Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Organic-base Catalyzed Asymmetric 1,4-Addition of Tritylthiol to in Situ

Generated Aza-o-Quinone Methides at H₂O/DCM Interface

Xianghui Liu,^{ab} Kai Wang, ^{ab} Wengang Guo, ^a Yan Liu^{a*} and Can Li^{a*}

^aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China

^bGraduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

*To whom corresponding author should be addressed. TEL: +86-411-84379070, FAX: +86-411-84694447 E-mail: <u>yanliu503@dicp.ac.cn</u>, <u>canli@dicp.ac.cn</u>; Web: http://www.canli.dicp.ac.cn

Supporting Information

Table of Contents

General Information	S3
Results and Experimental Procedures	
X-ray Crystal Structure of 3v	S7
Compound Characterization Data	S38
Copy of NMR Spetra and HPLC Chromatograms	S48

General Information

All reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques, unless otherwise noted. Commercially available reagents were used without further purification. Solvents were treated prior to use according to the standard methods. All reactions were monitored by TLC analysis. ¹H and ¹³C spectra were recorded on a 400 MHz spectrometer (101 MHz for ¹³C). Column chromatography was performed on silica gel (300-400 mesh). HPLC analysis was performed on Agilent HPLC 1100 or 1200 equipped with Daicel chiral AD-H column. High resolution mass spectra for all the new compounds were done by an LTQ-Orbitrap instrument (ESI) (Thermo Fisher Scientific, USA). Catalysts **4a-4g** were purchased from Daicel Chiral Technologies (China) Co., LTD. Tritylthiol **2** and Benzyl Thiols and Malononitrile were purchased from Energy Chemical Company.

Results and Experimental Procedures

1. Catalyst recovery and recycle experiment

Reaction condition: A solution of substrate **1r** (0.32 mmol), tritylthiol **2** (2 equiv), Na₂CO₃ (2 equiv) and catalyst (10 mol%, 20 mg) in water (11.52 mL) and CH₂Cl₂ (1.28 mL) was stirred (1500r/min) at 4°C for 12 hours. and purified by flash chromatography on silica gel (Hexanes/EtOAc = 10/1) to afford the corresponding product **3r**. The catalyst was also recovered by flash chromatography on silica gel (EtOAc/MeOH = 3/1).Catalyst recovery: 1th: 90%, 18mg; 2th: 83%, 15mg.

Figure S1. Catalyst recovery experiment.

2. Exploration of catalyst loading, stirring rate and concentration of reagents.

Table S1. Catalyst loading, stirring rate and concentration of reagents investigation.

3. General experimental procedure for the racemic conjugate addition adducts 3

At room temperature, a solution of Na₂CO₃ (0.20 mmol), tritylthiol **2** (0.20 mmol), Et₃N (20 mol%) and substrate **1** (0.10 mmol) in water (3.6 mL) and CH₂Cl₂ (400 μ L) was stirred at for 12 hours. Then 5 mL saturated NH₄Cl aqueous solution was added, the organic phase was separated and the aqueous layer was extracted with CH₂Cl₂ (3 mL×3). The organic phases were collected and dried by Na₂SO₄. After the solvent was removed under reduced pressure, the residue was subjected to flash chromatography on silica gel (Hexanes/EtOAc = 10/1) to afforded the desired racemic products **3**.

4. General experimental procedure for the asymmetric Michael addition adducts 3

A solution of substrate **1** (0.10 mmol), tritylthiol **2** (0.20 mmol), Na₂CO₃ (0.20 mmol) and catalyst (10 mol%) in water (3.6 mL) and CH₂Cl₂ (400 μ L) was stirred(1500r/min) at 4°C for 8-12 hours. Then 5 mL saturated NH₄Cl aqueous solution was added, the organic phase was separated and the aqueous layer was extracted with CH₂Cl₂. The combined organic phases were dried over Na₂SO₄, then concentrated under the reduced pressure, and purified by flash chromatography on silica gel (Hexanes/EtOAc = 10/1) to afford the corresponding product **3**. Product **3w**-**3x** were prepared in water (3.6 mL) and CHCl₃ (400 μ L) and stirred at 50°C for 72 hours.

5. Gram-scale reaction

Under Ar atmosphere, to a solution of **31** (2.10 g, 3.07 mmol) in CH_2Cl_2 (30 mL) was added Et_3SiH (900 uL) and TFA (1.50 mL). The resulting mixture was stirred for 0.5 hour at -10°C temperature and quenched by saturated NaHCO₃. The organic phase was separated and dried over Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel (hexanes/ethyl acetate = 5/1) to give compound **5** as a white solid in 85% yield and 92% ee.

6. Preparation of substrates 2-(Tosylmethyl)anilines

(iii) Under Ar, a solution of Grignard reagent (2.5 equiv.) was slowly added to aldehyde $6^{[1]}$ (9.0 mmol) in dry THF (10 mL). After being stirred at room temperature for 3 h, the reaction mixture was quenched by a saturated NH₄Cl (20 mL) and extracted with DCM. The combined extracts were washed with brine, then dried over Na₂SO₄, filtered and concentrated. The resulting crude solid was used without purification.

(iv) $TolSO_2Na$ (1.25 equiv.) and TsOH (1.75 equiv.) were placed in a dried Schlenk tube, and dry DCM (20 mL) was added. The resulting mixture was stirred at room temperature for 5 min. Then, the solution (15 mL) of the crude product diaryl methanols in DCM was added and stirred for 1.5 h. The reaction mixture was quenched and adjusted to pH = 8 by a saturated NaHCO₃. After extracted with DCM, the combined extracts were washed with 1 *N* HCl and brine, then dried over Na₂SO₄, filtered and concentrated. The resulting crude solid was purified on silica gel column chromatography (eluent: 3/1 (v/v) ethyl acetate/petroleum ether) to afford the desired product as white or brown solid (67%-84% yield).

References:

[1] (a) N. T. Patil, V. S. Raut, V. S. Shinde, G. Gayatri and G. N. Sastry, *Chem.-Eur. J.*, 2012, 18, 5530-5535; (b) J.
W. Jin, L. Zhang, G. R. Meng, J. H. Zhu and Q. Zhang, *Synthetic Commun*, 2014, 44, 346-351; (c) V.
Machtey, H. E. Gottlieb and G. Byk, *Arkivoc*, 2011, 308-U479; (d) C. Saá, A. Varela-Fernández and J.
Varela, *Synthesis*, 2012, 44, 3285-3295.

Table 1. Crystal data and structure refinement for	mo_d8v18109_0m.	
Identification code	mo_d8v18109_0m	
Empirical formula	C42 H38 N O3 S2	
Formula weight	668.85	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 9.4563(7) Å	α= 90°.
	b = 40.805(4) Å	β= 90.090(2)°.
	c = 9.7208(9) Å	$\gamma = 90^{\circ}$.
Volume	3750.9(6) Å ³	
Ζ	4	
Density (calculated)	1.184 Mg/m ³	
Absorption coefficient	0.180 mm ⁻¹	
F(000)	1412	
Crystal size	0.200 x 0.170 x 0.130 mm ³	
Theta range for data collection	2.095 to 24.998°.	
Index ranges	-9<=h<=11, -48<=k<=48, -11<=l<=11	
Reflections collected	26698	
Independent reflections	12519 [R(int) = 0.0538]	
Completeness to theta = 25.242°	96.1 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6584	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	12519 / 1 / 874	
Goodness-of-fit on F ²	1.046	
Final R indices [I>2sigma(I)]	R1 = 0.0803, wR2 = 0.2166	
R indices (all data)	R1 = 0.0906, $wR2 = 0.2316$	
Absolute structure parameter	0.04(4)	
Largest diff. peak and hole	0.519 and -0.471 e.Å ⁻³	

	Х	у	Z	U(eq)
	7230(3)	6112(1)	-795(3)	35(1)
S(2)	9271(3)	6653(1)	4720(3)	36(1)
S(3)	7743(3)	4002(1)	2752(3)	36(1)
S(4)	5584(3)	3495(1)	8201(3)	32(1)
N(1)	7100(11)	6280(2)	771(10)	35(2)
N(2)	7869(11)	3857(2)	4283(11)	37(2)
O(1)	4539(12)	5458(2)	3212(10)	59(3)
O(2)	6106(10)	5882(2)	-995(9)	42(2)
O(3)	7340(9)	6385(2)	-1705(8)	40(2)
O(4)	10145(12)	4717(3)	7038(13)	72(3)
O(5)	7738(10)	3714(2)	1929(9)	44(2)
O(6)	8849(10)	4238(2)	2546(10)	46(2)
C(1)	6741(11)	6117(3)	2019(11)	30(2)
C(2)	5842(14)	5851(3)	2049(13)	38(3)
C(3)	5468(14)	5719(3)	3295(13)	40(3)
C(4)	6006(15)	5842(3)	4494(13)	43(3)
C(5)	6895(13)	6115(3)	4483(12)	37(3)
C(6)	7292(13)	6257(3)	3231(12)	34(3)
C(7)	8165(12)	6566(3)	3207(11)	32(2)
C(8)	7242(13)	6865(3)	2976(13)	37(3)
C(9)	6049(14)	6915(3)	3845(16)	47(3)
C(10)	5239(16)	7197(4)	3634(18)	59(4)
C(11)	5540(20)	7426(4)	2590(20)	78(6)
C(12)	6719(18)	7374(4)	1710(20)	64(4)
C(13)	7527(15)	7091(3)	1923(14)	45(3)
C(14)	8886(12)	5895(3)	-828(10)	31(2)
C(15)	8914(14)	5549(3)	-908(12)	39(3)
C(16)	10237(15)	5404(3)	-945(13)	45(3)
C(17)	11503(15)	5580(3)	-916(13)	48(3)
C(18)	11400(14)	5922(3)	-861(12)	41(3)
C(19)	10132(13)	6084(3)	-794(10)	32(2)
C(20)	10181(14)	6456(3)	-824(15)	44(3)
C(21)	7656(17)	5321(3)	-941(18)	57(4)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for mo_d8v18109_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

12902(19)	5406(5)	-888(19)	73(5)
10939(13)	6448(3)	4265(12)	36(3)
10609(13)	6083(3)	4147(11)	33(2)
10265(14)	5906(3)	5311(13)	42(3)
9820(15)	5578(3)	5229(14)	46(3)
9663(18)	5437(4)	3983(15)	55(4)
9984(18)	5600(4)	2796(14)	53(4)
10453(13)	5927(3)	2897(12)	34(2)
11677(12)	6600(3)	3003(10)	32(2)
12820(14)	6440(3)	2397(12)	39(3)
13544(13)	6574(4)	1314(12)	43(3)
13233(15)	6898(4)	906(14)	50(3)
12105(14)	7059(3)	1511(13)	41(3)
11339(15)	6913(3)	2550(12)	40(3)
12001(12)	6525(3)	5465(11)	33(3)
13019(15)	6292(4)	5828(13)	47(3)
14094(14)	6379(4)	6820(15)	48(3)
14056(15)	6674(5)	7396(12)	57(4)
13093(16)	6904(4)	7056(15)	53(4)
12000(16)	6829(3)	6086(13)	44(3)
3876(19)	5334(4)	4398(18)	69(5)
8086(11)	4024(3)	5594(12)	29(2)
9030(12)	4298(3)	5640(14)	36(3)
9280(13)	4445(3)	6881(15)	45(3)
8703(14)	4334(3)	8068(14)	44(3)
7864(14)	4053(3)	8028(12)	37(3)
7563(12)	3898(2)	6794(12)	30(2)
6692(12)	3574(3)	6740(12)	31(2)
7653(11)	3282(3)	6527(11)	29(2)
7343(14)	3045(3)	5513(13)	40(3)
8244(18)	2783(3)	5351(17)	56(4)
9392(17)	2736(3)	6183(19)	60(4)
9719(17)	2967(4)	7200(19)	63(4)
8834(13)	3237(4)	7359(14)	45(3)
6092(14)	4201(3)	2569(12)	34(3)
5983(16)	4544(4)	2420(13)	48(3)
4655(14)	4672(3)	2171(12)	43(3)
3422(14)	4494(3)	2124(12)	41(3)
	12902(19) 10939(13) 10609(13) 10265(14) 9820(15) 9663(18) 9984(18) 10453(13) 11677(12) 12820(14) 13544(13) 13233(15) 12105(14) 13019(15) 12001(12) 13019(15) 14094(14) 14056(15) 13093(16) 12000(16) 3876(19) 8086(11) 9030(12) 9280(13) 8703(14) 7864(14) 7563(12) 6692(12) 7653(11) 7343(14) 8244(18) 9392(17) 9719(17) 8834(13) 6092(14) 5983(16) 4655(14) 3422(14)	12902(19)5406(5)10939(13)6448(3)10609(13)6083(3)10265(14)5906(3)9820(15)5578(3)9663(18)5437(4)9984(18)5600(4)10453(13)5927(3)11677(12)6600(3)12820(14)6440(3)13544(13)6574(4)13233(15)6898(4)12105(14)7059(3)11339(15)6913(3)12001(12)6525(3)13019(15)6292(4)14094(14)6379(4)14056(15)6674(5)13093(16)6904(4)12000(16)6829(3)3876(19)5334(4)8086(11)4024(3)9030(12)4298(3)9280(13)4445(3)8703(14)4334(3)7653(12)3898(2)6692(12)3574(3)7563(12)3898(2)6692(12)3574(3)7343(14)3045(3)8244(18)2783(3)9392(17)2736(3)9719(17)2967(4)8834(13)3237(4)6092(14)4201(3)5983(16)4544(4)4655(14)4672(3)3422(14)4494(3)	12902(19)5406(5)-888(19)10939(13)6448(3)4265(12)10609(13)6083(3)4147(11)10265(14)5906(3)5311(13)9820(15)5578(3)5229(14)9663(18)5437(4)3983(15)9984(18)5600(4)2796(14)10453(13)5927(3)2897(12)11677(12)6600(3)3003(10)12820(14)6440(3)2397(12)13544(13)6574(4)1314(12)13233(15)6898(4)906(14)12105(14)7059(3)1511(13)11339(15)6913(3)2550(12)12001(12)6525(3)5465(11)13019(15)6292(4)5828(13)14056(15)6674(5)7396(12)13093(16)6904(4)7056(15)12000(16)6829(3)6086(13)3876(19)5334(4)4398(18)8086(11)4024(3)5594(12)9030(12)4298(3)5640(14)9280(13)4445(3)6881(15)8703(14)4334(3)8068(14)7864(14)4053(3)8028(12)7653(12)3898(2)6794(12)6692(12)3574(3)6183(19)9719(17)2967(4)7200(19)8834(13)3237(4)7359(14)6092(14)4201(3)2569(12)5983(16)4544(4)2420(13)4655(14)4672(3)2171(12)342241672(3)2171(12)342443237(4)7359(14)6092(14) <t< td=""></t<>

