SUPPORTING INFORMATION

Double asymmetric hydrogenation of conjugated dienes: a self-breeding chirality route for $\boldsymbol{C}_{\mathbf{2}}$ symmetric 1,4-diols

Félix León, ${ }^{\text {a }}$ Javier Francos, ${ }^{\text {b }}$ Joaquín López-Serrano, ${ }^{\text {a }}$ Sergio E. García-Garrido, ${ }^{\text {b }}$ Victorio Cadierno*b ${ }^{\text {b }}$ and Antonio Pizzano*a

${ }^{\text {a }}$ Instituto de Investigaciones Químicas and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla, Avda Américo Vespucio 49, 41092 Sevilla, Spain.

E-mail: pizzano@iiq.csic.es (A. P.).
${ }^{\mathrm{b}}$ Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, 33006 Oviedo, Spain

E-mail: vcm@uniovi.es (V. C.).

Contents

General procedures: S2-S3.

Synthesis and characterization of dienes 1: S3-S6.

Synthesis and characterization of diesters 6: S7-S12.
Synthesis and characterization of diols 8: S12.

Synthesis and characterization of the Mosher ester 9: S13-S14

Synthesis and characterization of ligand 11 and complex $[\mathrm{Rh}(\mathrm{COD})(\mathbf{1 1})] \mathrm{BF}_{4}:$ S14-S16
Generation and characterization of complex $[\mathrm{Rh}(\mathbf{1 a})\{(S, S) \text {-Me-Duphos }\}]^{+}:$S16-S19.
X-Ray crystal structure determination of diene 1f: S20-S22.

Computational details: S23.

References: S24-S25.

NMR spectra: S26-S51.

Determination of enantiomeric excess (chromatograms and ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ spectra): S52-S61.

General Procedures

All reactions and manipulations were performed under nitrogen or argon, either in a Braun Labmaster 100 glovebox or using standard Schlenk-type techniques. All solvents were distilled under nitrogen with the following desiccants: sodium-benzophenone-ketyl for diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and tetrahydrofuran (THF); sodium for n hexane and toluene; CaH_{2} for dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; and $\mathrm{NaO}{ }^{\mathrm{i}} \mathrm{Pr}$ for isopropanol (${ }^{\mathrm{i} P O H}$). (Z)-1-Iodo-alken-2-yl acetates $\mathbf{2 b}$ - \mathbf{j} were synthesized by procedures described
in the literature, ${ }^{\text {S1 }}$ Complexes $[\mathrm{Rh}(\mathrm{NBD})(\mathrm{P}-\mathrm{OP})] \mathrm{BF}_{4}(\mathrm{P}-\mathrm{OP}=$ phosphine-phosphite; 3a3c), ${ }^{\mathrm{S} 2}\left[\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right],{ }^{\mathrm{S} 3}$ and $[\mathrm{AuCl}(\mathrm{IPr})](\mathrm{IPr}=1,3-$ bis(diisopropylphenyl)imidazol-2ylidene) ${ }^{S 4}$ were prepared as described previously. All other reagents were purchased from commercial suppliers and used as received. IR spectra were recorded on PerkinElmer 1720-XFT or Bruker Vector 22 spectrometers. NMR spectra were obtained on Bruker DPX-300, DRX-400, or DRX-500 spectrometers. ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR shifts were referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, while ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ shifts were referenced to the residual signals of deuterated solvents. All data are reported in ppm downfield from $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$. All NMR measurements were carried out at $25^{\circ} \mathrm{C}$, unless otherwise stated. HPLC analyses were performed by using a Waters 2690 chromatograph. HPLC analyses were performed at $30^{\circ} \mathrm{C}$. HRMS data were obtained on a JEOL JMS-SX 102A, Thermo Orbitrap Elite or Thermo QExactive mass spectrometers in the General Services of Universidad de Sevilla (CITIUS). Optical rotations were measured on a Perkin-Elmer Model 341 polarimeter.

Synthesis and Characterization of Dienes 1

Synthesis of (Z,Z)-hexa-2,4-diene-2,5-diyl diacetate (1a): 2,4-Hexadiyne $(0.079 \mathrm{~g} ; 1 \mathrm{mmol})$, acetic acid ($0.154 \mathrm{~mL} ; 2 \mathrm{mmol}),[\mathrm{AuCl}(\mathrm{IPr})](0.019 \mathrm{~g} ; 0.05 \mathrm{mmol})$, $\mathrm{AgPF}_{6}(0.012 \mathrm{~g} ; 0.05 \mathrm{mmol})$ and toluene (3 mL) were introduced into a Teflon-capped sealed tube, and the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 18 h in the absence of light. The solvent was then removed in vacuo and the resulting oily residue purified by flash column chromatography over silica gel using diethyl ether/ n-hexane (1:5) as eluent. White solid. Yield: $0.059 \mathrm{~g}(60 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.64(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH})$,
$2.18\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.95\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{\mathrm{I}} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=168.5,145.9$, 109.8, 20.8, 19.8 ppm. IR (KBr): $v=1738(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1652(\mathrm{~m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. HRMS (ESI): m / z 221.0787, $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$(calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}: 221.0784$).

