$ $-6(1)$ $-2(1)$ $7(1)$ $C(4)$ $38(1)$ $44(1)$ $45(1)$ $-3(1)$ $1(1)$ $-4(1)$ $C(5)$ $56(1)$ $44(1)$ $47(1)$ $1(1)$ $1(1)$ $-10(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $-2(1)$ $8(1)$ $26(1)$ $C(7)$ $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(17)$ $49(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $3(1)$ $C(16)$ $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(15)$ $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(14)$ $73(1)$ $42(1)$ $60(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(25)$ $59(1)$ $53(1)$ $51(1)$ $0(1)$ $4(1)$ $-6(1)$	C(10)	57(1)	59(1)	48(1)	5(1)	1(1)	14(1)
C(21) $68(1)$ $65(1)$ $60(1)$ $4(1)$ $-12(1)$ $24(1)$ $C(20)$ $44(1)$ $85(1)$ $64(1)$ $-8(1)$ $-10(1)$ $23(1)$ $C(19)$ $42(1)$ $61(1)$ $50(1)$ $-6(1)$ $-2(1)$ $7(1)$ $C(4)$ $38(1)$ $44(1)$ $45(1)$ $-3(1)$ $1(1)$ $-4(1)$ $C(5)$ $56(1)$ $44(1)$ $47(1)$ $1(1)$ $1(1)$ $-10(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(8)$ $98(2)$ $51(1)$ $70(1)$ $-2(1)$ $8(1)$ $26(1)$ $C(7)$ $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(17)$ $49(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $3(1)$ $C(16)$ $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(15)$ $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-2(1)$ $14(1)$ $C(14)$ $73(1)$ $42(1)$ $60(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(25)$ $59(1)$ $43(1)$ $42(1)$ $1(1)$ $-2(1)$ $3(1)$	C(9)	72(1)	67(1)	60(1)	6(1)	7(1)	27(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	68(1)	65(1)	60(1)	4(1)	-12(1)	24(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	44(1)	85(1)	64(1)	-8(1)	-10(1)	23(1)
C(4) $38(1)$ $44(1)$ $45(1)$ $-3(1)$ $1(1)$ $-4(1)$ $C(5)$ $56(1)$ $44(1)$ $47(1)$ $1(1)$ $1(1)$ $-10(1)$ $C(6)$ $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(8)$ $98(2)$ $51(1)$ $70(1)$ $-2(1)$ $8(1)$ $26(1)$ $C(7)$ $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(17)$ $49(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $3(1)$ $C(16)$ $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(16)$ $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(15)$ $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-2(1)$ $14(1)$ $C(14)$ $73(1)$ $42(1)$ $60(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(26)$ $50(1)$ $43(1)$ $42(1)$ $1(1)$ $-2(1)$ $3(1)$ $C(25)$ $59(1)$ $53(1)$ $51(1)$ $0(1)$ $4(1)$ $-6(1)$	C(19)	42(1)	61(1)	50(1)	-6(1)	-2(1)	7(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	38(1)	44(1)	45(1)	-3(1)	1(1)	-4(1)
C(6) $59(1)$ $40(1)$ $40(1)$ $3(1)$ $2(1)$ $2(1)$ $C(8)$ $98(2)$ $51(1)$ $70(1)$ $-2(1)$ $8(1)$ $26(1)$ $C(7)$ $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(17)$ $49(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $3(1)$ $C(16)$ $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(15)$ $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-2(1)$ $14(1)$ $C(14)$ $73(1)$ $42(1)$ $60(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(13)$ $55(1)$ $48(1)$ $52(1)$ $-6(1)$ $6(1)$ $-5(1)$ $C(26)$ $50(1)$ $43(1)$ $42(1)$ $1(1)$ $-2(1)$ $3(1)$ $C(25)$ $59(1)$ $53(1)$ $51(1)$ $0(1)$ $4(1)$ $-6(1)$	C(5)	56(1)	44(1)	47(1)	1(1)	1(1)	-10(1)