C(60)	3562(13)	4160(3)	2356(12)	38(3)
C(61)	4856(13)	4009(3)	2551(10)	36(3)
C(62)	4826(14)	3638(3)	2737(13)	39(3)
C(63)	7240(17)	4783(3)	2489(17)	56(4)
C(64)	1999(15)	4650(4)	1838(16)	57(4)
C(65)	3887(12)	3698(3)	7681(11)	28(2)
C(66)	4240(12)	4059(3)	7482(10)	30(2)
C(67)	4477(13)	4263(3)	8649(11)	35(3)
C(68)	4924(14)	4576(3)	8471(11)	35(3)
C(69)	5128(13)	4710(3)	7164(14)	40(3)
C(70)	4937(13)	4509(3)	6047(11)	34(3)
C(71)	4476(14)	4196(3)	6195(11)	36(3)
C(72)	3202(11)	3525(3)	6422(10)	28(2)
C(73)	2100(13)	3688(3)	5713(11)	35(3)
C(74)	1360(11)	3523(3)	4667(13)	39(3)
C(75)	1712(15)	3214(4)	4316(13)	46(3)
C(76)	2769(14)	3054(3)	5011(12)	36(3)
C(77)	3524(14)	3211(3)	6055(13)	39(3)
C(78)	2865(13)	3628(3)	8871(10)	30(2)
C(79)	1769(13)	3843(3)	9166(12)	36(3)
C(80)	797(14)	3786(3)	10161(12)	41(3)
C(81)	841(13)	3478(3)	10840(12)	37(3)
C(82)	1850(14)	3262(4)	10551(12)	46(3)
C(83)	2851(12)	3324(3)	9530(11)	33(3)
C(84)	11238(17)	4761(4)	6164(19)	62(4)

S(1)-O(3)	1.428(8)
S(1)-O(2)	1.431(9)
S(1)-N(1)	1.674(10)
S(1)-C(14)	1.800(12)
S(2)-C(7)	1.838(11)
S(2)-C(23)	1.838(12)
S(3)-O(5)	1.423(9)
S(3)-O(6)	1.435(9)
S(3)-N(2)	1.607(11)
S(3)-C(56)	1.767(13)
S(4)-C(49)	1.796(12)
S(4)-C(65)	1.873(11)
N(1)-C(1)	1.425(14)
N(2)-C(43)	1.460(15)
O(1)-C(3)	1.382(15)
O(1)-C(42)	1.407(16)
O(4)-C(84)	1.351(19)
O(4)-C(45)	1.389(16)
C(1)-C(2)	1.378(18)
C(1)-C(6)	1.408(17)
C(2)-C(3)	1.373(18)
C(2)-H(2)	0.9500
C(3)-C(4)	1.367(19)
C(4)-C(5)	1.398(19)
C(4)-H(4)	0.9500
C(5)-C(6)	1.400(16)
C(5)-H(5)	0.9500
C(6)-C(7)	1.506(17)
C(7)-C(8)	1.517(16)
C(7)-H(7)	1.0000
C(8)-C(13)	1.405(18)
C(8)-C(9)	1.425(19)
C(9)-C(10)	1.40(2)
C(9)-H(9)	0.9500
C(10)-C(11)	1.41(3)
C(10)-H(10)	0.9500

 $Table \ 3. \hspace{1.5cm} Bond \ lengths \ [\text{\AA}] \ and \ angles \ [^\circ] \ for \hspace{1.5cm} mo_d8v18109_0m.$

C(11)-C(12)	1.42(3)
С(11)-Н(11)	0.9500
C(12)-C(13)	1.398(19)
С(12)-Н(12)	0.9500
С(13)-Н(13)	0.9500
C(14)-C(19)	1.409(16)
C(14)-C(15)	1.412(17)
C(15)-C(16)	1.385(19)
C(15)-C(21)	1.510(19)
C(16)-C(17)	1.40(2)
С(16)-Н(16)	0.9500
C(17)-C(18)	1.40(2)
C(17)-C(22)	1.50(2)
C(18)-C(19)	1.371(18)
C(18)-H(18)	0.9500
C(19)-C(20)	1.518(17)
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-C(24)	1.528(18)
C(23)-C(30)	1.541(16)
C(23)-C(36)	1.569(16)
C(24)-C(29)	1.379(16)
C(24)-C(25)	1.381(18)
C(25)-C(26)	1.407(18)
C(25)-H(25)	0.9500
C(26)-C(27)	1.349(19)
C(26)-H(26)	0.9500
C(27)-C(28)	1.37(2)
C(27)-H(27)	0.9500
C(28)-C(29)	1.408(19)
C(28)-H(28)	0.9500

C(29)-H(29)	0.9500
C(30)-C(35)	1.390(18)
C(30)-C(31)	1.394(17)
C(31)-C(32)	1.371(18)
С(31)-Н(31)	0.9500
C(32)-C(33)	1.41(2)
С(32)-Н(32)	0.9500
C(33)-C(34)	1.384(19)
С(33)-Н(33)	0.9500
C(34)-C(35)	1.379(18)
C(34)-H(34)	0.9500
C(35)-H(35)	0.9500
C(36)-C(41)	1.381(17)
C(36)-C(37)	1.397(17)
C(37)-C(38)	1.445(18)
C(37)-H(37)	0.9500
C(38)-C(39)	1.33(2)
C(38)-H(38)	0.9500
C(39)-C(40)	1.35(2)
С(39)-Н(39)	0.9500
C(40)-C(41)	1.430(18)
C(40)-H(40)	0.9500
C(41)-H(41)	0.9500
C(42)-H(42A)	0.9800
C(42)-H(42B)	0.9800
C(42)-H(42C)	0.9800
C(43)-C(48)	1.368(16)
C(43)-C(44)	1.432(16)
C(44)-C(45)	1.366(18)
C(44)-H(44)	0.9500
C(45)-C(46)	1.35(2)
C(46)-C(47)	1.395(19)
C(46)-H(46)	0.9500
C(47)-C(48)	1.384(16)
C(47)-H(47)	0.9500
C(48)-C(49)	1.561(14)
C(49)-C(50)	1.511(15)
C(49)-H(49)	1.0000

C(50)-C(55)	1.390(17)
C(50)-C(51)	1.412(17)
C(51)-C(52)	1.378(19)
C(51)-H(51)	0.9500
C(52)-C(53)	1.37(2)
С(52)-Н(52)	0.9500
C(53)-C(54)	1.40(2)
С(53)-Н(53)	0.9500
C(54)-C(55)	1.39(2)
C(54)-H(54)	0.9500
С(55)-Н(55)	0.9500
C(56)-C(61)	1.407(17)
C(56)-C(57)	1.413(19)
C(57)-C(58)	1.38(2)
C(57)-C(63)	1.538(19)
C(58)-C(59)	1.374(19)
C(58)-H(58)	0.9500
C(59)-C(60)	1.389(19)
C(59)-C(64)	1.513(19)
C(60)-C(61)	1.381(18)
C(60)-H(60)	0.9500
C(61)-C(62)	1.526(18)
C(62)-H(62A)	0.9800
C(62)-H(62B)	0.9800
C(62)-H(62C)	0.9800
C(63)-H(63A)	0.9800
C(63)-H(63B)	0.9800
C(63)-H(63C)	0.9800
C(64)-H(64A)	0.9800
C(64)-H(64B)	0.9800
C(64)-H(64C)	0.9800
C(65)-C(66)	1.522(16)
C(65)-C(78)	1.534(15)
C(65)-C(72)	1.553(14)
C(66)-C(71)	1.389(15)
C(66)-C(67)	1.426(15)
C(67)-C(68)	1.356(17)
С(67)-Н(67)	0.9500

C(68)-C(69)	1.396(17)
C(68)-H(68)	0.9500
C(69)-C(70)	1.371(18)
C(69)-H(69)	0.9500
C(70)-C(71)	1.359(17)
C(70)-H(70)	0.9500
C(71)-H(71)	0.9500
C(72)-C(77)	1.366(17)
C(72)-C(73)	1.414(16)
C(73)-C(74)	1.405(17)
С(73)-Н(73)	0.9500
C(74)-C(75)	1.35(2)
C(74)-H(74)	0.9500
C(75)-C(76)	1.369(19)
С(75)-Н(75)	0.9500
C(76)-C(77)	1.396(18)
С(76)-Н(76)	0.9500
С(77)-Н(77)	0.9500
C(78)-C(79)	1.388(16)
C(78)-C(83)	1.398(17)
C(79)-C(80)	1.356(17)
С(79)-Н(79)	0.9500
C(80)-C(81)	1.419(18)
C(80)-H(80)	0.9500
C(81)-C(82)	1.330(18)
C(81)-H(81)	0.9500
C(82)-C(83)	1.396(16)
C(82)-H(82)	0.9500
C(83)-H(83)	0.9500
C(84)-H(84A)	0.9800
C(84)-H(84B)	0.9800
C(84)-H(84C)	0.9800
O(3)-S(1)-O(2)	118.8(5)
O(3)-S(1)-N(1)	104.4(5)
O(2)-S(1)-N(1)	109.7(5)
O(3)-S(1)-C(14)	108.0(5)
O(2)-S(1)-C(14)	108.7(6)

N(1)-S(1)-C(14)	106.5(5)
C(7)-S(2)-C(23)	102.0(5)
O(5)-S(3)-O(6)	118.5(6)
O(5)-S(3)-N(2)	102.5(5)
O(6)-S(3)-N(2)	108.9(6)
O(5)-S(3)-C(56)	108.7(6)
O(6)-S(3)-C(56)	108.8(5)
N(2)-S(3)-C(56)	109.1(5)
C(49)-S(4)-C(65)	102.1(5)
C(1)-N(1)-S(1)	126.9(8)
C(43)-N(2)-S(3)	130.2(8)
C(3)-O(1)-C(42)	120.9(12)
C(84)-O(4)-C(45)	119.2(11)
C(2)-C(1)-C(6)	121.9(10)
C(2)-C(1)-N(1)	122.2(11)
C(6)-C(1)-N(1)	115.7(10)
C(3)-C(2)-C(1)	119.2(12)
C(3)-C(2)-H(2)	120.4
C(1)-C(2)-H(2)	120.4
C(4)-C(3)-C(2)	120.8(11)
C(4)-C(3)-O(1)	124.6(11)
C(2)-C(3)-O(1)	114.6(11)
C(3)-C(4)-C(5)	120.6(11)
C(3)-C(4)-H(4)	119.7
C(5)-C(4)-H(4)	119.7
C(4)-C(5)-C(6)	119.9(11)
C(4)-C(5)-H(5)	120.0
C(6)-C(5)-H(5)	120.0
C(5)-C(6)-C(1)	117.4(11)
C(5)-C(6)-C(7)	120.4(11)
C(1)-C(6)-C(7)	121.9(10)
C(6)-C(7)-C(8)	111.1(9)
C(6)-C(7)-S(2)	117.4(8)
C(8)-C(7)-S(2)	106.9(8)
C(6)-C(7)-H(7)	107.0
C(8)-C(7)-H(7)	107.0
S(2)-C(7)-H(7)	107.0
C(13)-C(8)-C(9)	119.4(12)
C(13)-C(8)-C(9)	119.4(12)

C(13)-C(8)-C(7)	121.7(12)
C(9)-C(8)-C(7)	118.9(11)
C(10)-C(9)-C(8)	117.7(15)
C(10)-C(9)-H(9)	121.1
C(8)-C(9)-H(9)	121.1
C(9)-C(10)-C(11)	122.8(16)
С(9)-С(10)-Н(10)	118.6
С(11)-С(10)-Н(10)	118.6
C(10)-C(11)-C(12)	119.4(15)
С(10)-С(11)-Н(11)	120.3
С(12)-С(11)-Н(11)	120.3
C(13)-C(12)-C(11)	117.7(17)
С(13)-С(12)-Н(12)	121.2
С(11)-С(12)-Н(12)	121.2
C(12)-C(13)-C(8)	123.0(15)
С(12)-С(13)-Н(13)	118.5
С(8)-С(13)-Н(13)	118.5
C(19)-C(14)-C(15)	122.3(11)
C(19)-C(14)-S(1)	117.1(9)
C(15)-C(14)-S(1)	120.6(9)
C(16)-C(15)-C(14)	116.5(11)
C(16)-C(15)-C(21)	116.6(11)
C(14)-C(15)-C(21)	127.0(11)
C(15)-C(16)-C(17)	123.6(12)
C(15)-C(16)-H(16)	118.2
С(17)-С(16)-Н(16)	118.2
C(16)-C(17)-C(18)	117.0(12)
C(16)-C(17)-C(22)	120.9(13)
C(18)-C(17)-C(22)	122.0(14)
C(19)-C(18)-C(17)	122.9(12)
C(19)-C(18)-H(18)	118.6
C(17)-C(18)-H(18)	118.6
C(18)-C(19)-C(14)	117.7(11)
C(18)-C(19)-C(20)	117.0(11)
C(14)-C(19)-C(20)	125.0(11)
C(19)-C(20)-H(20A)	109.5
C(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5

С(19)-С(20)-Н(20С)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(15)-C(21)-H(21A)	109.5
C(15)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
С(15)-С(21)-Н(21С)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(17)-C(22)-H(22A)	109.5
C(17)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(17)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(24)-C(23)-C(30)	115.1(10)
C(24)-C(23)-C(36)	112.3(10)
C(30)-C(23)-C(36)	102.8(9)
C(24)-C(23)-S(2)	106.6(8)
C(30)-C(23)-S(2)	113.5(8)
C(36)-C(23)-S(2)	106.2(8)
C(29)-C(24)-C(25)	117.1(11)
C(29)-C(24)-C(23)	122.5(11)
C(25)-C(24)-C(23)	119.8(10)
C(24)-C(25)-C(26)	121.5(11)
C(24)-C(25)-H(25)	119.3
C(26)-C(25)-H(25)	119.3
C(27)-C(26)-C(25)	119.3(13)
C(27)-C(26)-H(26)	120.4
C(25)-C(26)-H(26)	120.4
C(26)-C(27)-C(28)	121.7(13)
С(26)-С(27)-Н(27)	119.2
C(28)-C(27)-H(27)	119.2
C(27)-C(28)-C(29)	118.3(12)
C(27)-C(28)-H(28)	120.8
C(29)-C(28)-H(28)	120.8
C(24)-C(29)-C(28)	122.1(11)
C(24)-C(29)-H(29)	119.0

C(28)-C(29)-H(29)	119.0
C(35)-C(30)-C(31)	118.4(11)
C(35)-C(30)-C(23)	121.1(10)
C(31)-C(30)-C(23)	120.0(11)
C(32)-C(31)-C(30)	121.8(12)
С(32)-С(31)-Н(31)	119.1
C(30)-C(31)-H(31)	119.1
C(31)-C(32)-C(33)	119.0(12)
C(31)-C(32)-H(32)	120.5
С(33)-С(32)-Н(32)	120.5
C(34)-C(33)-C(32)	119.1(13)
C(34)-C(33)-H(33)	120.5
С(32)-С(33)-Н(33)	120.5
C(35)-C(34)-C(33)	120.9(13)
C(35)-C(34)-H(34)	119.6
C(33)-C(34)-H(34)	119.6
C(34)-C(35)-C(30)	120.5(12)
C(34)-C(35)-H(35)	119.7
C(30)-C(35)-H(35)	119.7
C(41)-C(36)-C(37)	120.1(11)
C(41)-C(36)-C(23)	120.2(11)
C(37)-C(36)-C(23)	119.5(10)
C(36)-C(37)-C(38)	119.0(12)
С(36)-С(37)-Н(37)	120.5
С(38)-С(37)-Н(37)	120.5
C(39)-C(38)-C(37)	119.1(13)
C(39)-C(38)-H(38)	120.5
C(37)-C(38)-H(38)	120.5
C(38)-C(39)-C(40)	123.1(13)
C(38)-C(39)-H(39)	118.5
C(40)-C(39)-H(39)	118.5
C(39)-C(40)-C(41)	120.1(14)
C(39)-C(40)-H(40)	120.0
C(41)-C(40)-H(40)	120.0
C(36)-C(41)-C(40)	118.6(12)
C(36)-C(41)-H(41)	120.7
C(40)-C(41)-H(41)	120.7
O(1)-C(42)-H(42A)	109.5