General procedure for the preparation of the 1,3-diene-1,4-diyl diacetates

 1b-j. A suspension of $\left[\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.065 \mathrm{~g}, 0.1 \mathrm{mmol}), \mathrm{NaI}(0.015 \mathrm{~g}, 0.1 \mathrm{mmol})$ and Zn dust $(0.105 \mathrm{~g}, 1.6 \mathrm{mmol})$ in THF (5 mL) was stirred at room temperature for 30 min . After this time, a solution of the corresponding (Z)- β-iodoenol acetate $\mathbf{2 b} \mathbf{- j}(1 \mathrm{mmol})$ in THF (2 mL) was added and the resulting mixture further stirred at r.t. for 16 hours. The solvent was then removed in vacuo, and the crude reaction mixture purified by column chromatography over silica gel using n-hexane/diethyl ether (10:1) as eluent. The corresponding dienes $\mathbf{1 b}-\mathbf{j}$ were obtained as pure Z, Z isomers in $71-89 \%$ yield.(Z,Z)-Deca-4,6-diene-4,7-diyl diacetate (1b): White solid. Yield: 0.104 g $(82 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=5.64(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}), 2.24(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.5 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.53-1.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.91(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.2 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right)$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=168.6,149.7,109.2,35.6,20.7,19.9$, $13.5 \mathrm{ppm} . \mathrm{IR}(\mathrm{KBr}): v=1750(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1645(\mathrm{~m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. HRMS (ESI): m / z 277.1406, $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$(calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}: 277.1410$).
(Z,Z)-Dodeca-5,7-diene-5,8-diyl diacetate (1c): White solid. Yield: 0.126 g $(89 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.63(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}), 2.26(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.2 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.44-1.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35-1.31\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.90(\mathrm{t}$, $\left.J(\mathrm{H}-\mathrm{H})=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=168.6,149.9$, 109.0, 33.3, 28.7, 22.1, 20.8, $13.8 \mathrm{ppm} . \mathrm{IR}(\mathrm{KBr}): v=1760(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1647(\mathrm{~m}, \mathrm{C}=\mathrm{C})$ cm^{-1}. HRMS (ESI): m / z 283.1908, $\left[\mathrm{M}+\mathrm{H}^{+}\right]$(calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{4}: 283.1904$).
(Z,Z)-Hexadeca-7,9-diene-7,10-diyl diacetate (1d): White solid. Yield: 0.135 g $(80 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.63(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}), 2.25(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.6 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.44-1.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.27\left(\mathrm{br}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88(\mathrm{t}, J(\mathrm{H}-$ $\left.\mathrm{H})=6.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=168.6,149.9,109.0$, 33.6, 31.6, 28.7, 26.6, 22.5, 20.8, 14.0 ppm . IR (KBr): $v=1754(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1643(\mathrm{~m}$, $\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. HRMS (ESI): $m / z 361.2351,\left[\mathrm{M}+\mathrm{Na}^{+}\right]\left(\right.$calcd for $\left.\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}: 361.2349\right)$.
(Z,Z)-2,11-Dimethyldodeca-5,7-diene-5,8-diyl diacetate (1e): White solid. Yield: $0.116 \mathrm{~g}(75 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=5.64(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}), 2.27(\mathrm{t}, J(\mathrm{H}-$ $\left.\mathrm{H})=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.21\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.59-1.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.38-1.30(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 0.89\left(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=6.6 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=$ 168.6, 150.1, 108.9, 35.6, 31.6, 27.6, 22.4, 20.8 ppm. IR (KBr): $v=1747$ (s, C=O), $1650(\mathrm{~m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. HRMS (ESI): m/z 333.2040, $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$(calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}$: 333.2036).
(Z,Z)-1,4-Dicyclopentylbuta-1,3-diene-1,4-diyl diacetate (1f): White solid. Yield: $0.124 \mathrm{~g}(81 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=5.64(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}), 2.75-2.64$ (m, 2H, CH), $2.20\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.81$ (br, $4 \mathrm{H}, \mathrm{CH}_{2}$), 1.66-1.42 (m, 12H, CH_{2}) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=168.7,152.4,107.8,44.1,30.5,24.8,20.7 \mathrm{ppm}$. IR (KBr): $v=1751(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1638(\mathrm{~m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): m / z$ 329.1726, $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$(calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}: 329.1723$).
(Z,Z)-1,4-Dicyclohexylbuta-1,3-diene-1,4-diyl diacetate (1g): White solid. Yield: $0.119 \mathrm{~g}(71 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=5.58(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}), 2.22(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}), 2.19-2.14 (m, 2H, CH), 1.89-. $166\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 1.32-1.08\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=168.7,154.0,107.3,42.0,30.6,26.0,25.9,20.7$
ppm. IR (KBr): $v=1753(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1635(\mathrm{~m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): m / z 357.2035$, $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$(calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}$: 357.2036).
(Z,Z)-1,6-Diphenylhexa-2,4-diene-2,5-diyl diacetate (1h): Pale yellow solid. Yield: $0.135 \mathrm{~g}(77 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.35-7.21(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.68$ $(\mathrm{s}, 2 \mathrm{H},=\mathrm{CH}), 3.63\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}): \delta=168.5,149.2,136.6,129.2,128.5,126.8,110.7,39.9,20.6 \mathrm{ppm} . \operatorname{IR}(\mathrm{KBr}): v$ $=1748(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1635(\mathrm{~m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): m / z 373.1415,\left[\mathrm{M}+\mathrm{Na}^{+}\right]$(calcd for $\left.\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}: 373.1410\right)$.
(Z,Z)-1,8-Diphenylocta-3,5-diene-3,6-diyl diacetate (1i): White solid. Yield: $0.140 \mathrm{~g}(74 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.38-7.19(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.67(\mathrm{~s}, 2 \mathrm{H}$, $=\mathrm{CH}), 2.81\left(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.62\left(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.13(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=168.6,149.3,140.8,128.4,128.3$, 126.1, 109.6, 35.3, 33.1, 20.7 ppm . IR (KBr): $v=1737(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1651(\mathrm{~m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. HRMS (ESI): $m / z 401.1725,\left[\mathrm{M}+\mathrm{Na}^{+}\right]$(calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}: 401.1723$).
(Z,Z)-1,10-Diphenyldeca-4,6-diene-4,7-diyl diacetate (1j): White solid. Yield: $0.158 \mathrm{~g}(78 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.35-7.20(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.70(\mathrm{t}$, $J(\mathrm{H}-\mathrm{H})=4.3 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CH}), 2.67\left(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.38-2.35(\mathrm{~m}, 4 \mathrm{H}$, CH_{2}), $2.22\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.85-1.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}): \delta=168.6,149.4,141.8,128.5,128.4,125.9,109.6,35.1,33.2,28.2,20.8 \mathrm{ppm}$. IR (KBr): $v=1746(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1644(\mathrm{~m}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ 429.2040, $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$(calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}$: 429.2036).