C(8) $98(2)$ $51(1)$ $70(1)$ $-2(1)$ $8(1)$ $26(1)$ $C(7)$ $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(17)$ $49(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $3(1)$ $C(16)$ $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(15)$ $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-2(1)$ $14(1)$ $C(14)$ $73(1)$ $42(1)$ $60(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(13)$ $55(1)$ $48(1)$ $52(1)$ $-6(1)$ $6(1)$ $-5(1)$ $C(26)$ $50(1)$ $43(1)$ $42(1)$ $1(1)$ $-2(1)$ $3(1)$ $C(25)$ $59(1)$ $53(1)$ $51(1)$ $0(1)$ $4(1)$ $-6(1)$	C(6)	59(1)	40(1)	40(1)	3(1)	2(1)	2(1)
C(7) $84(1)$ $44(1)$ $60(1)$ $-2(1)$ $0(1)$ $3(1)$ $C(12)$ $41(1)$ $41(1)$ $36(1)$ $0(1)$ $-3(1)$ $2(1)$ $C(17)$ $49(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $3(1)$ $C(16)$ $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(15)$ $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-2(1)$ $14(1)$ $C(14)$ $73(1)$ $42(1)$ $60(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(13)$ $55(1)$ $48(1)$ $52(1)$ $-6(1)$ $6(1)$ $-5(1)$ $C(26)$ $50(1)$ $43(1)$ $42(1)$ $1(1)$ $-2(1)$ $3(1)$ $C(25)$ $59(1)$ $53(1)$ $51(1)$ $0(1)$ $4(1)$ $-6(1)$	C(8)	98(2)	51(1)	70(1)	-2(1)	8(1)	26(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	84(1)	44(1)	60(1)	-2(1)	0(1)	3(1)
C(17) $49(1)$ $46(1)$ $39(1)$ $4(1)$ $1(1)$ $3(1)$ $C(16)$ $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(15)$ $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-2(1)$ $14(1)$ $C(14)$ $73(1)$ $42(1)$ $60(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(13)$ $55(1)$ $48(1)$ $52(1)$ $-6(1)$ $6(1)$ $-5(1)$ $C(26)$ $50(1)$ $43(1)$ $42(1)$ $1(1)$ $-2(1)$ $3(1)$ $C(25)$ $59(1)$ $53(1)$ $51(1)$ $0(1)$ $4(1)$ $-6(1)$	C(12)	41(1)	41(1)	36(1)	0(1)	-3(1)	2(1)
C(16) $64(1)$ $59(1)$ $38(1)$ $2(1)$ $6(1)$ $15(1)$ $C(15)$ $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-2(1)$ $14(1)$ $C(14)$ $73(1)$ $42(1)$ $60(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(13)$ $55(1)$ $48(1)$ $52(1)$ $-6(1)$ $6(1)$ $-5(1)$ $C(26)$ $50(1)$ $43(1)$ $42(1)$ $1(1)$ $-2(1)$ $3(1)$ $C(25)$ $59(1)$ $53(1)$ $51(1)$ $0(1)$ $4(1)$ $-6(1)$	C(17)	49(1)	46(1)	39(1)	4(1)	1(1)	3(1)
C(15) $80(1)$ $46(1)$ $46(1)$ $-8(1)$ $-2(1)$ $14(1)$ $C(14)$ $73(1)$ $42(1)$ $60(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(13)$ $55(1)$ $48(1)$ $52(1)$ $-6(1)$ $6(1)$ $-5(1)$ $C(26)$ $50(1)$ $43(1)$ $42(1)$ $1(1)$ $-2(1)$ $3(1)$ $C(25)$ $59(1)$ $53(1)$ $51(1)$ $0(1)$ $4(1)$ $-6(1)$	C(16)	64(1)	59(1)	38(1)	2(1)	6(1)	15(1)
C(14) $73(1)$ $42(1)$ $60(1)$ $-8(1)$ $-1(1)$ $-5(1)$ $C(13)$ $55(1)$ $48(1)$ $52(1)$ $-6(1)$ $6(1)$ $-5(1)$ $C(26)$ $50(1)$ $43(1)$ $42(1)$ $1(1)$ $-2(1)$ $3(1)$ $C(25)$ $59(1)$ $53(1)$ $51(1)$ $0(1)$ $4(1)$ $-6(1)$	C(15)	80(1)	46(1)	46(1)	-8(1)	-2(1)	14(1)
C(13) $55(1)$ $48(1)$ $52(1)$ $-6(1)$ $6(1)$ $-5(1)$ $C(26)$ $50(1)$ $43(1)$ $42(1)$ $1(1)$ $-2(1)$ $3(1)$ $C(25)$ $59(1)$ $53(1)$ $51(1)$ $0(1)$ $4(1)$ $-6(1)$	C(14)	73(1)	42(1)	60(1)	-8(1)	-1(1)	-5(1)
C(26) $50(1)$ $43(1)$ $42(1)$ $1(1)$ $-2(1)$ $3(1)$ C(25) $59(1)$ $53(1)$ $51(1)$ $0(1)$ $4(1)$ $-6(1)$	C(13)	55(1)	48(1)	52(1)	-6(1)	6(1)	-5(1)
C(25) 59(1) 53(1) 51(1) 0(1) 4(1) -6(1)	C(26)	50(1)	43(1)	42(1)	1(1)	-2(1)	3(1)
	C(25)	59(1)	53(1)	51(1)	0(1)	4(1)	-6(1)