O(1)-C(42)-H(42B)	109.5
H(42A)-C(42)-H(42B)	109.5
O(1)-C(42)-H(42C)	109.5
H(42A)-C(42)-H(42C)	109.5
H(42B)-C(42)-H(42C)	109.5
C(48)-C(43)-C(44)	119.5(11)
C(48)-C(43)-N(2)	121.2(9)
C(44)-C(43)-N(2)	118.6(10)
C(45)-C(44)-C(43)	118.4(11)
C(45)-C(44)-H(44)	120.8
C(43)-C(44)-H(44)	120.8
C(46)-C(45)-C(44)	122.5(12)
C(46)-C(45)-O(4)	114.3(12)
C(44)-C(45)-O(4)	123.2(13)
C(45)-C(46)-C(47)	118.7(12)
C(45)-C(46)-H(46)	120.7
C(47)-C(46)-H(46)	120.7
C(48)-C(47)-C(46)	121.0(11)
C(48)-C(47)-H(47)	119.5
C(46)-C(47)-H(47)	119.5
C(43)-C(48)-C(47)	119.6(10)
C(43)-C(48)-C(49)	118.7(10)
C(47)-C(48)-C(49)	121.6(10)
C(50)-C(49)-C(48)	110.8(9)
C(50)-C(49)-S(4)	108.7(7)
C(48)-C(49)-S(4)	115.6(8)
C(50)-C(49)-H(49)	107.1
C(48)-C(49)-H(49)	107.1
S(4)-C(49)-H(49)	107.1
C(55)-C(50)-C(51)	118.7(11)
C(55)-C(50)-C(49)	120.6(10)
C(51)-C(50)-C(49)	120.7(10)
C(52)-C(51)-C(50)	119.0(13)
C(52)-C(51)-H(51)	120.5
C(50)-C(51)-H(51)	120.5
C(53)-C(52)-C(51)	122.1(14)
С(53)-С(52)-Н(52)	118.9
C(51)-C(52)-H(52)	118.9

C(52)-C(53)-C(54)	119.9(14)
C(52)-C(53)-H(53)	120.1
С(54)-С(53)-Н(53)	120.1
C(55)-C(54)-C(53)	118.6(15)
C(55)-C(54)-H(54)	120.7
C(53)-C(54)-H(54)	120.7
C(50)-C(55)-C(54)	121.6(14)
С(50)-С(55)-Н(55)	119.2
С(54)-С(55)-Н(55)	119.2
C(61)-C(56)-C(57)	119.3(12)
C(61)-C(56)-S(3)	118.7(9)
C(57)-C(56)-S(3)	122.0(10)
C(58)-C(57)-C(56)	117.3(12)
C(58)-C(57)-C(63)	118.1(13)
C(56)-C(57)-C(63)	124.6(13)
C(59)-C(58)-C(57)	125.4(13)
C(59)-C(58)-H(58)	117.3
C(57)-C(58)-H(58)	117.3
C(58)-C(59)-C(60)	115.6(12)
C(58)-C(59)-C(64)	122.6(12)
C(60)-C(59)-C(64)	121.8(12)
C(61)-C(60)-C(59)	122.8(11)
С(61)-С(60)-Н(60)	118.6
С(59)-С(60)-Н(60)	118.6
C(60)-C(61)-C(56)	119.5(12)
C(60)-C(61)-C(62)	116.1(11)
C(56)-C(61)-C(62)	124.4(11)
C(61)-C(62)-H(62A)	109.5
C(61)-C(62)-H(62B)	109.5
H(62A)-C(62)-H(62B)	109.5
C(61)-C(62)-H(62C)	109.5
H(62A)-C(62)-H(62C)	109.5
H(62B)-C(62)-H(62C)	109.5
C(57)-C(63)-H(63A)	109.5
C(57)-C(63)-H(63B)	109.5
H(63A)-C(63)-H(63B)	109.5
C(57)-C(63)-H(63C)	109.5
H(63A)-C(63)-H(63C)	109.5

H(63B)-C(63)-H(63C)	109.5
C(59)-C(64)-H(64A)	109.5
C(59)-C(64)-H(64B)	109.5
H(64A)-C(64)-H(64B)	109.5
C(59)-C(64)-H(64C)	109.5
H(64A)-C(64)-H(64C)	109.5
H(64B)-C(64)-H(64C)	109.5
C(66)-C(65)-C(78)	114.4(9)
C(66)-C(65)-C(72)	115.5(9)
C(78)-C(65)-C(72)	104.3(8)
C(66)-C(65)-S(4)	105.9(7)
C(78)-C(65)-S(4)	104.8(7)
C(72)-C(65)-S(4)	111.6(7)
C(71)-C(66)-C(67)	117.1(11)
C(71)-C(66)-C(65)	122.7(10)
C(67)-C(66)-C(65)	119.9(9)
C(68)-C(67)-C(66)	119.9(10)
C(68)-C(67)-H(67)	120.1
C(66)-C(67)-H(67)	120.1
C(67)-C(68)-C(69)	121.8(11)
C(67)-C(68)-H(68)	119.1
C(69)-C(68)-H(68)	119.1
C(70)-C(69)-C(68)	118.0(11)
C(70)-C(69)-H(69)	121.0
C(68)-C(69)-H(69)	121.0
C(71)-C(70)-C(69)	121.3(10)
С(71)-С(70)-Н(70)	119.4
С(69)-С(70)-Н(70)	119.4
C(70)-C(71)-C(66)	121.8(11)
C(70)-C(71)-H(71)	119.1
C(66)-C(71)-H(71)	119.1
C(77)-C(72)-C(73)	118.5(11)
C(77)-C(72)-C(65)	122.6(10)
C(73)-C(72)-C(65)	118.5(10)
C(74)-C(73)-C(72)	119.6(11)
С(74)-С(73)-Н(73)	120.2
С(72)-С(73)-Н(73)	120.2
C(75)-C(74)-C(73)	120.5(12)

C(75)-C(74)-H(74)	119.7
С(73)-С(74)-Н(74)	119.7
C(74)-C(75)-C(76)	120.0(12)
С(74)-С(75)-Н(75)	120.0
С(76)-С(75)-Н(75)	120.0
C(75)-C(76)-C(77)	120.9(12)
C(75)-C(76)-H(76)	119.6
С(77)-С(76)-Н(76)	119.6
C(72)-C(77)-C(76)	120.4(12)
С(72)-С(77)-Н(77)	119.8
С(76)-С(77)-Н(77)	119.8
C(79)-C(78)-C(83)	117.3(10)
C(79)-C(78)-C(65)	120.7(10)
C(83)-C(78)-C(65)	121.1(10)
C(80)-C(79)-C(78)	123.0(12)
C(80)-C(79)-H(79)	118.5
С(78)-С(79)-Н(79)	118.5
C(79)-C(80)-C(81)	117.8(12)
C(79)-C(80)-H(80)	121.1
C(81)-C(80)-H(80)	121.1
C(82)-C(81)-C(80)	120.6(11)
C(82)-C(81)-H(81)	119.7
C(80)-C(81)-H(81)	119.7
C(81)-C(82)-C(83)	121.1(11)
C(81)-C(82)-H(82)	119.5
C(83)-C(82)-H(82)	119.5
C(82)-C(83)-C(78)	119.7(11)
C(82)-C(83)-H(83)	120.1
C(78)-C(83)-H(83)	120.1
O(4)-C(84)-H(84A)	109.5
O(4)-C(84)-H(84B)	109.5
H(84A)-C(84)-H(84B)	109.5
O(4)-C(84)-H(84C)	109.5
H(84A)-C(84)-H(84C)	109.5
H(84B)-C(84)-H(84C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for mo_d8v18109_0m. The anisotropic

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	37(2)	40(2)	29(1)	0(1)	-6(1)	-4(1)
S(2)	37(2)	39(2)	30(1)	-7(1)	-1(1)	5(1)
S(3)	34(2)	40(2)	34(1)	0(1)	12(1)	-2(1)
S(4)	32(1)	36(2)	28(1)	6(1)	2(1)	2(1)
N(1)	40(6)	37(6)	29(5)	-4(4)	-1(4)	-4(4)
N(2)	41(6)	28(5)	43(6)	1(4)	-1(5)	-1(4)
O(1)	83(8)	45(5)	47(5)	2(4)	15(5)	-14(5)
O(2)	40(5)	44(5)	43(5)	1(4)	-5(4)	-12(4)
O(3)	45(5)	45(5)	30(4)	13(4)	-6(4)	6(4)
O(4)	58(6)	59(6)	98(9)	-40(6)	22(6)	-34(5)
O(5)	50(5)	43(5)	40(5)	-9(4)	12(4)	8(4)
O(6)	34(5)	57(6)	49(5)	9(4)	15(4)	-6(4)
C(1)	25(5)	31(6)	34(6)	5(5)	6(4)	10(4)
C(2)	41(7)	35(6)	38(6)	-1(5)	10(5)	3(5)
C(3)	50(7)	24(6)	47(7)	-11(5)	16(6)	-9(5)
C(4)	54(8)	40(7)	36(6)	-1(5)	16(5)	7(6)
C(5)	46(7)	30(6)	36(6)	-1(5)	1(5)	-3(5)
C(6)	33(6)	34(6)	35(6)	8(5)	9(5)	17(5)
C(7)	29(6)	42(7)	24(5)	-1(5)	5(4)	1(5)
C(8)	41(6)	21(5)	49(7)	-6(5)	-17(6)	1(5)
C(9)	36(7)	34(7)	70(9)	-11(6)	-4(6)	11(5)
C(10)	49(9)	49(9)	79(10)	-31(8)	-15(7)	22(7)
C(11)	69(11)	45(9)	119(16)	-42(10)	-47(11)	8(8)
C(12)	61(10)	35(8)	97(12)	4(8)	-21(9)	12(7)
C(13)	55(8)	30(6)	51(7)	2(6)	-5(6)	-6(6)
C(14)	31(6)	43(7)	18(5)	-1(4)	-4(4)	-3(5)
C(15)	55(8)	29(6)	34(6)	-16(5)	2(5)	2(5)
C(16)	54(8)	37(7)	43(7)	1(5)	-9(6)	9(6)
C(17)	52(8)	49(8)	41(7)	-19(6)	-7(6)	10(6)
C(18)	39(7)	57(8)	28(6)	2(5)	-7(5)	-6(6)

displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

-3(4)

-8(6)

-4(4)

2(6)

-13(5)

-13(5)

18(4)

53(7)

35(6)

39(7)

C(19)

C(20)

45(7)

41(7)

C(21)	57(9)	36(7)	78(10)	-6(7)	4(8)	1(7)
C(22)	66(11)	78(12)	75(10)	-11(9)	-1(9)	29(9)
C(23)	30(6)	51(7)	28(5)	-1(5)	2(5)	11(5)
C(24)	35(6)	32(6)	31(5)	-9(5)	-10(5)	7(5)
C(25)	44(7)	47(8)	36(6)	-7(5)	-7(5)	-4(6)
C(26)	58(8)	36(7)	43(7)	-3(6)	8(6)	-6(6)
C(27)	77(11)	35(7)	53(8)	-7(6)	-9(7)	-10(7)
C(28)	81(10)	43(8)	37(7)	-9(6)	-15(7)	8(7)
C(29)	45(7)	30(6)	27(5)	-2(4)	-3(5)	-2(5)
C(30)	35(6)	43(7)	19(5)	-5(5)	-4(4)	-2(5)
C(31)	39(7)	47(8)	31(6)	4(5)	-3(5)	8(6)
C(32)	31(6)	70(9)	29(6)	3(6)	-6(5)	5(6)
C(33)	48(8)	63(9)	38(7)	1(6)	4(6)	1(6)
C(34)	48(7)	33(7)	43(7)	-10(5)	1(6)	-6(5)
C(35)	50(7)	42(7)	29(6)	-11(5)	2(5)	-5(6)
C(36)	38(7)	37(6)	24(5)	-5(5)	2(5)	-2(5)
C(37)	53(8)	51(8)	37(6)	-1(6)	-20(6)	12(6)
C(38)	39(7)	49(8)	57(8)	4(7)	-16(6)	1(6)
C(39)	40(8)	106(13)	26(6)	-3(7)	-5(5)	-20(8)
C(40)	54(9)	50(8)	55(8)	-8(7)	-24(7)	5(7)
C(41)	55(8)	38(7)	38(6)	-4(5)	-12(6)	4(6)
C(42)	77(11)	59(9)	72(10)	20(8)	34(9)	-16(8)
C(43)	27(6)	18(5)	42(6)	-3(5)	2(5)	-4(4)
C(44)	32(7)	31(6)	47(7)	4(5)	19(5)	-5(5)
C(45)	28(6)	48(7)	60(8)	-25(6)	-3(6)	0(5)
C(46)	40(7)	49(8)	42(7)	-15(6)	-1(6)	-4(6)
C(47)	40(7)	46(7)	26(5)	-1(5)	-4(5)	4(5)
C(48)	36(6)	19(5)	36(6)	1(4)	3(5)	2(4)
C(49)	32(6)	25(6)	35(5)	2(4)	1(5)	-3(4)
C(50)	22(5)	33(6)	32(6)	-3(4)	10(4)	-1(4)
C(51)	34(6)	42(7)	44(7)	5(5)	7(5)	4(5)
C(52)	71(10)	20(6)	78(10)	-4(6)	22(8)	-3(6)
C(53)	50(9)	28(7)	104(12)	10(7)	8(9)	3(6)
C(54)	54(9)	51(9)	82(11)	24(8)	5(8)	7(7)
C(55)	34(7)	53(8)	47(7)	5(6)	-1(5)	10(6)
C(56)	46(7)	24(5)	31(6)	7(5)	4(5)	1(5)
C(57)	55(9)	54(8)	34(6)	2(6)	11(6)	-17(7)
C(58)	52(8)	47(8)	31(6)	8(5)	-4(5)	-2(6)