Synthesis and Characterization of Diesters 6

Representative process for asymmetric hydrogenation. In a glovebox, a solution of $\mathbf{5 b}(0.33 \mathrm{mg}, 0.50 \mu \mathrm{~mol})$ and substrate $\mathbf{1 c}(14.2 \mathrm{mg}, 0.050 \mathrm{mmol})$ in $1,2-$ dichloroethane $(0.5 \mathrm{~mL})$ was placed in a HEL CAT-18 or in a HEL 16 mL reactors. The reactor was purged with hydrogen and finally pressurized at 20 bar. The reaction was heated at $40^{\circ} \mathrm{C}$ and magnetically stirred for 24 h . Then, the reactor was depressurized and the resulting solution slowly evaporated under vacuum. The remaining residue was readily analyzed by ${ }^{1} \mathrm{H}$ NMR to determine conversion, as hydrogenations cleanly proceeded to products 6 . Then it was dissolved in a $i-\mathrm{PrOH} / n$-hexane $1: 10$ mixture and passed through a short pad of silica gel to remove catalyst decomposition products. The solution obtained was carefully evaporated and the residue obtained was analyzed by chiral GC or HPLC to determine enantiomeric excess and diastereomeric ratio, with the exception of $\mathbf{6 d}$, as described below. Racemic mixtures were obtained by hydrogenation of $\mathbf{1}$ with $[\mathrm{Rh}(\mathrm{COD})(\mathrm{DiPFc})] \mathrm{BF}_{4}\left[\mathrm{DiPFc}=1,1^{\prime}\right.$-bis(diisopropylphosphino)ferrocene]. ${ }^{\mathrm{S5}}$

Hexane-2,5-diyl diacetate (6a): GC, Chirasil DEX CB, initial temp $=140^{\circ} \mathrm{C}(5$ min), then $5^{\circ} \mathrm{C} / \mathrm{min}$ up to $200{ }^{\circ} \mathrm{C}(15 \mathrm{~min}), 20 \mathrm{psi}(\mathrm{He}), \mathrm{t}_{1}=3.9 \mathrm{~min}(S, S), \mathrm{t}_{2}=4.3 \mathrm{~min}$ $(R, S), \mathrm{t}_{3}=4.6 \mathrm{~min}(R, R)$.