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for ljh053_0m.

	Х	у	Z	U(eq)
H(24)	3852	6683	-1895	74
H(23)	2089	6685	-2110	73

H(3)	2709	1765	-145	45
H(10)	5326	415	1521	66
H(11)	5643	-1643	1136	80
H(21)	382	5741	-1829	78
H(20)	-578	4262	-1125	78
H(19)	223	2704	-158	62
H(4)	982	1652	1083	51
H(8)	4312	-2910	556	87
H(7)	2631	-2169	416	76
H(17)	1206	2545	2671	54
H(16)	875	4239	3644	64
H(15)	1776	6080	3498	69
H(14)	2996	6256	2357	70
H(13)	3324	4580	1377	62
H(26)	3746	3621	-241	54
H(25)	4679	5121	-969	65

Table S6. Torsion angles [deg] for ljh053_0m.

C(25)-C(24)-C(23)-C(22)	0.5(3)
C(24)-C(23)-C(22)-C(21)	-178.86(16)
C(24)-C(23)-C(22)-C(27)	0.3(2)
C(21)-C(22)-C(27)-C(26)	178.49(14)
C(23)-C(22)-C(27)-C(26)	-0.7(2)
C(21)-C(22)-C(27)-C(18)	-0.8(2)
C(23)-C(22)-C(27)-C(18)	-179.97(13)
C(26)-C(27)-C(18)-C(19)	-178.89(14)
C(22)-C(27)-C(18)-C(19)	0.4(2)
C(26)-C(27)-C(18)-C(3)	-5.1(2)
C(22)-C(27)-C(18)-C(3)	174.14(12)