C(59)	48(7)	49(8)	27(6)	3(5)	-2(5)	3(6)
C(60)	27(6)	61(8)	27(5)	0(5)	3(4)	-14(5)
C(61)	35(6)	53(7)	19(5)	0(5)	3(4)	-4(6)
C(62)	50(7)	35(6)	34(6)	-7(5)	-3(5)	-14(6)
C(63)	59(9)	32(7)	76(10)	8(6)	-17(8)	-13(6)
C(64)	52(8)	67(10)	53(8)	12(7)	-1(7)	3(7)
C(65)	31(6)	25(6)	28(5)	-7(4)	2(4)	-2(4)
C(66)	25(5)	46(7)	18(5)	-2(4)	2(4)	2(5)
C(67)	44(7)	46(7)	16(5)	-4(5)	2(4)	8(5)
C(68)	49(7)	38(6)	19(5)	-2(4)	1(5)	0(5)
C(69)	38(6)	34(6)	48(7)	7(5)	6(5)	5(5)
C(70)	42(7)	38(7)	23(5)	8(5)	5(5)	-7(5)
C(71)	47(7)	43(7)	17(5)	7(5)	-3(5)	8(6)
C(72)	22(5)	42(6)	21(5)	-3(5)	-2(4)	1(4)
C(73)	32(6)	48(7)	24(5)	3(5)	4(5)	8(5)
C(74)	17(5)	56(8)	44(7)	-3(6)	0(5)	-1(5)
C(75)	54(8)	51(8)	33(6)	1(6)	2(6)	-8(6)
C(76)	47(7)	30(6)	31(6)	-1(5)	6(5)	-6(5)
C(77)	42(7)	32(6)	42(7)	-1(5)	6(5)	1(5)
C(78)	35(6)	39(6)	16(5)	4(4)	7(4)	-3(5)
C(79)	35(6)	41(7)	31(6)	2(5)	1(5)	5(5)
C(80)	44(7)	54(8)	26(6)	-13(5)	2(5)	-3(6)
C(81)	42(7)	35(6)	35(6)	13(5)	10(5)	7(5)
C(82)	51(8)	53(8)	33(6)	21(6)	17(6)	-11(6)
C(83)	33(6)	41(6)	27(5)	3(5)	9(5)	16(5)
C(84)	52(8)	39(8)	95(12)	-6(8)	6(8)	-12(7)

	х	У	Z	U(eq)
H(2)	5485	5761	1217	46
H(4)	5772	5740	5344	52
H(5)	7231	6205	5324	45
H(7)	8814	6549	2399	38
H(9)	5812	6762	4544	56
H(10)	4455	7237	4221	71
H(11)	4954	7614	2465	93
H(12)	6952	7525	1004	77
H(13)	8304	7050	1329	54
H(16)	10286	5172	-992	53
H(18)	12246	6048	-871	50
H(20A)	11050	6532	-376	67
H(20B)	9359	6544	-335	67
H(20C)	10165	6532	-1781	67
H(21A)	7204	5332	-1848	86
H(21B)	6977	5387	-233	86
H(21C)	7972	5096	-763	86
H(22A)	13623	5552	-501	110
H(22B)	13170	5345	-1826	110
H(22C)	12828	5209	-318	110
H(25)	10330	6009	6186	51
H(26)	9633	5456	6043	55
H(27)	9321	5218	3928	66
H(28)	9891	5496	1926	64
H(29)	10670	6044	2078	41
H(31)	13103	6232	2745	47
H(32)	14245	6450	845	52
H(33)	13789	7004	226	60
H(34)	11857	7273	1207	49
H(35)	10573	7028	2958	48
H(37)	13004	6079	5429	57
H(38)	14818	6228	7057	58

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for mo_d8v18109_0m.

H(39)	14740	6726	8079	69
H(40)	13140	7115	7460	64
H(41)	11289	6986	5875	53
H(42A)	4594	5282	5093	104
H(42B)	3351	5135	4162	104
H(42C)	3222	5498	4764	104
H(44)	9472	4377	4827	44
H(46)	8866	4446	8911	53
H(47)	7493	3966	8860	45
H(49)	6060	3588	5916	37
H(51)	6525	3066	4952	48
H(52)	8060	2629	4637	67
H(53)	9967	2547	6072	73
H(54)	10529	2940	7769	75
H(55)	9042	3393	8053	53
H(58)	4588	4901	2020	52
H(60)	2732	4029	2381	46
H(62A)	3845	3561	2712	59
H(62B)	5252	3581	3625	59
H(62C)	5362	3534	1994	59
H(63A)	7765	4775	1621	83
H(63B)	7866	4721	3249	83
H(63C)	6888	5006	2639	83
H(64A)	1895	4687	847	86
H(64B)	1936	4860	2325	86
H(64C)	1245	4504	2157	86
H(67)	4323	4180	9549	42
H(68)	5104	4708	9258	42
H(69)	5390	4933	7052	48
H(70)	5131	4591	5152	41
H(71)	4310	4067	5396	43
H(73)	1861	3907	5943	42
H(74)	606	3630	4203	47
H(75)	1227	3107	3587	55
H(76)	2990	2834	4778	43
H(77)	4267	3098	6514	46
H(79)	1696	4040	8647	43
H(80)	110	3946	10396	49

H(81)	144	3426	11508	45
H(82)	1889	3061	11047	55
H(83)	3520	3160	9285	40
H(84A)	11144	4610	5385	93
H(84B)	12130	4718	6647	93
H(84C)	11235	4988	5827	93

O(3)-S(1)-N(1)-C(1)	169.1(10)
O(2)-S(1)-N(1)-C(1)	40.8(11)
C(14)-S(1)-N(1)-C(1)	-76.7(11)
O(5)-S(3)-N(2)-C(43)	172.3(11)
O(6)-S(3)-N(2)-C(43)	46.0(12)
C(56)-S(3)-N(2)-C(43)	-72.6(12)
S(1)-N(1)-C(1)-C(2)	-31.4(16)
S(1)-N(1)-C(1)-C(6)	152.4(9)
C(6)-C(1)-C(2)-C(3)	0.1(18)
N(1)-C(1)-C(2)-C(3)	-175.8(11)
C(1)-C(2)-C(3)-C(4)	-1.7(19)
C(1)-C(2)-C(3)-O(1)	178.6(11)
C(42)-O(1)-C(3)-C(4)	11(2)
C(42)-O(1)-C(3)-C(2)	-169.1(14)
C(2)-C(3)-C(4)-C(5)	3(2)
O(1)-C(3)-C(4)-C(5)	-177.3(12)
C(3)-C(4)-C(5)-C(6)	-2.7(19)
C(4)-C(5)-C(6)-C(1)	1.1(17)
C(4)-C(5)-C(6)-C(7)	175.7(11)
C(2)-C(1)-C(6)-C(5)	0.2(16)
N(1)-C(1)-C(6)-C(5)	176.4(10)
C(2)-C(1)-C(6)-C(7)	-174.3(11)
N(1)-C(1)-C(6)-C(7)	1.9(15)
C(5)-C(6)-C(7)-C(8)	-98.9(12)
C(1)-C(6)-C(7)-C(8)	75.4(13)
C(5)-C(6)-C(7)-S(2)	24.5(14)
C(1)-C(6)-C(7)-S(2)	-161.2(9)
C(23)-S(2)-C(7)-C(6)	90.0(9)
C(23)-S(2)-C(7)-C(8)	-144.6(8)
C(6)-C(7)-C(8)-C(13)	-127.0(12)
S(2)-C(7)-C(8)-C(13)	103.8(11)
C(6)-C(7)-C(8)-C(9)	52.5(13)
S(2)-C(7)-C(8)-C(9)	-76.8(12)
C(13)-C(8)-C(9)-C(10)	-2.3(18)
C(7)-C(8)-C(9)-C(10)	178.3(11)
C(8)-C(9)-C(10)-C(11)	2(2)

Table 6. Torsion angles [°] for mo_d8v18109_0m.

C(9)-C(10)-C(11)-C(12)	-1(2)
C(10)-C(11)-C(12)-C(13)	1(2)
C(11)-C(12)-C(13)-C(8)	-2(2)
C(9)-C(8)-C(13)-C(12)	2(2)
C(7)-C(8)-C(13)-C(12)	-178.1(12)
O(3)-S(1)-C(14)-C(19)	43.2(9)
O(2)-S(1)-C(14)-C(19)	173.4(8)
N(1)-S(1)-C(14)-C(19)	-68.5(9)
O(3)-S(1)-C(14)-C(15)	-135.8(9)
O(2)-S(1)-C(14)-C(15)	-5.6(10)
N(1)-S(1)-C(14)-C(15)	112.5(9)
C(19)-C(14)-C(15)-C(16)	0.3(17)
S(1)-C(14)-C(15)-C(16)	179.3(9)
C(19)-C(14)-C(15)-C(21)	179.6(12)
S(1)-C(14)-C(15)-C(21)	-1.5(18)
C(14)-C(15)-C(16)-C(17)	-0.4(19)
C(21)-C(15)-C(16)-C(17)	-179.7(13)
C(15)-C(16)-C(17)-C(18)	-0.7(19)
C(15)-C(16)-C(17)-C(22)	176.9(14)
C(16)-C(17)-C(18)-C(19)	2.0(19)
C(22)-C(17)-C(18)-C(19)	-175.6(13)
C(17)-C(18)-C(19)-C(14)	-2.1(17)
C(17)-C(18)-C(19)-C(20)	-176.6(12)
C(15)-C(14)-C(19)-C(18)	0.9(16)
S(1)-C(14)-C(19)-C(18)	-178.1(8)
C(15)-C(14)-C(19)-C(20)	174.8(11)
S(1)-C(14)-C(19)-C(20)	-4.1(14)
C(7)-S(2)-C(23)-C(24)	-63.1(8)
C(7)-S(2)-C(23)-C(30)	64.7(10)
C(7)-S(2)-C(23)-C(36)	176.9(8)
C(30)-C(23)-C(24)-C(29)	-24.2(16)
C(36)-C(23)-C(24)-C(29)	-141.4(11)
S(2)-C(23)-C(24)-C(29)	102.7(12)
C(30)-C(23)-C(24)-C(25)	164.7(11)
C(36)-C(23)-C(24)-C(25)	47.5(15)
S(2)-C(23)-C(24)-C(25)	-68.5(12)
C(29)-C(24)-C(25)-C(26)	2.1(19)
C(23)-C(24)-C(25)-C(26)	173.7(12)

C(24)-C(25)-C(26)-C(27)	-3(2)
C(25)-C(26)-C(27)-C(28)	3(2)
C(26)-C(27)-C(28)-C(29)	-2(3)
C(25)-C(24)-C(29)-C(28)	-0.8(19)
C(23)-C(24)-C(29)-C(28)	-172.2(13)
C(27)-C(28)-C(29)-C(24)	1(2)
C(24)-C(23)-C(30)-C(35)	141.6(11)
C(36)-C(23)-C(30)-C(35)	-95.9(12)
S(2)-C(23)-C(30)-C(35)	18.4(14)
C(24)-C(23)-C(30)-C(31)	-46.1(14)
C(36)-C(23)-C(30)-C(31)	76.3(13)
S(2)-C(23)-C(30)-C(31)	-169.3(9)
C(35)-C(30)-C(31)-C(32)	-4.5(17)
C(23)-C(30)-C(31)-C(32)	-177.0(11)
C(30)-C(31)-C(32)-C(33)	7.5(19)
C(31)-C(32)-C(33)-C(34)	-6.9(19)
C(32)-C(33)-C(34)-C(35)	3(2)
C(33)-C(34)-C(35)-C(30)	-0.5(19)
C(31)-C(30)-C(35)-C(34)	0.9(17)
C(23)-C(30)-C(35)-C(34)	173.3(11)
C(24)-C(23)-C(36)-C(41)	-154.1(12)
C(30)-C(23)-C(36)-C(41)	81.6(13)
S(2)-C(23)-C(36)-C(41)	-37.9(14)
C(24)-C(23)-C(36)-C(37)	30.8(15)
C(30)-C(23)-C(36)-C(37)	-93.5(13)
S(2)-C(23)-C(36)-C(37)	147.0(10)
C(41)-C(36)-C(37)-C(38)	-2.3(19)
C(23)-C(36)-C(37)-C(38)	172.8(12)
C(36)-C(37)-C(38)-C(39)	2(2)
C(37)-C(38)-C(39)-C(40)	-3(2)
C(38)-C(39)-C(40)-C(41)	3(2)
C(37)-C(36)-C(41)-C(40)	2.7(19)
C(23)-C(36)-C(41)-C(40)	-172.4(12)
C(39)-C(40)-C(41)-C(36)	-3(2)
S(3)-N(2)-C(43)-C(48)	150.4(10)
S(3)-N(2)-C(43)-C(44)	-38.6(16)
C(48)-C(43)-C(44)-C(45)	-5.8(18)
N(2)-C(43)-C(44)-C(45)	-177.0(11)

C(43)-C(44)-C(45)-C(46)	2(2)
C(43)-C(44)-C(45)-O(4)	-178.2(12)
C(84)-O(4)-C(45)-C(46)	150.0(15)
C(84)-O(4)-C(45)-C(44)	-30(2)
C(44)-C(45)-C(46)-C(47)	2(2)
O(4)-C(45)-C(46)-C(47)	-177.4(12)
C(45)-C(46)-C(47)-C(48)	-3(2)
C(44)-C(43)-C(48)-C(47)	5.0(17)
N(2)-C(43)-C(48)-C(47)	176.0(11)
C(44)-C(43)-C(48)-C(49)	-172.3(10)
N(2)-C(43)-C(48)-C(49)	-1.4(16)
C(46)-C(47)-C(48)-C(43)	-0.5(18)
C(46)-C(47)-C(48)-C(49)	176.7(11)
C(43)-C(48)-C(49)-C(50)	75.1(13)
C(47)-C(48)-C(49)-C(50)	-102.2(13)
C(43)-C(48)-C(49)-S(4)	-160.7(9)
C(47)-C(48)-C(49)-S(4)	22.1(14)
C(65)-S(4)-C(49)-C(50)	-144.9(8)
C(65)-S(4)-C(49)-C(48)	89.7(9)
C(48)-C(49)-C(50)-C(55)	50.7(14)
S(4)-C(49)-C(50)-C(55)	-77.4(12)
C(48)-C(49)-C(50)-C(51)	-131.6(11)
S(4)-C(49)-C(50)-C(51)	100.3(11)
C(55)-C(50)-C(51)-C(52)	-2.2(17)
C(49)-C(50)-C(51)-C(52)	-179.9(11)
C(50)-C(51)-C(52)-C(53)	3(2)
C(51)-C(52)-C(53)-C(54)	-3(2)
C(52)-C(53)-C(54)-C(55)	2(2)
C(51)-C(50)-C(55)-C(54)	1.0(19)
C(49)-C(50)-C(55)-C(54)	178.8(12)
C(53)-C(54)-C(55)-C(50)	-1(2)
O(5)-S(3)-C(56)-C(61)	41.5(10)
O(6)-S(3)-C(56)-C(61)	171.8(9)
N(2)-S(3)-C(56)-C(61)	-69.5(10)
O(5)-S(3)-C(56)-C(57)	-137.5(10)
O(6)-S(3)-C(56)-C(57)	-7.2(12)
N(2)-S(3)-C(56)-C(57)	111.5(10)
C(61)-C(56)-C(57)-C(58)	-4.2(17)

S(3)-C(56)-C(57)-C(58)	174.8(9)
C(61)-C(56)-C(57)-C(63)	177.0(12)
S(3)-C(56)-C(57)-C(63)	-3.9(18)
C(56)-C(57)-C(58)-C(59)	3.4(19)
C(63)-C(57)-C(58)-C(59)	-177.8(13)
C(57)-C(58)-C(59)-C(60)	0.3(18)
C(57)-C(58)-C(59)-C(64)	-179.7(13)
C(58)-C(59)-C(60)-C(61)	-3.3(17)
C(64)-C(59)-C(60)-C(61)	176.7(12)
C(59)-C(60)-C(61)-C(56)	2.4(16)
C(59)-C(60)-C(61)-C(62)	-177.7(11)
C(57)-C(56)-C(61)-C(60)	1.5(16)
S(3)-C(56)-C(61)-C(60)	-177.5(8)
C(57)-C(56)-C(61)-C(62)	-178.4(11)
S(3)-C(56)-C(61)-C(62)	2.6(15)
C(49)-S(4)-C(65)-C(66)	-60.8(8)
C(49)-S(4)-C(65)-C(78)	177.9(7)
C(49)-S(4)-C(65)-C(72)	65.6(8)
C(78)-C(65)-C(66)-C(71)	-145.6(11)
C(72)-C(65)-C(66)-C(71)	-24.4(16)
S(4)-C(65)-C(66)-C(71)	99.6(12)
C(78)-C(65)-C(66)-C(67)	40.6(14)
C(72)-C(65)-C(66)-C(67)	161.8(10)
S(4)-C(65)-C(66)-C(67)	-74.2(11)
C(71)-C(66)-C(67)-C(68)	-0.5(18)
C(65)-C(66)-C(67)-C(68)	173.6(11)
C(66)-C(67)-C(68)-C(69)	1.7(19)
C(67)-C(68)-C(69)-C(70)	-3.6(19)
C(68)-C(69)-C(70)-C(71)	4.2(19)
C(69)-C(70)-C(71)-C(66)	-3(2)
C(67)-C(66)-C(71)-C(70)	1.1(18)
C(65)-C(66)-C(71)-C(70)	-172.8(11)
C(66)-C(65)-C(72)-C(77)	141.4(11)
C(78)-C(65)-C(72)-C(77)	-92.1(12)
S(4)-C(65)-C(72)-C(77)	20.5(14)
C(66)-C(65)-C(72)-C(73)	-45.1(14)
C(78)-C(65)-C(72)-C(73)	81.3(12)
S(4)-C(65)-C(72)-C(73)	-166.1(8)

C(77)-C(72)-C(73)-C(74)	0.6(17)
C(65)-C(72)-C(73)-C(74)	-173.2(10)
C(72)-C(73)-C(74)-C(75)	-1.3(18)
C(73)-C(74)-C(75)-C(76)	2.1(19)
C(74)-C(75)-C(76)-C(77)	-2.1(19)
C(73)-C(72)-C(77)-C(76)	-0.5(18)
C(65)-C(72)-C(77)-C(76)	172.9(10)
C(75)-C(76)-C(77)-C(72)	1.3(19)
C(66)-C(65)-C(78)-C(79)	36.3(15)
C(72)-C(65)-C(78)-C(79)	-90.9(12)
S(4)-C(65)-C(78)-C(79)	151.7(9)
C(66)-C(65)-C(78)-C(83)	-155.0(11)
C(72)-C(65)-C(78)-C(83)	77.9(13)
S(4)-C(65)-C(78)-C(83)	-39.5(12)
C(83)-C(78)-C(79)-C(80)	7.6(18)
C(65)-C(78)-C(79)-C(80)	176.7(11)
C(78)-C(79)-C(80)-C(81)	-5.7(19)
C(79)-C(80)-C(81)-C(82)	3.3(19)
C(80)-C(81)-C(82)-C(83)	-3(2)
C(81)-C(82)-C(83)-C(78)	5(2)
C(79)-C(78)-C(83)-C(82)	-6.9(17)
C(65)-C(78)-C(83)-C(82)	-176.0(11)

Symmetry transformations used to generate equivalent atoms:
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(44)-H(44)O(6)	0.95	2.36	3.022(16)	126.2
C(2)-H(2)O(2)	0.95	2.28	2.973(15)	128.7
C(44)-H(44)O(6)	0.95	2.36	3.022(16)	126.2
C(2)-H(2)O(2)	0.95	2.28	2.973(15)	128.7
C(44)-H(44)O(6)	0.95	2.36	3.022(16)	126.2
C(2)-H(2)O(2)	0.95	2.28	2.973(15)	128.7
C(2)-H(2)O(2)	0.95	2.28	2.973(15)	128.7
C(44)-H(44)O(6)	0.95	2.36	3.022(16)	126.2

Table 7. Hydrogen bonds for mo_d8v18109_0m [Å and °].

Symmetry transformations used to generate equivalent atoms:

CCDC 1816205 contains the structure and supplementary crystallographic data for the structure of 3v. These data can be obtained free of charge via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Compound Characterization Data of 3i-3z and 6a-6h

N-(6-((4-methoxyphenyl)(tritylthio)methyl) benzo[d] [1,3] dioxol-5-yl)-2,4,6-trimethyl benzenesulfonamide (3i)

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 6H), 7.24 – 7.14 (m, 9H), 6.96 (d, *J* = 7.7 Hz, 2H), 6.88 (s, 1H), 6.84 (s, 2H), 6.70 (d, *J* = 7.7 Hz, 2H), 6.35 (s, 1H), 5.86 (d, *J* = 10.3 Hz, 2H), 5.72 (s, 1H), 4.97 (s, 1H), 3.77 (s, 3H), 2.37 (s, 6H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.43, 146.31, 145.70, 144.36, 142.32, 138.93, 134.81, 132.90, 132.01, 131.08, 129.72, 129.41, 127.92, 126.83, 126.66, 113.87, 109.79, 105.40, 101.41, 69.48, 55.26, 48.72, 22.99, 20.96.; $[\alpha]_D^{20} = -21.00$ (c = 0.20, in CHCl₃); HRMS Calculated For C₄₃H₃₉NNaO₅S₂ [M+Na]⁺: 736.2162, found: 736.2173.

2,4,6-trimethyl-N-(6-(o-tolyl(tritylthio)methyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (3j)

δ 7.48 – 7.39 (m, 6H), 7.38 – 7.27 (m, 2H), 7.27 – 7.15 (m, 8H), 7.08 – 7.02 (m, 1H), 6.99 (t, *J* = 6.8 Hz, 2H), 6.89 (s, 2H), 6.63 (s, 1H), 6.40 (s, 1H), 6.08 (s, 1H), 5.77 (s, 2H), 4.82 (s, 1H), 2.41 (s, 6H), 2.27 (s, 3H), 1.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.75, 144.50, 144.39, 142.40, 138.66, 137.42, 136.20, 135.50, 132.15, 130.78, 130.12, 129.68, 128.70, 127.92, 127.25, 126.75, 126.17, 125.77, 110.34, 102.87, 101.31, 68.98, 48.73, 22.70, 20.99, 19.36; [α]_D²⁰ = 44.49 (c = 0.24, in CHCl₃); HRMS Calculated For C₄₃H₃₉NNaO₄S₂, [M+Na]⁺: 720.2213, found: 720.2218.

2,4,6-trimethyl-N-(6-(m-tolyl(tritylthio)methyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (3k)

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.38 (m, 6H), 7.36 – 7.28 (m, 2H), 7.27– 7.10 (m, 8H), 7.06 (t, *J* = 7.3 Hz, 1H), 6.98 – 6.92 (m, 2H), 6.86 – 6.81 (m, 3H), 6.34 (s, 1H), 5.92 – 5.77 (m, 3H), 4.96 (s, 1H), 2.38 (s, 6H), 2.28 (s, 3H), 2.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.39, 145.56, 144.34, 142.31, 140.67, 138.92, 138.15, 134.87, 132.04, 130.38, 129.75, 128.99, 128.44, 127.93, 127.74, 126.97, 126.83, 125.35, 109.86, 105.12, 101.41, 69.57, 49.38, 22.94, 21.46, 20.99; $[\alpha]_D^{20} =$ -6.76 (c = 0.34, in CHCl₃); HRMS Calculated For C₄₃H₃₉NNaO₄S₂, [M+Na]⁺: 720.2213, found: 720.2219.

2,4,6-trimethyl-N-(6-(phenyl(tritylthio)methyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (31)

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.34 (m, 6H), 7.23 – 7.08 (m, 12H), 7.06 – 6.96 (m, 2H), 6.88 (s, 1H), 6.82 (s, 2H), 6.29 (s, 1H), 5.85 (d, *J* = 11.3 Hz, 2H), 5.68 (s, 1H), 4.98 (s, 1H), 2.34 (s, 6H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.37, 145.82, 144.31, 142.32, 140.87, 138.92, 134.83, 132.03, 131.13, 129.73, 128.45, 128.30, 127.94, 126.87, 126.81, 126.68, 109.82, 105.54, 101.44, 69.57, 49.23, 22.96, 20.98; [α]_D²⁰ = 0.99 (c = 0.30, in CHCl₃); HRMS Calculated For C₄₂H₃₇NNaO₄S₂, [M+Na]⁺: 706.2056, found: 706.2065.

N-(6-((4-chlorophenyl)(tritylthio)methyl) benzo[d] [1,3] dioxol-5-yl)-2, 4, 6-trimethyl benzenesulfon a mide (3m) and (3m) and

δ 7.46-7.33 (m, 6H), 7.24 – 7.14 (m, 9H), 7.02 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 6.83 (s, 2H), 6.78 (s, 1H), 6.25 (s, 1H), 5.88 (dd, J = 12.4, 1.3 Hz, 2H), 5.55 (s, 1H), 5.02 (s, 1H), 2.32 (s, 6H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.55, 146.54, 144.27, 142.48, 139.59, 138.93, 134.67, 132.57, 132.38, 131.99, 129.74, 129.69, 128.16, 128.00, 126.99, 126.18, 109.71, 106.78, 101.62, 69.65, 48.28, 23.04, 20.99; $[\alpha]_D^{20}$ = 10.74 (c = 0.46, in CHCl₃); HRMS Calculated For C₄₂H₃₆ClNNaO₄S₂, [M+Na]⁺: 740.1666, found: 740.1673.

N-(6-((4-fluorophenyl)(tritylthio)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (3n)

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 6H), 7.24 – 7.15 (m, 9H), 6.96 (dd, J = 8.6, 5.4 Hz, 2H), 6.84 (s, 2H), 6.76 (m, 3H), 6.25 (s, 1H), 5.87 (dd, J = 11.7, 1.1 Hz, 2H), 5.60 (s, 1H), 5.01 (s, 1H), 2.33 (s, 6H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.49 (d, J_{C-F} = 247.45 Hz), 146.43 (d, J_{C-F} = 8.08 Hz), 144.28, 142.41, 138.92, 136.73 (d, J_{C-F} = 3.03 Hz), 134.74, 132.47, 132.00, 129.98 (d, J_{C-F} = 8.08 Hz), 129.69, 127.97, 126.95, 126.21, 114.89 (d, J_{C-F} = 22.22 Hz), 109.71, 106.48, 101.57, 69.60, 48.25, 29.71, 23.01, 20.95; [α]_D²⁰ = 15.50 (c = 0.20, in CHCl₃); HRMS Calculated For C₄₂H₃₆FNNaO₄S₂, [M+Na]⁺: 724.1962, found: 724.1976.

N-(6-((3-fluorophenyl)(tritylthio)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (30)

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.37 (m, 6H), 7.25 – 7.15 (m, 9H), 7.05 (dd, J = 14.3, 7.2 Hz, 1H), 6.85 (s, 2H), 6.84 – 6.73 (m, 3H), 6.64 (d, J = 10.2 Hz, 1H), 6.33 (s, 1H), 5.90 (d, J = 12.1 Hz, 2H), 5.62 (s, 1H), 5.05 (s, 1H), 2.35 (s, 6H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.46 (d, J_{C-F} = 246.44 Hz), 146.56 (d, J_{C-F} = 7.07 Hz), 144.25, 143.52 (d, J_{C-F} = 7.07 Hz), 142.46, 138.92, 134.61, 132.21, 132.03, 129.68, 129.45 (d, J_{C-F} = 8.08 Hz), 128.01, 127.01, 126.25, 124.10, 124.07, 115.43 (d, J_{C-F} = 22.22 Hz), 113.50 (d, J_{C-F} = 22.21 Hz), 109.72, 106.82, 101.63, 69.61, 48.39, 23.04, 20.96; [α]_D²⁰ = 44.55 (c = 0.20, in CHCl₃); HRMS Calculated For C₄₂H₃₆FNNaO₄S₂, [M+Na]⁺: 724.1962, found: 724.1968.

2,4,6-trimethyl-N-(6-(naphthalen-1-yl(tritylthio)methyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (3p)

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.9 Hz, 1H), 7.67 – 7.57 (m, 2H), 7.53 (d, J = 7.1 Hz, 1H), 7.48 – 7.38 (m, 7H), 7.38 – 7.31 (m, 1H), 7.24 – 7.19(m, 1H), 7.19 – 7.06 (m, 9H), 6.81 (s, 2H), 6.76 (s, 1H), 6.41 (s, 1H), 6.14 (s, 1H), 5.75 (d, J = 11.7 Hz, 2H), 5.53 (s, 1H), 2.34 (s, 6H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.73, 144.76, 144.22, 142.35, 138.76, 135.19, 135.12, 133.89, 132.06, 130.38, 129.66, 128.53, 128.50, 128.35, 128.09, 127.94, 127.07, 126.74, 126.43, 125.83, 124.96, 124.02, 110.19, 103.62, 101.32, 69.19, 47.51, 22.70, 20.98; $[\alpha]_D^{20} = 0.5$ (c = 0.20, in CHCl₃); HRMS Calculated For C₄₆H₃₉NNaO₄S₂, [M+Na]⁺: 756.2213, found: 756.2222.

N-(6-((2-chloro-4-methoxyphenyl)(tritylthio)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (3q)

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.38 (m, 6H), 7.33 (d, *J* = 8.7 Hz, 1H), 7.22 – 7.10 (m, 9H), 6.88 (s, 2H), 6.74 (s, 2H), 6.62 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.49 (s, 1H), 6.28 (s, 1H), 5.79 (d, *J* = 6.3 Hz, 2H), 5.13 (s, 1H), 3.74 (s, 3H), 2.44 (s, 6H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.01, 146.70, 144.25, 143.97, 142.39, 138.88, 135.38, 132.97, 132.11, 131.93, 129.71, 129.65, 128.47, 127.93, 126.78, 125.22, 114.83, 113.05, 109.91, 102.25, 101.32, 69.27, 55.55, 46.50, 22.83, 20.96; [α]_D²⁰ = -8.50 (c = 0.20, in CHCl₃); HRMS Calculated For C₄₃H₃₈CINNaO₅S₂, [M+Na]⁺: 770.1772, found: 770.1781.

N-(6-((4-methoxy-2-methylphenyl)(tritylthio)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (3r)

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 6H), 7.30 – 7.27 (m, 1H), 7.24 – 7.13 (m, 9H), 6.89 (s, 2H), 6.65 (s, 1H), 6.54 (m, 2H), 6.38 (s, 1H), 6.08 (s, 1H), 5.77 (q, *J* = 1.4 Hz, 2H), 4.76 (s, 1H), 3.73 (s, 3H), 2.41 (s, 6H), 2.27 (s, 3H), 1.82 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.55, 146.64, 144.45, 144.41, 142.39, 138.66, 137.65, 135.45, 132.13, 131.28, 129.68, 128.54, 127.95, 127.89, 126.72, 126.50, 116.28, 110.85, 110.31, 102.83, 101.27, 68.90, 55.17, 48.21, 22.70, 20.97, 19.61; $[\alpha]_D^{20} = -0.72$ (c = 0.28, in CHCl₃); HRMS Calculated For C₄₄H₄₁NNaO₅S₂, [M+Na]⁺: 750.2318, found: 750.2321.

trimethylbenzenesulfonamide (3s)

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.36 (m, 6H), 7.23 – 7.13 (m, 9H), 6.95 (d, *J* = 2.3 Hz, 1H), 6.88 – 6.81 (m, 3H), 6.79 (s, 1H), 6.63 (d, *J* = 8.6 Hz, 1H), 6.27 (s, 1H), 5.87 (dd, *J* = 9.8, 1.3 Hz, 2H), 5.61 (s, 1H), 4.97 (s, 1H), 3.82 (s, 3H), 2.34 (s, 6H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.65, 146.56, 146.43, 144.30, 142.41, 138.89, 134.61, 134.06, 132.18, 132.01, 130.17, 129.69, 127.99, 127.80, 126.96, 126.30, 121.99, 111.49, 109.79, 106.61, 101.61, 69.58, 56.14, 48.03, 23.04, 20.99; $[\alpha]_D^{20} = 8.38$ (c = 0.36, in CHCl₃); HRMS Calculated For C₄₃H₃₈ClNNaO₅S₂, [M+Na]⁺: 770.1772, found: 770.1775.

N-(6-((2,5-dimethylphenyl)(tritylthio)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (3t)

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.39 (m, 6H), 7.25 – 7.14 (m, 10H), 6.90 (s, 2H), 6.86 (s, 2H), 6.57 (d, *J* = 5.4 Hz, 2H), 6.10 (s, 1H), 5.77 (d, *J* = 1.2 Hz, 2H), 4.70 (s, 1H), 2.44 (s, 6H), 2.28 (s, 3H), 2.13 (s, 3H), 1.73 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.79, 144.43, 144.31, 142.39, 138.67, 136.88, 135.51, 135.20, 133.03, 132.15, 130.95, 130.66, 129.63, 128.95, 127.92, 126.70, 125.45, 110.31, 102.48, 101.27, 68.86, 49.11, 22.69, 20.98, 20.88, 18.81; $[\alpha]_D^{20} = 38.65$ (c = 0.33, in CHCl₃); HRMS Calculated For C₄₄H₄₁NNaO₄S₂, [M+Na]⁺: 734.2369, found: 734.2374.

N-(4,5-dimethoxy-2-(phenyl(tritylthio)methyl)phenyl)-2,4,6-trimethylbenzenesulfonamide (3u)

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.33 (m, 6H), 7.23 – 7.09 (m, 12H), 7.05 – 6.98 (m, 2H), 6.92 (s, 1H), 6.81 (s, 2H), 6.31 (s, 1H), 5.72 (s, 1H), 5.01 (s, 1H), 3.72 (s, 3H), 3.55 (s, 3H), 2.34 (s, 6H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.54, 146.87, 144.32, 142.30, 141.08, 139.14, 134.79, 131.92, 129.76, 129.01, 128.51, 128.26, 127.92, 126.90, 126.81, 125.81, 112.75, 108.17, 69.60, 55.82, 55.63, 49.24, 22.98, 20.92; $[\alpha]_D^{20} = 4.50$ (c = 0.20, in CHCl₃); HRMS Calculated For C₄₃H₄₁NNaO₄S₂, [M+Na]⁺: 722.2369, found: 722.2373.

N-(5-methoxy-2-(phenyl(tritylthio)methyl)phenyl)-2,4,6-trimethylbenzenesulfonamide (3v)

¹H NMR (400 MHz, CDCl₃) δ 7.37 (m, 6H), 7.21 – 7.10 (m, 13H), 7.05 – 6.98 (m, 2H), 6.83 (s, 2H), 6.47 – 6.40 (m, 2H), 6.36 (d, J = 2.5 Hz, 1H), 4.70 (s, 1H), 3.56 (s, 3H), 2.36 (s, 6H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.80, 144.24, 142.41, 140.57, 139.01, 135.03, 134.86, 132.04, 131.19, 129.75, 128.54, 128.51, 127.93, 126.98, 126.86, 125.04, 110.64, 106.57, 69.81, 55.13, 49.84, 22.76, 20.94; $[\alpha]_D^{20} = 2.08$ (c = 0.24, in CHCl₃); HRMS Calculated For C₄₂H₃₉NNaO₃S₂, [M+Na]⁺: 692.2264, found: 692.2269.

2,4,6-trimethyl-N-(6-(1-(tritylthio)ethyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (3w)

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.20 (m, 16H), 6.89 (s, 2H), 6.77 (s, 1H), 6.10 (s, 1H), 5.88 (dd, J = 5.8, 1.3 Hz, 2H), 3.81 (q, J = 7.1 Hz, 1H), 2.33 (s, 6H), 2.28 (s, 3H), 1.09 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl3) δ 147.10, 146.07, 144.74, 142.34, 139.08, 134.49, 134.46, 131.93, 130.17, 129.72, 128.07, 127.93, 126.92, 107.98, 107.39, 101.50, 68.35, 23.89, 23.11, 20.98; [α]_D²⁰ = 31.50 (c = 0.20, in CHCl₃); HRMS Calculated For C₃₇H₃₅NNaO₄S₂, [M+Na]⁺: 644.1900, found: 644.1904.

2,4,6-trimethyl-N-(6-(1-(tritylthio)propyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (3x)

¹H NMR (400 MHz, CDCl₃) δ 7.42 –7.35 (m, 6H), 7.26 – 7.16 (m, 10H), 6.89 (s, 2H), 6.06 (s, 1H), 5.90 – 5.84 (m, 2H), 3.57 (s, 1H), 2.49 (s, 1H), 2.39 (s, 6H), 2.28 (s, 3H), 1.65 – 1.40 (m, 2H), 0.56 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.19, 144.81, 143.79, 142.32, 138.97, 132.13, 132.02, 130.19, 129.70, 128.08, 127.95, 127.89, 127.28, 127.25, 126.82, 101.45, 68.37, 23.11, 23.04, 20.97, 11.80; [α]_D²⁰ = 42.50 (c = 0.20, in CHCl₃); HRMS Calculated For C₃₈H₃₇NNaO₄S₂, [M+Na]⁺: 658.2056, found: 658.2062.

6-amino-8-(4-methoxyphenyl)-5-((4-methoxyphenyl)sulfonyl)-5,8-dihydro-[1,3]dioxolo[4,5-g]quinoline-7-carbonitrile(6a)

¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.7 Hz, 2H), 7.19 (s, 1H), 6.85 (d, J = 8.7 Hz, 2H), 6.81 – 6.68 (m, 4H), 6.05 – 5.93 (m, 3H), 5.31 (d, J = 19.2 Hz, 2H), 3.90 (s, 3H), 3.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.42, 158.86, 152.34, 146.95, 146.56, 132.62, 130.41, 130.08, 129.77, 128.05, 127.17, 118.74, 114.42, 114.10, 108.03, 107.15, 101.89, 55.81, 55.18, 41.24. [α]_D²⁰ = -91.13 (c = 0.44, in CHCl₃). HRMS Calculated For C₂₅H₂₂N₃O₆S₂, [M+H]⁺: 492.1224, found: 492.1239.

N-(6-((4-methoxy-2-methylphenyl)((4methoxybenzyl)thio)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (6b)

¹H NMR (400 MHz, CDCl₃) δ 7.13 – 7.03 (m, 3H), 6.98-6.92 (m, 3H), 6.89-6.80 (m, 3H), 6.76 (d, J = 8.4 Hz, 1H), 6.56 (d, J = 2.1 Hz, 2H), 5.86 (s, 2H), 4.92 (s, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 3.46 (dd, J = 31.0, 12.7 Hz, 2H), 2.51 (s, 6H), 2.30 (s, 3H), 2.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.86, 157.18, 146.78, 146.01, 142.48, 139.16, 134.93, 132.12, 131.23, 129.90, 129.76, 129.47, 129.15, 127.88, 127.34, 126.97, 114.18, 109.93, 109.01, 107.24, 101.54, 55.39, 55.33, 49.00, 36.63, 23.26, 21.01, 16.37; [α]_D²⁰ = -29.95 (c =0.77, in CHCl₃); HRMS Calculated For C₃₃H₃₅NNaO₆S₂, [M+Na]⁺: 628.1798, found:628.1790.

N-(6-(((4-bromobenzyl)thio)(4-methoxy-2-methylphenyl)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (6c)

¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.5 Hz, 1H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.03 (d, *J* = 8.1 Hz, 2H), 6.95 (s, 2H), 6.83 (s, 1H), 6.76 (d, *J* = 8.6 Hz, 1H), 6.72 (s, 1H), 6.58 (s, 1H), 6.26 (s, 1H), 5.85 (s, 2H), 5.28 (s, 1H), 3.80 (s, 3H), 3.58 (s, 2H), 2.53 (s, 6H), 2.30 (s, 3H), 1.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.89, 146.97, 145.75, 142.62, 139.11, 138.61, 136.42, 132.15, 131.85, 130.52, 130.15, 128.71, 128.21, 127.97, 121.18, 116.55, 111.48, 109.14, 105.89, 101.55, 55.24, 46.08, 36.71, 23.00, 21.01, 19.29; $[\alpha]_D^{20} = -48.72$ (c = 0.94, in CHCl₃); HRMS Calculated For C₃₂H₃₂BrNNaO₅S₂, [M+Na]⁺: 676.0797, found: 676.0793.

N-(6-(((4-chlorobenzyl)thio)(4-methoxy-2-methylphenyl)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (6d)

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.5 Hz, 1H), 7.27 (s, 1H), 7.09 (d, *J* = 8.1 Hz, 2H), 6.95 (s, 2H), 6.84 (s, 1H), 6.77 (d, *J* = 8.5 Hz, 1H), 6.72 (s, 1H), 6.57 (s, 1H), 6.25 (s, 1H), 5.85 (s, 2H), 5.27 (s, 1H), 3.81 (s, 3H), 3.59 (s, 2H), 2.54 (s, 6H), 2.31 (s, 3H), 1.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.89, 146.96, 145.72, 142.61, 139.10, 138.63, 135.86, 134.89, 133.09, 132.14, 130.15, 128.92, 128.73, 128.16, 127.96, 116.54, 111.48, 109.12, 105.84, 101.53, 55.24, 46.00, 36.61, 22.98, 20.99, 19.28; $[\alpha]_D^{20}$ = -53.02 (c = 0.89, in CHCl₃); HRMS Calculated For C₃₂H₃₂ClNNaO₅S₂, [M+Na]⁺: 632.1303, found: 632.1287.

N-(2-(((4-methoxybenzyl)thio)(phenyl)methyl)naphthalen-1-yl)-4-methylbenzenesulfonamide (6e)

¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.1 Hz, 1H), 7.73 (d, J = 7.5 Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.33 – 7.26 (m, 3H), 7.23–7.14 (m, 3H), 7.13 – 7.05 (m, 4H), 7.01 (d, J = 6.7 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H), 6.83 (s, 1H), 4.98 (s, 1H), 3.85 (s, 3H), 3.45 (dd, J = 34.6, 13.4 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.06, 143.67, 138.20, 136.87, 135.78, 133.79, 132.08, 129.93, 129.54, 129.45, 129.39, 128.59, 128.44, 127.55, 127.52,

127.43, 126.50, 126.38, 125.88, 125.49, 114.40, 55.50, 48.80, 36.22, 21.53; $[\alpha]_D^{20} = 8.00$ (c = 0.20, in CHCl₃); HRMS Calculated For C₃₂H₂₉NNaO₂S₂, [M+Na]⁺: 562.1481, found: 562.1482.

(R)-N-(2-(((4-bromobenzyl)thio)(phenyl)methyl)naphthalen-1-yl)-4-methylbenzenesulfonamide (6f)

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.7 Hz, 1H), 7.51 – 7.19 (m, 10H), 7.16 – 6.97 (m, 6H), 6.82 (s, 1H), 5.12 (s, 1H), 3.47 (dd, J = 37.8, 13.4 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.80, 138.03, 136.87, 136.62, 135.84, 133.80, 131.96, 131.93, 130.60, 129.60, 129.52, 129.36, 128.71, 128.58, 127.67, 127.63, 127.36, 126.55, 126.47, 125.80, 125.16, 121.25, 49.27, 36.32, 21.55; [α]_D²⁰ = 15.55 (c = 0.81, in

CHCl₃); HRMS Calculated For C₃₁H₃₀BrN₂O₂S₂, [M+NH₄]⁺: 605.0927, found: 605.0898.

(R)-N-(2-(((4-chlorobenzyl)thio)(phenyl)methyl)naphthalen-1-yl)-4-methylbenzenesulfonamide (6g)

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.66 (d, J = 8.7 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.39 – 7.19 (m, 11H), 7.15 – 7.03 (m, 6H), 6.82 (s, 1H), 5.13 (s, 1H), 3.49 (dd, J = 37.7, 13.4 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.80, 138.09, 136.89, 136.10, 135.90, 133.80, 133.16, 131.96, 130.24, 129.59, 129.51, 129.36, 128.97, 128.71, 128.59, 127.66, 127.63, 127.36, 126.54, 126.46, 125.81, 125.14, 49.28, 36.27, 21.55.;

 $[\alpha]_D^{20} = 19.67 (c = 0.67, in CHCl_3);$ HRMS Calculated For $C_{31}H_{26}CINNaO_2S_2, [M+Na]^+: 566.0986,$ found: 566.0996.

Compound Characterization Data of 5

(R)-N-(6-(mercapto(phenyl)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (5)

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.21 (m, 3H), 7.18 – 7.11 (m, 2H), 6.97 (s, 2H), 6.76 (s, 1H), 6.57 (s, 1H), 6.53 (s, 1H), 5.89 (dd, J = 3.2, 1.2 Hz, 2H), 5.30 (d, J = 6.0 Hz, 1H), 2.53 (s, 6H), 2.32 (s, 3H), 2.15 (d, J = 6.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 146.87, 146.79, 142.79, 141.21, 139.36, 134.33, 134.00, 132.21, 128.58, 128.19, 127.52, 126.57, 108.93, 108.33, 101.72, 42.70, 23.32, 20.96; [α]_D²⁰ = 44.59 (c = 0.44, in CHCl₃); HRMS Calculated For C₂₃H₂₃NNaO₄S₂, [M+Na]⁺: 464.0961, found: 464.0958.

Compound Characterization Data of 1i-1z

N-(6-((4-methoxyphenyl)(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (1i)

¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.2 Hz, 2H), 7.38 – 7.31 (m, 3H), 7.20 (d, J = 8.2 Hz, 2H), 7.05 (s, 1H), 6.97 (s, 2H), 6.77 (d, J = 8.7 Hz, 2H), 6.30 (s, 1H), 5.95 (s, 1H), 5.92 (d, J = 6.2 Hz, 2H), 3.76 (s, 3H), 2.54 (s, 6H), 2.37 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.67, 147.97, 147.21, 144.71, 142.65, 139.31, 135.05, 134.57, 132.11, 131.25, 129.55, 129.50, 128.89, 124.59, 124.20, 114.08, 110.37, 109.29, 101.95, 69.25, 55.22, 23.09, 21.62, 20.99; HRMS Calculated For C₃₁H₃₅N₂O₇S₂, [M+NH₄]⁺: 611.1880, found: 611.1889.

2,4,6-trimethyl-N-(6-(o-tolyl(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (1j)

¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.8 Hz, 1H), 7.99 (s, 1H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.28 – 7.11 (m, 5H), 7.01 (m, 3H), 6.39 (s, 1H), 6.15 (s, 1H), 5.88 (d, *J* = 5.1 Hz, 2H), 2.64 (s, 6H), 2.35 (s, 3H), 2.34 (s, 3H), 2.11 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.21, 146.55, 144.84, 142.58, 138.66, 138.04, 135.76, 135.26, 132.24, 131.08, 131.05, 130.72, 129.59, 129.50, 128.73, 128.65, 125.93, 121.41, 110.77, 106.65, 101.92, 65.92, 22.89, 21.65, 21.03, 19.82; HRMS Calculated For C₃₁H₃₅N₂O₆S₂, [M+NH₄]⁺: 595.1931, found: 595.1934.

2,4,6-trimethyl-N-(6-(m-tolyl(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (1k)

¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.1 Hz, 2H), 7.38 (s, 1H), 7.25 – 7.17 (m, 3H), 7.13 (t, J = m, 2H), 7.05 (m, 2H), 6.98 (s, 2H), 6.37 (s, 1H), 5.92 (m, 3H), 2.55 (s, 6H), 2.37 (s, 3H), 2.33 (s, 3H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.05, 147.15, 144.78, 142.61, 139.27, 138.46, 135.03, 134.75, 132.57, 132.13, 130.56, 129.50, 128.98, 128.51, 126.92 , 123.75 , 110.50, 109.28 (s), 101.96 (s), 69.91 (s), 23.12, 21.62, 21.41, 21.03; HRMS Calculated For C₃₁H₃₅N₂O₆S₂, [M+NH₄]⁺: 595.1931, found: 595.1952.

2,4,6-trimethyl-N-(6-(phenyl(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (11)

¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.46 (dd, *J* = 8.5, 5.3 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.16 (s, 1H), 6.97 (m, 5H), 6.24 (s, 1H), 6.07 (s, 1H), 5.93 (d, *J* = 5.4 Hz, 2H), 2.53 (s, 6H), 2.38 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.06, 147.24, 144.83, 142.69, 139.31, 134.97, 134.57, 132.74, 132.13, 129.97, 129.60, 129.54, 128.94, 128.70, 128.58, 123.84, 110.42, 109.36, 101.99, 69.85, 23.11, 21.61, 20.99; HRMS Calculated For C₃₀H₃₃N₂O₆S₂, [M+NH₄]⁺: 581.1775, found: 581.1781.

N-(6-((4-chlorophenyl)(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (1m)

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.23 (m, 4H), 7.10 (s, 1H), 6.98 (m, 3H), 6.24 (s, 1H), 6.06 (s, 1H), 5.92 (d, *J* = 5.8 Hz, 2H), 2.52 (s, 6H), 2.39 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.16, 147.43, 145.11, 142.84, 139.34, 134.75, 134.74, 134.19, 132.14, 131.37, 131.24, 129.74, 129.44, 128.95, 128.89, 123.91, 110.18, 109.52, 102.10, 68.90, 23.08, 21.67, 21.03; HRMS Calculated For C₃₀H₃₂ClN₂O₆S₂, [M+NH₄]⁺: 615.1385, found: 615.1386.

N-(6-((4-fluorophenyl)(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (1n)

¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.2 Hz, 2H), 7.46 (dd, J = 8.5, 5.3 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.16 (s, 1H), 7.01 (s, 1H), 6.99 – 6.91 (m, 4H), 6.24 (s, 1H), 6.07 (s, 1H), 5.93 (d, J = 5.4 Hz, 2H), 2.53 (s, 6H), 2.38 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.70 (d, J_{C-F} = 249.47 Hz), 148.12, 147.39, 145.01, 142.80, 139.34, 134.79, 134.27, 132.13, 131.80 (d, J_{C-F} = 8.08 Hz), 129.68, 129.46, 128.88, 128.65 (d, J_{C-F} = 4.04 Hz), 124.04, 115.75 (d, J_{C-F} = 21.21 Hz), 110.21, 109.45, 102.07, 68.89, 23.08, 21.65, 21.02; HRMS Calculated For C₃₀H₃₂FN₂O₆S₂, [M+NH₄]⁺: 599.1680, found: 599.1699.

N-(6-((3-fluorophenyl)(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-trimethylbenzenesulfonamide (10)

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.33 – 7.19 (m, 4H), 7.16 (s, 1H), 7.07 – 6.91 (m, 5H), 6.36 (s, 1H), 5.97 (s, 1H), 5.93 (d, J = 5.5 Hz, 2H), 2.53 (s, 6H), 2.38 (s, 3H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.58 (d, J_{C-F} =248.46 Hz), 148.23, 147.40, 145.12, 142.89, 139.30, 135.03 (d, J_{C-F} =8.08 Hz), 134.75, 134.35, 132.16, 130.20 (d, J_{C-F} =8.08 Hz), 129.68, 129.54, 128.94, 125.62 (d, J_{C-F} =3.03 Hz), 123.55, 117.00 (d, J_{C-F} =23.23 Hz), 115.64 (d, J_{C-F} =21.21 Hz), 110.17, 109.70, 102.09, 69.13, 23.12, 21.64, 20.95; HRMS Calculated For C₃₀H₃₂FN₂O₆S₂, [M+NH₄]⁺: 599.1680, found: 599.1692.

2,4,6-trimethyl-N-(6-(naphthalen-1-yl(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (1p)

¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 7.2 Hz, 1H), 8.15 (s, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.75 (m, 4H), 7.52 – 7.44 (m, 2H), 7.39 (t, J = 7.1 Hz, 1H), 7.13 (d, J = 8.1 Hz, 2H), 7.05 (s, 2H), 6.97 (s, 2H), 6.21 (s, 1H), 5.84 (dd, J = 17.9, 1.3 Hz, 2H), 2.71 (s, 6H), 2.37 (s, 3H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.49, 146.44, 144.82, 142.65, 138.83, 135.80, 135.23, 133.84, 132.29, 131.37, 130.98, 129.64, 129.48, 128.70, 128.65, 128.45, 127.49, 127.41, 126.04, 124.56, 123.05, 121.62, 110.75, 106.47, 101.86, 65.56, 22.90, 21.52, 21.04; HRMS Calculated For C₃₄H₃₅N₂O₆S₂, [M+NH₄]⁺: 631.1931, found: 631.1937.

N-(6-((2-chloro-4-methoxyphenyl)(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-

trimethylbenzenesulfonamide (1q)

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.8 Hz, 1H), 7.85 (s, 1H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.08 (s, 1H), 7.00 (s, 2H), 6.85 (dd, *J* = 8.9, 2.7 Hz, 1H), 6.74 (d, *J* = 2.7 Hz, 1H), 6.64 (s, 1H), 6.33 (s, 1H), 5.95 – 5.89 (m, 2H), 3.75 (s, 3H), 2.65 (s, 6H), 2.38 (s, 3H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.09, 148.29, 146.36, 144.94, 142.41, 138.73, 136.15, 136.03, 135.01, 132.20, 131.64, 131.28, 129.66, 128.67, 122.17, 120.58, 115.06, 113.02, 110.13, 106.67, 101.92, 65.04, 55.52, 22.99, 21.68, 21.00; HRMS Calculated For C₃₁H₃₄ClN₂O₇S₂, [M+NH₄]⁺: 645.1490, found: 645.1503.

N-(6-((4-methoxy-2-methylphenyl)(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-

trimethylbenzenesulfonamide (1r)

¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.7 Hz, 1H), 7.97 (s, 1H), 7.69 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 7.12 (s, 1H), 7.02 (s, 2H), 6.79 (dd, J = 8.7, 2.7 Hz, 1H), 6.55 (d, J = 2.6 Hz, 1H), 6.31 (s, 1H), 6.14 (s, 1H), 5.89 (d, J = 3.6 Hz, 2H), 3.75 (s, 3H), 2.64 (s, 6H), 2.37 (s, 3H), 2.35 (s, 3H), 2.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.44, 148.10, 146.55, 144.70, 142.54, 139.80, 138.69, 135.75, 135.40, 132.21, 130.91, 130.83, 129.58, 128.68, 122.74, 122.01, 116.33, 111.23, 110.72, 106.73, 101.87, 65.49, 55.14, 22.86, 21.64, 21.01, 20.09; HRMS Calculated For C₃₂H₃₇N₂O₇S₂, [M+NH₄]⁺: 625.2037, found: 625.2041.

N-(6-((3-chloro-4-methoxyphenyl)(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6trimethylbenzenesulfonamide (1s)

¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.2 Hz, 2H), 7.42 (dd, J = 8.6, 2.1 Hz, 1H), 7.29 (d, J = 2.1 Hz, 1H), 7.24 (s, 1H), 7.22 (d, J = 3.4 Hz, 2H), 6.98 (m, 3H), 6.81 (d, J = 8.6 Hz, 1H), 6.35 (s, 1H), 5.93 (d, J = 4.4 Hz, 2H), 5.90 (s, 1H), 3.86 (s, 3H), 2.53 (s, 6H), 2.39 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.14, 148.14, 147.34, 145.02, 142.82, 139.25, 134.80, 134.40, 132.16, 131.47, 129.69, 129.48, 129.41, 128.89, 125.65, 123.82, 122.68, 111.86, 110.17, 109.62, 102.06, 68.62, 56.12, 23.12, 21.65, 21.06; HRMS Calculated For C₃₁H₃₄ClN₂O₇S₂, [M+NH₄]⁺: 645.1490, found: 645.1503.

N-(6-((2,5-dimethylphenyl)(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)-2,4,6-

trimethylbenzenesulfonamide (1t)

¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.88 (s, 1H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.14 (s, 1H), 7.02 (s, 2H), 6.92 (dd, *J* = 28.0, 7.7 Hz, 2H), 6.34 (s, 1H), 6.15 (s, 1H), 5.89 (d, *J* = 3.0 Hz, 2H), 2.64 (s, 6H), 2.42 – 2.31 (m, 9H), 2.05 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.16, 146.45, 144.75, 142.54, 138.65, 135.81, 135.38, 135.34, 134.82, 132.22, 131.07, 130.85, 130.46, 130.00, 129.53, 129.32, 128.73, 121.45, 110.81, 106.55, 101.86, 66.01, 22.85, 21.63, 21.26, 21.01, 19.28; HRMS Calculated For C₃₂H₃₇N₂O₆S₂, [M+NH₄]⁺: 609.2088, found: 609.2100.

N-(4,5-dimethoxy-2-(phenyl(tosyl)methyl)phenyl)-2,4,6-trimethylbenzenesulfonamide (1u)

¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.43 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.26 (m, 3H), 7.20 (s, 1H), 7.18 (d, *J* = 3.0 Hz, 2H), 7.10 (s, 1H), 6.96 (s, 2H), 6.23 (s, 1H), 6.00 (s, 1H), 3.77 (s, 3H), 3.49 (s, 3H), 2.49 (s, 6H), 2.37 (s, 3H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.12, 148.30, 144.74, 142.67, 139.70, 135.07, 134.39, 132.81, 131.96, 130.00, 129.49, 128.97, 128.65, 128.56, 128.21, 122.46, 113.02, 111.97, 69.73, 55.91, 55.55, 23.12, 21.61, 20.91; HRMS Calculated For C₃₁H₃₇N₂O₆S₂, [M+NH₄]⁺: 597.2088, found: 597.2077.

N-(5-methoxy-2-(phenyl(tosyl)methyl)phenyl)-2,4,6-trimethylbenzenesulfonamide (1v)

¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.45 (d, *J* = 8.9 Hz, 1H), 7.41 (dd, *J* = 6.6, 2.9 Hz, 2H), 7.25 (m, 3H), 7.18 (d, *J* = 8.1 Hz, 2H), 6.99 (s, 2H), 6.75 (dd, *J* = 8.8, 2.7 Hz, 1H), 6.39 (d, *J* = 2.7 Hz, 1H), 5.92 (s, 1H), 3.57 (s, 3H), 2.56 (s, 6H), 2.36 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.07, 144.77, 142.65, 139.38, 136.94, 134.94, 134.88, 132.74, 132.10, 132.08, 130.10, 129.50, 128.95, 128.62, 128.52, 120.67, 113.73, 112.94, 69.92, 55.19, 23.05, 21.61, 20.96; HRMS Calculated For C₃₀H₃₅N₂O₅S₂, [M+NH₄]⁺: 567.1982, found: 567.1987.

2,4,6-trimethyl-N-(6-(1-tosylethyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (1w)

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.15 (s, 1H), 6.95 (s, 2H), 6.61 (s, 1H), 6.43 (s, 1H), 5.95 (dd, *J* = 5.4, 1.2 Hz, 2H), 4.54 (q, *J* = 7.04 Hz, 1H); 2.52 (s, 6H), 2.46 (s, 3H), 2.30 (s, 3H), 1.31 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.08, 147.12, 145.22, 142.66, 139.01, 134.56, 133.37, 132.11, 129.86, 129.74, 129.18, 109.19, 108.11, 101.98, 59.72, 29.70, 23.11, 21.71, 20.95, 14.36; HRMS Calculated For C₂₅H₃₁N₂O₆S₂, [M+NH₄]⁺: 519.1618, found: 519.1616.

2,4,6-trimethyl-N-(6-(1-tosylpropyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (1x)

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.12 (s, 1H), 6.95 (s, 2H), 6.49 (d, J = 7.4 Hz, 2H), 5.96 (d, J = 8.2 Hz, 2H), 4.45 (dd, J = 11.5, 4.1 Hz, 1H), 2.53 (s, 6H), 2.45 (s, 3H), 2.30 (s, 3H), 2.04 - 1.90 (m, 1H), 1.88 - 1.71 (m, 1H), 0.54 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.00, 147.14, 145.17, 142.56, 139.07, 134.85, 133.50, 132.08, 131.11, 129.69, 129.31, 122.36, 109.65, 107.93, 101.95, 66.14, 23.09, 21.68, 21.14, 20.93, 10.26; HRMS Calculated For C₂₆H₃₃N₂O₆S₂, [M+NH₄]⁺: 533.1775, found: 533.1781. SCPh3

4-methyl-N-(2-(phenyl(tosyl)methyl)naphthalen-1-yl)benzenesulfonamide (1y)

0 NHTs

¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.60 (m, 9H), 7.50 (d, J = 8.6 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.33 – 7.13 (m, 9H), 6.61 (s, 1H), 2.43 (s, 3H), 2.36 (s, 3H).¹³C NMR (101 MHz, **3a**, in CDCl₃ _{Ts} CDCl₃) δ144.72, 144.03, 137.60, 135.17, 134.26, 132.61, 132.27, 132.16, 130.44, 129.77, 129.53, 128.97, 128.94, 128.63, 128.60, 127.89, 127.49, 126.87, 126.85, 126.56, 124.34, 70.45, 21.65, 21.60. HRMS Calculated For $C_{231}H_{27}N_{Na}O_4S_2$, [M+Na]⁺: 564.1274, found: 564.1268.

4-methoxy-N-(6-((4-methoxyphenyl)(tosyl)methyl)benzo[d][1,3]dioxol-5-yl)benzenesulfonamide (1z)

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.9 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.25-7.15 (m, 5H), 7.10 (s, 1H), 6.97 (d, J = 8.9 Hz, 2H), 6.75 (d, J = 8.8 Hz, 2H), 6.53 (s, 1H), 5.95 (dd, J = 8.1, 1.4 Hz, 2H), 5.74 (s, 1H), 3.88 (s, 3H), 3.77 (s, 3H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.21, 159.69, 148.03, 147.31, 144.74, 135.01, 131.87, 131.27, 129.56, 129.46, 129.39, 128.80, 124.38, 123.90, 114.44, 114.01, 110.18, 109.48, 102.04, 69.25, 55.69, 55.24, 21.65; HRMS Calculated For C₂₉H₃₁N₂O₈S₂, [M+NH₄]⁺: 599.1516, found: 599.1526.

Sample Info : ADHOCE-KE039, 1.0ml/min, 25C,90/10, 235nm, 37bar

Peak	RetTime	Туре	Width	Are	ta	Heig	pht	Area	
+	[min]		[min]	mAU	*3	[mAU	1	4	
1	9.790	BB	0.5147	1.8130	06e4	523.5	52203	96.6537	
2	15.358	VB	0.8990	627.	71405	10.5	88212	3.3463	

Sample Info : ADHOCE-KE039; 95/5; 1.0mL/min; 235nm; 35bar; 25C

...... -----

Sorted By			Sign	hal		
Multiplier:			:	1	1.0000	
Dilution:			:	1	1.0000	
Use Multiplier	6	Dilution	Factor	with	ISTDs	

Peak	RetTime	Type	Width	A	cea	Heig	ght	Area
+	[min]		[min]	mAU	* 3	[mAU	1	4
1	8.671	BB	0.4262	4814.	49951	168.6	54966	50.0790
2	11.039	BB	0.6275	4799.	.31543	114.4	16513	49.9210

Sample Info : ADHOCE-KE039; 95/5; 1.0mL/min; 235nm; 35bar; 25C

Sorted By : Signal Multiplier: : 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Peak	RetTime	Type	Width	A	rea	Heig	ght	Area
+	[min]		[min]	mAU	*3	[mAU	1	*
1	8.642	BB	0.4207	884	.26459	31.3	36345	4.0076
2	10.950	BV	0.6439	2.11	805e4	491.4	60004	95.9924

Sample Info : ADHOCE-EA056, 90/10, 1.0, 25C, 40bar

Area Percent Report

Sorted By		: Sig	nal
Multiplier:		:	1.0000
Dilution:			1.0000
Use Multiplier	& Dilut	ion Factor	with ISTDs

Peak	RetTime	Type	Width	Are	ea.	Height	Area
+	[min]		[min]	mAU	*3	[mAU]	*
1	11.268	VB	0.4884	1.4463	27e4	446.73260	54.5413
2	13.393	BB	0.5247	1.2054	13e4	345.70782	45.4587
Sampl	le Info	:	ADHOCE-	EA056,	90/10	, 1.0, 250	, 40bar

Area Percent Report

Sorted By		:	Sig	nal
Multiplier:			:	1.0000
Dilution:			:	1.0000
Use Multiplier	6	Dilution	Factor	with ISTDs

Peak	RetTime	Type	Width	Area	He	eight	Area
+	[min]		[min]	mAU *s	[mAI	J]	4
1	11.392	VB	0.4719	2638.585	45 84	4.19658	7.5192
2	13.427	BV	0.5133	3.24525e	4 94'	7.21875	92.4808

Sample Info : ADHOCE-EA039; 90/10; 1.0mL/min; 38bar; 235nm; 25C

Area Percent Report

Sorted By		:	Signal			
Multiplier:			:	1.0000		
Dilution:			:	1.0000		
Use Multiplier	5	Dilution	Factor	with ISTDs		

 Peak RetTime Type Width
 Area
 Height
 Area

 #
 [min]
 [min]
 mAU
 *s
 [mAU]
 *s

 ---- ---- [man]
 mAU
 *s
 [mAU]
 *s

 1
 9.912
 BV
 0.5113
 2.0094344
 572.76062
 49.2922

 2
 11.690
 VB
 0.6975
 2.0673444
 427.99033
 50.7078

Sample Info : ADHOCE-EA039; 90/10; 1.0mL/min; 38bar; 235nm; 25C

Sor	ted By		:	Sig	nal		
Mul	tiplier:			:	1	1.0000	
Dil	ution:			:	1	1.0000	
Use	Multiplier	8	Dilution	Factor	with	ISTDs	

Peak	RetTime	Type	Width	A	cea	Heig	ght	Area
+	[min]		[min]	mAU	*3	[mAU	1	*
1	8.988	BV	0.4653	1.279	963e4	409.3	20364	96.4881
2	10.582	VB	0.6861	465.	74411	9.5	53847	3.5119

Sample Info : ADHOCE-KE039; 95/5; 1.0mL/min; 235nm; 35bar; 25C

Sorted By		:	Sign	hal	
Multiplier:			:		1.0000
Dilution:			:		1.0000
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signa	al 1: VWI	01 A,	Wavelen	gth=23	5 nm			
Peak	RetTime	Type	Width	Ar	ea	Heig	tht	Area
Ŧ	[min]		[min]	mau	* 8	[mau		ء
1	13.935	BB	0.7317	1.515	69e4	304.7	4921	94.2706
2	20.956	VB	1.3021	921.	17480	9.6	59536	5.7294

30 35 min

Sample Info : ADHOCE-KE039; 95/5; 1.0mL/min; 235nm; 35bar; 25C

Sample Info : ADHOCE-EA056, 90/10, 1.0, 25C, 40bar

Sorted By		:	Sig	nal
Multiplier:			:	1.0000
Dilution:			:	1.0000
Use Multiplier	2	Dilution	Factor	with ISTDs

Peak	RetTime	Type	Width	Az	rea	Heig	ght	Area
+	[min]		[min]	mAU	*3	[mAU	1	*
1	14.718	vv	0.5900	1.420	005e4	362.3	12323	49.6627
2	16.290	VB	0.6106	1.439	34e4	352.3	31696	50.3373

Sample	Info	:	ADHOCE-EA056,	90/10.	1.0.	25C.	40bar
				,	,	,	

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier:			:	1.000	00
Dilution:			:	1.000	00
Use Multiplier	6	Dilution	Factor	with ISTI	s

Peak	RetTime	Type	Width	Ar	ea	Heig	ht	Area
+	[min]		[min]	mAU	* 5	[mAU	1	4
1	14.832	vv	0.5785	2178.	34741	56.6	0683	4.3539
2	16.371	VB	0.6227	4.785	36e4	1149.1	4465	95.6461

Sample Info : ADH-056, 95/5, 1ml/min, 25C, 40bar, 235nm

Area Percent Report

Sorted By			Sign	hal
Multiplier:			:	1.0000
Dilution:			:	1.0000
Use Multiplier	£	Dilution	Factor	with ISTDs

Peak	RetTime	Type	Width	Ar	ea	Hei	ght	Area
+	[min]		[min]	mAU	*s	[mAU	1	4
1	17.641	VB	0.7478	1.157	57e4	230.	96606	47.4655
2	33.419	BB	1.8628	1.281	19e4	104.	17798	52.5345

Sample Info : ADH-056, 95/5, 1ml/min, 25C, 40bar, 235nm

Area Percent Report

Sorted By		:	Sign	hal	
Multiplier:			:	1.0000	0
Dilution:			:	1.0000	0
Use Multiplier	6	Dilution	Factor	with ISTDs	5

Peak	RetTime	Type	Width	Ar	ea	Heig	tht	Area
+	[min]		[min]	mAU	* 3	[mAU	1	*
1	17.674	vv	0.7217	1606.	39233	32.9	4791	3.2223
2	32.812	BB	1.9034	4.824	60e4	385.7	0547	96.7777

Sample Info : ADHOCE-EA056; 95/5; 1.0; 25; 235; 40bar

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Sample Info : ADH-056; 97/3; 1.0mL/min; 40bar; 25C; 235nm

Area Percent Report

Sorted By		:	Sigr	nal	
Multiplier:			:		1.0000
Dilution:			:		1.0000
Use Multiplier	6	Dilution	Factor	with	ISTDs

Sign	al 1: VW	D1 A,	Wavelen	gth=23	35 nm			
Peak	RetTime	Type	Width	A	cea	Hei	ght	Area
+	[min]		[min]	mAU	* 3	[mAU]	1	4

1	10.773	vv	0.9185	3.33563e4	522.19012	50.9460
2	13.813	VB	1.3221	3.21175e4	355.42850	49.0540

Area Percent Report

Sorted By		:	Sig	nal
Multiplier:			:	1.0000
Dilution:			:	1.0000
Use Multiplier	6	Dilution	Factor	with ISTDs

Signal 1: VWD1 A, Wavelength=235 nm

Sample Info : ADHOCE-EA056, 1ml/min, 95/5, 25C, 235nm, 59bar

_____ Area Percent Report

Sorted By		:	Sig	nal
Multiplier:			:	1.0000
Dilution:			:	1.0000
Use Multiplier	5	Dilution	Factor	with ISTDs

Signal 1: VWD1 A, Wavelength=235 nm

Peak	RetTime	Type	Width	Area	Height	Area
+	[min]		[min]	mAU *s	[mAU]	*
1	11.767	BV	0.4981	2423.2143	36 72.96810	49.9186
2	15.322	BB	0.6225	2431.1147	75 58.58047	50.0814

Sample Info : ADHOCE-EA056, 1ml/min, 95/5, 25C, 235nm, 59bar

Additional Info : Peak(s) manually integrated WD1A, Wavelength=235 nm (L0HDEF_LC 2017-12-23 17-39-09066-0601.D)

Sorted By : Signal Multiplier: : 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=235 nm

Peak	RetTime	Type	Width	Area		Height		Area	
+	[min]		[min]	mAU	* 3	[mAU	1	*	
									- 1
1	11.722	BV	0.5028	8745.3	6719	261.1	15497	95.548	6
2	15.349	BB	0.6174	407.43	3201	9.8	80364	4.451	4

Sample Info : ADHOCE-EA056, 1ml/min, 95/5, 25C, 235nm, 59bar

Area Percent Report

Sorted By	:	Signal				
Multiplier:			:	4	1.0000	
Dilution:			:	1	1.0000	
Use Multiplier	6	Dilution	Factor	with	ISTDs	

Signal 1: VWD1 A, Wavelength=235 nm

Peak	Peak RetTime Type		Width Area		Hei	ght	Area	
+	[min]		[min]	mAU	* 3	[mAU	1	4
1	9.757	BB	0.3470	2394.	78247	100.1	32117	47.3765
2	11.546	BB	0.4559	2660.	.00708	83.1	37397	52.6235

Sample Info : ADHOCE-EA056, 1ml/min, 95/5, 25C, 235nm, 59bar

Additional Info : Peak(s) manually integrated VWD1A, Wavelength=235 nm (LXHDEF_LC 2017-12-23 17-39-09/068-0801.D)

Area Percent Report

Sorted By : Signal Multiplier: : 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=235 nm

Peak	Peak RetTime Type		Width	idth Area			ght	Area	
+	[min]		[min]	mAU	* 3	[mAU	1	8	
1	9.630	VB	0.3464	553	.77612	23.3	24668	3.3767	
2	11.350	BV	0.4172	1.58	463e4	555.	55170	96.6233	

Sample Info : ADHOCE-KE056, 95/5, 1.0, 235, 39, 25

Sample Info : ADHOCE-ER056, 95/5; 1.0; 235nm, 40bar,25C

Area Percent Report

Sorted By : Signal Multiplier: : 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=230 nm

Peak RetTime		Type	Width	A	rea	Hei	ght	Area
+	[min]		[min]	mAU	* 3	[mAU	1	8
1	10.143	BV	0.4253	1726	.20593	60.3	11020	8.1672
2	11,921	VB	0.4059	1.940	197e4	698.1	19943	91.8328

Sample Info : ADH-039, 1.0ml/min, 25C,80/20, 235nm, 40bar

 $\begin{array}{c} - 104,42\\ - 138,86\\ - 138,234\\ - 132,24\\ - 132,26\\ - 132,26\\ - 132,26\\ - 132,26\\ - 132,26\\ - 132,27\\ - 114,26\\ - 114,26\\ - 114,26\\ - 11,28\\$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 f1 (ppm) 10 0 -10

Sample Info : ICOOCE-WJ021, 90/10, 1.0ml/min, 25C, 230nm, 36bar

✓ 1187, 88
 ✓ 1187, 88
 ✓ 146, 73
 ✓ 146, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 148, 73
 ✓ 149, 66
 ✓ 148, 73
 ✓ 149, 66
 ✓ 148, 73
 ✓ 149, 66
 ✓ 149, 66
 ✓ 149, 66
 ✓ 149, 66
 ✓ 149, 66
 ✓ 149, 73
 ✓ 149, 75
 ✓ 149, 75
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149, 165
 ✓ 149

Sample Info : ICOOCE-WJ021; 90/10; 1.0; 38bar; 285nm

Sample Info : ICOOCE-WJ021; 90/10; 1.0; 235nm; 38bar

Signal 1: VWD1 A, Wavelength=235 nm

 Peak RetTime Type Nidth
 Area
 Meighth
 Area

 #
 [min]
 mAU
 *
 [mAU]
 *

 1
 15.651
 SV
 0.7422
 \$732.5501
 195.65776
 45.7817

 2
 16.370
 VB
 0.9000
 \$925.00293
 164.64156
 \$0.2183

Sample Info : ICOOCE-WJ021; 90/10; 1.0; 235nm; 38bar

Sorted By			Sig	nal	
Multiplier:			:	3	1.0000
Dilution:				-	1.0000
Use Multiplier	6	Dilution	Factor	with	ISTD:

Sign	al 1: VW	D1 A,	Wavelen	gth=23	5 nm			
Peak	RetTime	Type	Width	Ar	ea	Heig	ght	Area
#	[min]		[min]	mAU	* =	[mAU	1	
1	15.426	BV	0.7517	4603.	60645	91.4	17147	17.8006
2	18.011	VB	0.8751	2.125	84e4	366.2	27634	82.1994

1 158. 30 1 158. 30 1 158. 30 1 158. 30 1 158. 30 1 158. 30 1 158. 30 1 158. 30 1 158. 30 1 158. 30 1 158. 30 1 158. 30 1 168. 30 1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Sample Info : IA00CE-WE015; 90/10; 1.0; 36bar; 235nm

Area Percent Report

Sorted By : Signal Multiplier: : 1.0000 Diluzion: : 1.0000 Use Multiplier & Dilution Factor with ISTDE

Signal 1: VWD1 A, Wavelength=235 nm

 Peak RevTime Type Width Area
 Meighto
 Area

 f
 [man]
 mAU
 =
 [mAU]
 4

 i
 [istrict]
 [istrict]
 [istrict]
 4

 i
 [istrict]
 [istrict]
 4
 [istrict]
 4

 i
 [istrict]
 [istrict]
 [istrict]
 4
 [istrict]
 4

 i
 [istrict]
 [istrict]
 [istrict]
 4
 [istrict]
 4

 i
 [istrict]
 [istrict]
 [istrict]
 [istrict]
 4
 [istrict]

 i
 [istrict]
 [istrict]
 [istrict]
 [istrict]
 [istrict]
 [istrict]

 i
 [istrict]
 [istrict]
 [istrict]
 [istrict]
 [istrict]
 [istrict]

Sorted By : Signal Multiplies: : 1,0000 Dilution: : 1,0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=235 nm

 Peak RetTime Type Nidth Area
 Height Area

 f
 [man] mAU *
 [mAU] *

 i
 [man] i
 i

 i
 [man] i
 i

 2
 2.8.58 Mu 0.680 0122.8588 79.5386 41.6420
 i

^{0.5 0.0 -0.5 -1.0 -1.5}

Sample Info : IA00CE-WE015; 90/10; 1.0; 38bar; 235nm

Copy of NMR Spectra and HPLC Chromatograms of 5

Copy of NMR Spectra of 1i-1z

113

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