Decane-4,7-diyl diacetate (6b): GC, Chirasil DEX CB, initial temp $=140^{\circ} \mathrm{C}(5$ $\mathrm{min})$, then $5^{\circ} \mathrm{C} / \mathrm{min}$ up to $200{ }^{\circ} \mathrm{C}(15 \mathrm{~min}), 20 \mathrm{psi}(\mathrm{He}), \mathrm{t}_{1}=9.2 \mathrm{~min}(S, S), \mathrm{t}_{2}=9.6 \mathrm{~min}$ $(R, R), \mathrm{t}_{3}=9.7 \mathrm{~min}(R, S)$.

Dodecane-5,8-diyl diacetate (6c): GC, Chirasil DEX CB, initial temp $=140{ }^{\circ} \mathrm{C}$ $(5 \mathrm{~min})$, then $5^{\circ} \mathrm{C} / \mathrm{min}$ up to $200^{\circ} \mathrm{C}(15 \mathrm{~min}), 20 \mathrm{psi}(\mathrm{He}), \mathrm{t}_{1}=16.4 \mathrm{~min}(S, S), \mathrm{t}_{2}=16.6$ $\min (R, R), \mathrm{t}_{3}=16.9 \min (R, S)$.

Hexadecan-7,10-diyl diacetate (6d): determined by ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis of the Mosher esters of the corresponding hexadecane-7,10-diol (see below).

2,11-Dimethyl-dodecan-5,8-diyl diacetate (6e): GC, Chirasil DEX CB, initial temp $=120{ }^{\circ} \mathrm{C}(5 \mathrm{~min})$, then $2.5^{\circ} \mathrm{C} / \mathrm{min}$ up to $200^{\circ} \mathrm{C}(15 \mathrm{~min}), 20 \mathrm{psi}(\mathrm{He}), \mathrm{t}_{1}=40.2$ $\min (S, S), \mathrm{t}_{2}=40.3 \mathrm{~min}(R, R), \mathrm{t}_{3}=40.7 \mathrm{~min}(R, S)$.

1,4-Dicyclopentyl-butane-1,4-diyl diacetate (6f): GC, Chirasil DEX CB, initial temp $=140{ }^{\circ} \mathrm{C}(5 \mathrm{~min})$, then $5^{\circ} \mathrm{C} / \mathrm{min}$ up to $200^{\circ} \mathrm{C}(15 \mathrm{~min}), 20 \mathrm{psi}(\mathrm{He}), \mathrm{t}_{1}=20.4 \mathrm{~min}$ (minor), $\mathrm{t}_{2}=20.6 \mathrm{~min}($ major $), \mathrm{t}_{3}=20.9 \mathrm{~min}(R, S)$.

1,4-Dicyclohexyl-butane-1,4-diyl diacetate (6g): GC, Chirasil DEX CB, initial temp $=120{ }^{\circ} \mathrm{C}(5 \mathrm{~min})$, then $2.5^{\circ} \mathrm{C} / \mathrm{min}$ up to $200^{\circ} \mathrm{C}(15 \mathrm{~min}), 20 \mathrm{psi}(\mathrm{He}), \mathrm{t}_{1}=44.6$ $\min ($ minor $), \mathrm{t}_{2}=44.9 \mathrm{~min}($ major $), \mathrm{t}_{3}=45.6 \mathrm{~min}(R, S)$.

1,6-Diphenyl-hexane-2,5-diyl diacetate (6h): HPLC, Chiralcel AD-H, 97:3 nhexane: $i-\mathrm{PrOH}$, flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=8.9 \mathrm{~min}(R, S), t_{2}=9.4 \mathrm{~min}(S, S), t_{2}=10.8 \mathrm{~min}$ (R, R).

1,8-Diphenyl-octane-3,6-diyl diacetate (6i): HPLC, Chiralcel AD-H, 97:3 nhexane: $i-\mathrm{PrOH}$, flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=13.2 \mathrm{~min}(R, S), t_{2}=14.5 \mathrm{~min}(R, R), t_{2}=19.5$ $\min (S, S)$.

1,10-Diphenyl-decane-4,7-diyl diacetate (6j): HPLC, Chiralcel AD-H, 97:3nhexane: $i-\mathrm{PrOH}$, flow $0.7 \mathrm{~mL} / \mathrm{min}, t_{1}=13.2 \mathrm{~min}(R, S), t_{2}=13.8 \mathrm{~min}(S, S), t_{2}=14.7 \mathrm{~min}$ (R, R).

Hexane-2,5-diyl diacetate (6a): obtained according to the general procedure $(\mathrm{S} / \mathrm{C}=100)$ as a pale orange oil using $\mathbf{5 d}[9.2 \mathrm{mg}, 93 \%$ yield; $\mathrm{dr}=85: 15,96 \%$ ee, $(R, R)] .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 2.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.56(\mathrm{~m}$,
$\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.21\left(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $\delta=170.7,70.6,31.7,21.4,19.9 \mathrm{ppm} ;$ HRMS (ESI): $\mathrm{m} / \mathrm{z} 225.1098,[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}: 225.1097$).

Decane-4,7-diyl diacetate (6b): obtained according to the general procedure $(\mathrm{S} / \mathrm{C}=100)$ as a pale orange oil using $\mathbf{5 d}[11.6 \mathrm{mg}, 90 \%$ yield; $\mathrm{dr}=83: 17,94 \%$ ee, $(R, R)] .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 2.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.53(\mathrm{~m}$, $\left.8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.90\left(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=170.9,73.7,36.3,29.8,21.2,18.6,13.9 \mathrm{ppm} ;$ HRMS (ESI): m / z 281.1725, $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}: 281.1723$).

Dodecane-5,8-diyl diacetate (6c): obtained according to the general procedure $(S / C=100)$ as a pale orange oil using $\mathbf{5 b}[13.5 \mathrm{mg}, 94 \%$ yield; $\mathrm{dr}=74: 26,96 \% \mathrm{ee}$, $(R, R)] .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 2.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.52(\mathrm{~m}$, $\left.8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.28\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 0.98\left(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=170.9,73.9,33.8,29.8,27.5,22.6,21.2,14.0 \mathrm{ppm} ;$ HRMS (ESI): m / z 309.2039, $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}: 309.2036$).

Hexadecan-7,10-diyl diacetate (6d): obtained according to the general procedure $(\mathrm{S} / \mathrm{C}=100)$ as a pale orange oil using $\mathbf{5 b}[15.2 \mathrm{mg}, 89 \%$ yield; $\mathrm{dr}=74: 26$, 95% ee, $(R, R)] .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 2.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.52\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.26\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 0.87\left(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=170.9,73.9,34.1,31.7,29.8,29.2 .25 .3,22.6$, 21.3, $14.1 \mathrm{ppm} ;$ HRMS (ESI): m / z 365.2657, $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Na}$: 365.2662).

2,11-Dimethyl-dodecan-5,8-diyl diacetate (6e): obtained according to the general procedure $(\mathrm{S} / \mathrm{C}=100)$ as a pale orange oil using $\mathbf{5 d}[14.4 \mathrm{mg}, 92 \%$ yield; $\mathrm{dr}=$ 79:21, 95% ee, $(R, R)] .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHO}), 2.04(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.52\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.87(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=6.4$ $\left.\mathrm{Hz}, 12 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=170.9,74.2,34.3$, 31.9, 29.8, 27.9, 22.6, 22.5, 21.3 ppm ; HRMS (ESI): $m / z 337.2350,[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\left.\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}: 337.2349\right)$.

1,4-Dicyclopentyl-butane-1,4-diyl diacetate (6f): obtained according to the general procedure $(\mathrm{S} / \mathrm{C}=100)$ as a pale orange oil using $\mathbf{5 d}[14.3 \mathrm{mg}, 92 \%$ yield; $\mathrm{dr}=$ 59:41, 60% ee]. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 2.04\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{3}\right.$ $+\mathrm{CH}), 1.54\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $\delta=171.0,77.4,43.6,29.2,29.0,28.5,25.5,25.2,21.2 \mathrm{ppm} ;$ HRMS (ESI): m / z 333.2036, $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}: 333.2036$).

1,4-Dicyclohexyl-butane-1,4-diyl diacetate ($\mathbf{6 g}$): obtained according to the general procedure $(\mathrm{S} / \mathrm{C}=100)$ as a pale orange oil using $\mathbf{5 c}[15.7 \mathrm{mg}, 93 \%$ yield; $\mathrm{dr}=$ 36:64, 77% ee]. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 2.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.55\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{CH}\right), 1.10\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $\delta=171.0,77.9,41.2,29.0,28.1,27.2,26.4,26.1,26.0,21.2 \mathrm{ppm} ;$ HRMS (ESI): m / z 361.2346, $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}: 361.2349$).

1,6-Diphenyl-hexane-2,5-diyl diacetate (6h): obtained according to the general procedure using 5a but with higher substrate and catalyst concentration ($\mathbf{1 h}: 0.035 \mathrm{~g}$, 0.1 mmol ; DCE: $0.25 \mathrm{~mL} ; \mathrm{S} / \mathrm{C}=100)$ as a pale orange oil $[16.8 \mathrm{mg}, 95 \%$ yield; $\mathrm{dr}=$ 81:19, 96% ee, $(S, S)] .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.20(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.15$ (m, 3H, Ar-H), 5.04 (m, 2H, CH), 2.85 (m, 2H, CHH), 2.73 (m, 2H,
$\mathrm{CHH}), 1.94\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $=170.6,137.3,129.4,128.4,126.5,74.2,40.5,29.1,21.1 \mathrm{ppm} ;$ HRMS (ESI): m / z 377.1719, $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}: 377.1723$).

1,8-Diphenyl-octane-3,6-diyl diacetate (6i): obtained according to the general procedure $(\mathrm{S} / \mathrm{C}=100)$ as a pale orange oil using $\mathbf{5 a}[17.2 \mathrm{mg}, 90 \%$ yield; $\mathrm{dr}=64: 36$, 71% ee, $(R, R)] .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.28(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.17(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-$ H), $4.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 2.61\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.59$ (m, 4H, CH 2) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=170.8,141.5,128.5,128.3$, 126.0, 73.4, 35.8, 31.8, 29.8, 21.2 ppm; HRMS (ESI): $m / z 405.2029[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\left.\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}: 405.2036\right)$.

1,10-Diphenyl-decane-4,7-diyl diacetate ($\mathbf{6 j}$): obtained according to the general procedure $(\mathrm{S} / \mathrm{C}=100)$ as a pale orange oil using $\mathbf{5 a}[18.6 \mathrm{mg}, 91 \%$ yield; $\mathrm{dr}=$ 71:29, 89% ee, $(R, R)] .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.30(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.18(\mathrm{~m}$, $6 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 4.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 2.63\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.55(\mathrm{~m}, 12 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) \operatorname{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=170.9,142.1,128.4,128.3,125.9$, 73.6, 35.7, 33.7, 29.8, 27.1, 21.3 ppm ; HRMS (ESI): $m / z 433.2344[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\left.\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na}: 433.2349\right)$.

Determination of configuration of products 6

Configuration of $\mathbf{6 a}$ was determined by comparison of GC data with an authentic sample of (S, S)-hexane-2,5-diyl diacetate. For compounds $\mathbf{6 b} \mathbf{- 6 e}$ and $\mathbf{6 i} \mathbf{i} \mathbf{- 6 j}$ configuration was assigned by analogy. For compound $\mathbf{6 h}$, configuration was determined by
conversion into the corresponding enantiopure alcohol $(S, S)-\mathbf{8 h}$ and comparison of optical rotation with that reported in the literature. ${ }^{\text {S6 }}$

Synthesis and Characterization of Diols 8

$(\boldsymbol{R}, \boldsymbol{R})$-5,8-Dodecanediol (8c): to a solution of diacetate $\mathbf{6 c}(0.268 \mathrm{~g}, \mathrm{dr}=80: 20$; 95% ee, corresponding to 0.69 mmol of the C_{2} isomers) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($390 \mathrm{mg}, 2.8 \mathrm{mmol}$) and the resulting mixture stirred for 18 h . Deionized water $(10 \mathrm{~mL})$ was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. Organic phases were collected, dried over MgSO_{4} and solvent evaporated under reduced pressure, giving a mixture of (R, R) - and $(R, S)-\mathbf{8 c}$ as a white foamy solid. Subsequent crystallization in a n-hexane $/ i$ - $\operatorname{PrOH}(90: 10)$ mixture yielded $(R, R)-8 \mathbf{c}$ as a white solid $(0.102 \mathrm{~g}, 0.50 \mathrm{mmol}, 72 \%) .[\alpha]_{\mathrm{D}}{ }^{20}=-12.4^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta=3.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 3.25(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{2}\right)$, $0.89\left(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=72.4$, 37.5, 34.2, 27.9, 22.8, 14.1 ppm ; Elem. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{2}$: C 71.23%, H 12.95 \%; found: C 71.14\%, H 12.60\%.
(S,S)-1,6-Diphenyl-2,5-hexanediol (8h): A sample of $\mathbf{6 h}(0.193 \mathrm{~g}, \mathrm{dr}=74: 26$, 95% ee, corresponding to 0.40 mmol of the C_{2} isomers), was deacylated as described in the procedure for $\mathbf{8 c}$. A careful recrystallization of diol $\mathbf{8 h}$ in a n-hexane $/ i-\mathrm{PrOH}$ (10:90) mixture, allowed to separate less soluble $(R, S)-\mathbf{8 h}$ isomer. Final evaporation of the mother liquor led to (S, S)-8h as a white solid ($0.085 \mathrm{~g}, 0.31 \mathrm{mmol}, 77 \%$). Spectroscopic data for this compound agree with literature data. ${ }^{\text {S6 }}$

Mosher ester of diol 8d (9)

This analysis has been performed with two samples (A and B) of 8d. Sample A was obtained by deprotection of diester 6d obtained by non-enantioselective hydrogenation of 1d with $\left[\mathrm{Rh}(\mathrm{COD})\left(\mathrm{DiPFc}^{2}\right)\right] \mathrm{BF}_{4}$. Sample B was obtained by deprotection of diester $\mathbf{6 d}$ obtained by the enantioselective hydrogenation of $\mathbf{1 d}$ with $\mathbf{5 b}$ under our standard conditions. Sample A of $\mathbf{8 d}(0.020 \mathrm{~g}, 0.077 \mathrm{mmol})$ was dried azeotropically with toluene ($2 \times 5 \mathrm{~mL}$) and the residue obtained dissolved in DCM (2 $\mathrm{mL})$. Over this solution it is added pyridine ($0.025 \mathrm{~mL}, 0.308 \mathrm{mmol}$) and (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl chloride $(0.047 \mathrm{~g}, 0.19 \mathrm{mmol})$. The resulting mixture is stirred for 4 h , evaporated under reduced pressure and the resulting oil dissolved in a $\mathrm{Et}_{2} \mathrm{O} / n$-hexane (1:9) mixture and filtered through a short pad of silica. The solution obtained was evaporated to yield the diester rac-9 as a colorless oil (0.047 $\mathrm{g}, 89 \%)$. For the analysis of product of enantioselective hydrogenation of $\mathbf{1 d}$ with $\mathbf{5 d}$ it was followed an analogous procedure starting with sample B. Below is detailed the characterization of rac-9, while isomer assignation has been done by comparison with spectra of enantioenriched $9 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.55(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.40$ (m, 6H, Ar-H), 5.05 (m, 2H, CH), 3.57 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{OCH}_{3}$), 1.56 (m, 8H, CH_{2}), 1.23 (m, $\left.16 \mathrm{H}, \mathrm{CH}_{2}\right), 0.89\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: Isómer $R, R, R, R: \delta=166.3(2 \mathrm{C}=\mathrm{O}), 132.4\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom), 129.6 (2 CH arom), 128.4 (4 CH arom), $127.3(4 \mathrm{CH}$ arom $), 123.0\left(\mathrm{q}, J(\mathrm{C}-\mathrm{F})=289 \mathrm{~Hz}, 2 \mathrm{CF}_{3}\right), 84.4\left(\mathrm{q}, J(\mathrm{C}-\mathrm{F})=28 \mathrm{~Hz}, 2 \mathrm{C}_{\mathrm{q}}{ }^{-}\right.$ $\mathrm{Ph}), 76.8(2 \mathrm{OCH}), 55.4\left(2 \mathrm{OCH}_{3}\right), 33.7\left(2 \mathrm{CH}_{2}\right), 31.6\left(2 \mathrm{CH}_{2}\right), 29.0\left(2 \mathrm{CH}_{2}\right), 28.7(2$ $\left.\mathrm{CH}_{2}\right)$, $25.0\left(2 \mathrm{CH}_{2}\right), 22.5\left(2 \mathrm{CH}_{2}\right), 14.0\left(2 \mathrm{CH}_{3}\right) \mathrm{ppm}$; Isómer $R, S, S, R: \delta=166.2(2$ $\mathrm{C}=\mathrm{O}), 132.3\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom), 129.6 (2 CH arom), $128.4(4 \mathrm{CH}$ arom), 127.3 (4 CH arom), $123.0\left(\mathrm{q}, J(\mathrm{C}-\mathrm{F})=289 \mathrm{~Hz}, 2 \mathrm{CF}_{3}\right), 84.5\left(\mathrm{q}, J(\mathrm{C}-\mathrm{F})=28 \mathrm{~Hz}, 2 \mathrm{C}_{\mathrm{q}}-\mathrm{Ph}\right), 55.4\left(2 \mathrm{OCH}_{3}\right)$, $33.6\left(2 \mathrm{CH}_{2}\right)$, $31.6\left(2 \mathrm{CH}_{2}\right), 29.6\left(2 \mathrm{CH}_{2}\right)$, $28.9\left(2 \mathrm{CH}_{2}\right)$, $24.7\left(2 \mathrm{CH}_{2}\right)$, $22.5\left(2 \mathrm{CH}_{2}\right)$,
$14.0\left(2 \mathrm{CH}_{3}\right) \mathrm{ppm}$; signals of methyne carbons of this isomer have not been observed due to overlap with solvent signal; ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 565 \mathrm{MHz}\right): \delta=-71.11$ (R, R, S, R), -71.12 (R, R, R, R), -71.15 (R, R, S, R), -71.20 (R, S, S, R) ppm; HRMS (ESI): m / z $713.3243[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{6} \mathrm{~F}_{6} \mathrm{Na}: 713.3247$).