C(19)-C(18)-C(3)-C(4)	-23.3(2)
C(27)-C(18)-C(3)-C(4)	163.10(12)
C(19)-C(18)-C(3)-C(2)	-96.60(17)
C(27)-C(18)-C(3)-C(2)	89.78(16)
C(18)-C(3)-C(2)-C(1)	-139.60(13)
C(4)-C(3)-C(2)-C(1)	108.82(13)
C(18)-C(3)-C(2)-C(12)	3.37(19)
C(4)-C(3)-C(2)-C(12)	-108.20(14)
C(18)-C(3)-C(2)-C(4)	111.58(15)
C(12)-C(2)-C(1)-O(1)	-21.2(2)
C(4)-C(2)-C(1)-O(1)	-170.89(15)
C(3)-C(2)-C(1)-O(1)	123.54(16)
C(12)-C(2)-C(1)-C(11)	160.18(13)
C(4)-C(2)-C(1)-C(11)	10.50(19)
C(3)-C(2)-C(1)-C(11)	-55.07(17)
O(1)-C(1)-C(11)-C(10)	-7.6(2)
C(2)-C(1)-C(11)-C(10)	171.02(13)
O(1)-C(1)-C(11)-C(6)	168.77(16)
C(2)-C(1)-C(11)-C(6)	-12.6(2)
C(6)-C(11)-C(10)-C(9)	0.1(2)
C(1)-C(11)-C(10)-C(9)	176.60(15)
C(11)-C(10)-C(9)-C(8)	1.2(3)
C(23)-C(22)-C(21)-C(20)	-179.98(17)
C(27)-C(22)-C(21)-C(20)	0.9(3)
C(22)-C(21)-C(20)-C(19)	-0.5(3)
C(27)-C(18)-C(19)-C(20)	0.0(2)
C(3)-C(18)-C(19)-C(20)	-173.55(14)
C(21)-C(20)-C(19)-C(18)	0.1(3)
C(18)-C(3)-C(4)-C(5)	135.25(14)

C(2)-C(3)-C(4)-C(5)	-111.97(14)
C(18)-C(3)-C(4)-C(2)	-112.78(14)
C(1)-C(2)-C(4)-C(5)	4.4(2)
C(12)-C(2)-C(4)-C(5)	-144.17(14)
C(3)-C(2)-C(4)-C(5)	105.82(15)
C(1)-C(2)-C(4)-C(3)	-101.39(13)
C(12)-C(2)-C(4)-C(3)	110.00(14)
C(3)-C(4)-C(5)-O(2)	-126.26(16)
C(2)-C(4)-C(5)-O(2)	163.03(15)
C(3)-C(4)-C(5)-C(6)	53.14(18)
C(2)-C(4)-C(5)-C(6)	-17.6(2)
C(10)-C(11)-C(6)-C(7)	-1.2(2)
C(1)-C(11)-C(6)-C(7)	-177.54(14)
C(10)-C(11)-C(6)-C(5)	175.28(13)
C(1)-C(11)-C(6)-C(5)	-1.1(2)
O(2)-C(5)-C(6)-C(7)	11.9(2)
C(4)-C(5)-C(6)-C(7)	-167.45(15)
O(2)-C(5)-C(6)-C(11)	-164.52(16)
C(4)-C(5)-C(6)-C(11)	16.1(2)
C(10)-C(9)-C(8)-C(7)	-1.5(3)
C(9)-C(8)-C(7)-C(6)	0.4(3)
C(11)-C(6)-C(7)-C(8)	1.0(3)
C(5)-C(6)-C(7)-C(8)	-175.56(16)
C(1)-C(2)-C(12)-C(17)	-108.69(15)
C(4)-C(2)-C(12)-C(17)	40.18(19)
C(3)-C(2)-C(12)-C(17)	109.55(15)
C(1)-C(2)-C(12)-C(13)	67.81(18)
C(4)-C(2)-C(12)-C(13)	-143.32(14)
C(3)-C(2)-C(12)-C(13)	-73.96(17)

C(13)-C(12)-C(17)-C(16)	0.2(2)
C(2)-C(12)-C(17)-C(16)	176.73(13)
C(12)-C(17)-C(16)-C(15)	-0.5(2)
C(17)-C(16)-C(15)-C(14)	0.6(2)
C(16)-C(15)-C(14)-C(13)	-0.3(3)
C(15)-C(14)-C(13)-C(12)	0.0(3)
C(17)-C(12)-C(13)-C(14)	0.1(2)
C(2)-C(12)-C(13)-C(14)	-176.47(14)
C(22)-C(27)-C(26)-C(25)	0.3(2)
C(18)-C(27)-C(26)-C(25)	179.60(14)
C(27)-C(26)-C(25)-C(24)	0.4(2)
C(23)-C(24)-C(25)-C(26)	-0.9(3)

Symmetry transformations used to generate equivalent atoms: