Electronic Supplementary Information (ESI) for:

Enzyme-like *Substrate*-Selectivity in C-H oxidation enabled by recognition

Giorgio Olivo, *a Giorgio Capocasa, b Osvaldo Lanzalunga, b Stefano Di Stefano, *b Miquel Costas*a

^{a.} Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain. E-mail: <u>giorgio.olivo@udg.edu</u>, <u>miquel.costas@udg.edu</u>

^{b.} Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Rom, P.le A. Moro 5, I-00185 Rome, Italy. E-mail: <u>stefano.distefano@uniroma1.it</u>

Instruments and General Methods

Oxidation products related to the oxidation of all of the substrates were identified by comparison of GC retention times with that of commercially available standard samples or synthesized ones.^[1] The products were quantified by GC analysis using biphenyl as an internal standard. GC analyses were carried out on a gas chromatograph equipped with a capillary methylsilicone column (30 m x 0.25 mm x 25 µm) Chrompack CP-Sil 5 CB. NMR spectra were recorded on either a BrukerDPX300 or a BrukerDPX400 spectrometer and were internally referenced to the residual proton solvent signal. Elemental analyses were performed using a CHNS-O EA-1108 elemental analyzer from Fisons. Electrospray ionization mass spectrometer.

Materials

All reagents and solvents were purchased at Sigma Aldrich, Cymit, Scharlab or Fluorochem and used at the reagent grade unless otherwise stated. Solvents used for crystallizations were purchased from SDS and Scharlab and purified and dried by passing through an activated alumina purification system (M-Braun SPS-800). Sigma-Aldrich HPLC-grade acetonitrile was employed for oxidation reactions. Iron (II) bis (trifluoromethanesulfonate) bis (acetonitrile) was prepared according to a literature procedure from Fe(II) chloride (Sigma Aldrich).^[2] Complexes 1,^[1] 2,^[3] TIPS 2^[4] and DMM 2^[3] were prepared according to previously reported procedures. Hexane (ScharLab), cyclohexane (Sigma Aldrich), cyclooctane (Sigma Aldrich), methylcyclohexane (TCI Chemicals), ethylbenzene (ScharLab), cumene Aldrich), 1,2-cis-dimethyl cyclohexane Aldrich), (Sigma (Sigma 1,2-transdimethylcyclohexane (Sigma Aldrich), cis-decaline (TCI Chemicals), trans-decaline (TCI Chemicals), (d)-menthyl acetate (Sigma Aldrich) were purchased and filtered over a short pad of SiO₂ prior to use. Trans-1,4-methylcyclohexyl pivalate was obtained as described previously.^[5] Acetic acid, Ba(ClO4)₂ and (+)-sclareolide were purchased from Sigma Aldrich and used as received.

Undecylammonium tetrafluoroborate **3**, tetradecylammonium tetrafluoroborate, hexylammonium tetrafluoroborate and nonylammonium tetrafluoroborate were synthesized as previously described¹ by treatment of the corresponding amine with hydrofluoroboric acid diethyl ether complex (Sigma Aldrich) and purified by washing with ether and successive crystallization from CH₃CN.

Very Important: The ammonium substrate needs to be completely pure, otherwise significant alterations in yields and, sometimes, selectivity were observed. To achieve this purity, the salts were crystallized by slow evaporation of concentrated CH₃CN solution of the ammonium.

Oxidation Procedure

Catalyst (0.19 μ mol, 1 mol%, added from a CH₃CN mother solution), acetic acid (22 μ L, 418 μ mol, 22 molar eq.), the appropriate ammonium salt (19 μ mol, 1 molar eq., added from a CH₃CN mother solution) and the competing substrate(s) (19 μ mol each, 1 molar eq. each, added from a CH₃CN mother solution) were dissolved in 400 μ L of CH₃CN (HPLC grade, Sigma-Aldrich) at 0°C. Under stirring, a CH₃CN solution of H₂O₂ (28.5 μ mol, 2.5 molar eq., mother solution roughly 0.55 M) was slowly added over 18 minutes by a syringe pump.

After two additional minutes of stirring, internal standard (biphenyl, 9.5 μ mol, 50 mol%, added from a CH₃CN mother solution), Et₃N (200 μ L) and Ac₂O (400 μ L) were added and the mixture was stirred for 1 hour at 0°C. Then H₂O (500 μ L) was added, and after 15 minutes, the mixture was extracted with CH₂Cl₂ (2 mL). The organic phase was washed with H₂SO₄ 1 M (2 mL), NaHCO₃ sat. (2 mL), H₂O (2 mL), dried over MgSO₄ and analysed by GC (error ±5%).

Entry	Cat.	Substrate and Conversion	Substrate Oxidation	Other products	3 Conversion	3 Oxidation	(C8+C9) selectivity ^b	Product ratio ^c
			OH	\checkmark				
				HOT				
		I OAc	ŌAc	OAC				
1	1	8%	0.7%	traces	50%	40%	61%	57:1
2	2	34%	21%	4%	8%	6%	25%	1:4
			C Aut					
		PivO	PivO	PivO				
3	1	17%	0.8%	-	39%	24%	60%	30:1
4	2	30%	15%	2%	26%	2%	32%	1:8
		H	OH					
		\square	\square					
		Ĥ	Ĥ	H H				
5	1	31%	0.5%	2.5%	55%	42%	60%	14:1
6	2	39%	2%	27%	15%	1%	33%	1:29
		H	OH					
		\square	\square					
		Ĥ	Ĥ					
7	1	40%	14%	<1%	51%	31%	64%	2:1
8	2	76%	53%	2%	18%	0.6%	30%	1:92
			O(H)					
			\checkmark					
9	1	18%	14%		43%	32%	58%	1:2.3
10	2	60%	56%		94%	0.3%	28%	190:1
		\sim	[►]					
		\checkmark	L/					
11	1	8%	5.5%		30%	13%	61%	1:2.4
12	2	66%	60%		91%	0.2%	32%	300:1

Table S1: Competitive, pairwise oxidation of undecylammonium 3 and a series of substrates^a

^aConditions as in the oxidation procedure. GC analysis with biphenyl as internal standard (error ±5%; this implies that the error is high with low yields). ^bSite-selectivity for C8 and C9 oxidation (over the total yield of **3** oxidation). ^cRatio of undecylammonium **3** oxidation : substrate oxidation.

Entry	Cat.	Competing substrates and conversions	Oxidation product yields		
		H₂N ⁺ BE ₄	 0	3 0xiu.	
1	1	Hight Ch 4 → + → + + + + + + + + + + + + + + + + +	$ \begin{array}{c} $	92%	
2	2	24% 17% 13%	22% 10% 3.5%	10%	
		$H_{3}N^{+}BF_{4}^{-}$	OH OH OH OPIV		
3	1	30% 2.5% 5% 40%	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	78%	
4	2	65% 20% 11% 3%	45% 17% 6.7% 3%	4%	
		+ + + + + + + + + + + + + + + + + + +	$13 \cdot 5.7 \cdot 2.2 \cdot 1$		
5	1	22% ^b 7% 13% 58%	12 : 3.5 : 2 : 1 : 32	64%	
6	2	51% ^b 15% 16% 18%	34%24%7%2.4%0.9%38:27:8:2.7:1	1.3%	
		$H_{3}N^{+}BF_{4}^{-}$	$(H)O_{H} \rightarrow (H)O_{H} $		
7	1	3% ^b 2% 17% 60%	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	77%	
8	2	22% ^b 17% 15% 14%	20%31%17%6.2%2.3%8.7:14:7.3:2.7:1	3%	

Table S2: Competitive, pairwise oxidation of undecylammonium 3 and mixtures of substrates.^a

^aConditions as in the oxidation procedure, except for the number of competing substrates (each at 100 molar eq with respect to the catalyst) and the H_2O_2 loading (fixed at 300 molar eq with respect to the catalyst). ^bConversion was not determined due to extensive substrate evaporation during the workup (total 1 hour and half). Control experiments confirmed such near quantitative evaporation in catalysis and workup conditions.

Entry	Cat.	Substrate	BDE [♭] (kcal/mol) (and number of C- H bonds)	Substrate Oxidation	Other products	3 Oxidation	product ratio ^c	Ψ^d
		\sim	99.1	~~~~(H)				
1	1	e	u	0.7%		27%	39:1	43
2	2	e	u	14%		1.3%	1:11	0.06
		\bigcirc	98.5	O(H)				

Table S3: Competitive, pairwise oxidation of undecylammonium **3** and a series of substrates with different C-H bond strength and value of ψ used in Figure 3.

3 4	1 2	e	u u	3.4% 43%		34% 1.7%	10 : 1 1 : 25	19 0.04
		\bigcirc	95.5	O(H)				
5	1	19%		8.5%		27%	3:1	8
6	2	75%	u	60%		0.5%	<1:99	0.01
		1		ЮН	1			
		\bigcirc	94.3	\bigcirc	⊖ <mark>-O(H)</mark>			
7	1	86%		0.9%	1.5 %	22%	9:1	4
8	2	84%	u	14%	19%	1.3%	1:30	7x10 ⁻³
		~ ~		O(H)				
		Û,	85.4					
9	1	18%		16%		31%	2.3 : 1	0.6
10	2	60%	u	56%		0.3%	<1:99	4x10 ⁻⁴
		$\bigcirc \downarrow$	83.5	C LOH				
11	1	8%		5.5%		9%	2:1	0.3
12	2	66%	u	60%		0.2%	<1:99	2.5 x10 ⁻⁴

^aConditions as in the oxidation procedure. Reactions carried out in triplicate, and the values in this Table are the average of the three experiments (error \pm 5%). For values <0.5%, the error is higher (\pm 30%) due to the difficulty of an accurate integration of such small peaks. ^bBDE taken from ref.^[6]. ^cRatio of undecylammonium **3** oxidation : hydrocarbon oxidation. ^d Ψ defined as the ratio between the sum of the yields of **3** oxidation on positions C8 and C9 and the sum of the yields of the hydrocarbon oxidation at its most reactive C-H bond, each normalized for the number of C-H bonds considered. The selectivity for C8 and C9 positions is always 58-66% with catalyst **1** and 27-31% with catalyst **2**. ^eConversion was not determined due to extensive substrate evaporation during the workup (total 1 hour and half). Control experiments confirmed such near quantitative evaporation in catalysis and workup conditions.

Table S4: Effect of the length of the ammonium chain on the substrate-selectivity.

Entry	Cat.	R	J ^{III} OAc	HOT + ketones	Ammonium Oxidation	product ratio ^c
		∕~~~× (C6)				
1	1		21%	8%	-	-
2	2	"	21%	4%	-	-
		(C9)				
3	1		0.8%	<0.2%	13%	16:1
4	2	"	21%	1.5%	3.5%	1:12
		(C11)				
5	1		0.7%	<0.2%	40%	57:1
6	2	"	25%	4%	2%	1:4
		(C14) کېږ (C14)				
7	1		0.5%	<0.2%	41%	82 : 1
8	2	u	30%	2.5%	15%	1:2

^aConditions as in the oxidation procedure. Reactions carried out in triplicate, and the values in this Table are the average of the three experiments (error \pm 5%). For values <0.5%, the error is higher (\pm 30%) due to the difficulty of an accurate integration of such small peaks. ^cRatio of ammonium oxidation : **4** oxidation (if possible).