(S,S)-Bis-1,2(2,5-di-n-butylphospholane)benzene (11)

(a) $(R, R)-5,8$-Dodecanediol cyclic sulphate (10): over a solution of diol (R, R) $\mathbf{8 c},(140 \mathrm{mg}, 0.69 \mathrm{mmol})$ in $\mathrm{DCM}(3 \mathrm{~mL})$ cooled at $0^{\circ} \mathrm{C}$ was added $\mathrm{NEt}_{3}(0.290 \mathrm{~mL}, 2.0$ $\mathrm{mmol})$ and $\mathrm{SOCl}_{2}(0.060 \mathrm{~mL}, 1.4 \mathrm{mmol})$. The mixture was left to warm to room temperature, stirred for 2 h and evaporated under reduced pressure. The residue obtained was dissolved in a n-hexane:DCM (4:1) mixture and filtered through a short pad of silica. The solution obtained was evaporated giving an orange residue which was used without further purification for the next step. The mentioned residue was dissolved in a mixture of DCM (2 mL), acetonitrile (2 mL) and water (3 mL). The mixture was cooled down to $0{ }^{\circ} \mathrm{C}$ and hydrated $\mathrm{RuCl}_{3}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(226.7 \mathrm{mg}$, $1.1 \mathrm{mmol})$ were added. The reaction was kept on stirring for 2 h and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. Ethereal phases were collected, dried over MgSO_{4}, resulting solution evaporated giving an oily residue which was crystallized in a n-hexane: $\mathrm{Et}_{2} \mathrm{O}(10: 90)$ mixture to give corresponding cyclic sulphate of (R, R)-10 as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}=-29^{\circ}$ (c 0.1, THF). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=85.3,35.1,32.9,27.2,22.2,13.8 \mathrm{ppm}$; HRMS (ESI): $m / z 287.1289[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{NaS}: 287.1288$).
(b) (S,S)-Bis-1,2(2,5-di-n-butylphospholane)benzene (11): over a solution of 1,2bisphosphinobenzene ($26.9 \mathrm{mg}, 0.19 \mathrm{mmol}$) in THF (3 mL) was added $n-\mathrm{BuLi}(0.230$ mL 1.6 M solution in hexanes, 0.368 mmol) and the reaction was stirred for 1.5 h . Then, the cyclic sulphate obtained in the previous step $(R, R) \mathbf{- 1 0}(100 \mathrm{mg}, 0.36 \mathrm{mmol})$ was added, the mixture stirred for 2 h , followed by addition of $n-\mathrm{BuLi}(0.230 \mathrm{~mL} 1.6 \mathrm{M}$ solution in hexanes, 0.368 mmol) and further stirring for 2 h . The mixture obtained was evaporated resulting a residue which was treated with pentane (20 mL) and filtered through a short pad of silica. Further elution with $\mathrm{Et}_{2} \mathrm{O}$ afforded a solution, which upon evaporation yielded $\mathbf{1 1}$ as a colorless oil $(115 \mathrm{mg}, 89 \%) .[\alpha]_{\mathrm{D}}{ }^{20}=+255^{\circ}(c 0.2$, THF $)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right): \delta=7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}), 2.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.75\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36$ $\left(\mathrm{m}, 20 \mathrm{H}, \mathrm{CH}_{2}\right), 0.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.94\left(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.84(\mathrm{t}, J(\mathrm{H}-\mathrm{H})$ $\left.=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 162 \mathrm{MHz}\right): \delta=-3.8 \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 125 \mathrm{MHz}\right): \delta=144.9\left(2 \mathrm{C}_{\mathrm{q}}\right), 132.0(2 \mathrm{CH}$ arom), $127.7(2 \mathrm{CH}$ arom), 40.0 $\left(\right.$ virt $\left.\mathrm{t}, J_{\text {app }}(\mathrm{C}-\mathrm{P})=8 \mathrm{~Hz}, 2 \mathrm{CH}\right), 39.4(2 \mathrm{CH}), 36.1\left(\right.$ virt $\left.\mathrm{t}, J_{\text {app }}(\mathrm{C}-\mathrm{P})=16 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 33.6$ $\left(2 \mathrm{CH}_{2}\right), 33.3\left(2 \mathrm{CH}_{2}\right), 32.4\left(2 \mathrm{CH}_{2}\right), 32.0\left(\right.$ virt $\left.\mathrm{t}, J_{\text {app }}(\mathrm{C}-\mathrm{P})=6 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 31.8($ virt t , $\left.J_{\text {app }}(\mathrm{C}-\mathrm{P})=4 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right)$, $23.1\left(2 \mathrm{CH}_{2}\right)$, $22.8\left(2 \mathrm{CH}_{2}\right), 14.0\left(4 \mathrm{CH}_{3}\right)$ ppm; HRMS (ESI) $m / z: 475.3615[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{30} \mathrm{H}_{53} \mathrm{P}_{2}: 475.3617$).
$[\mathbf{R h}(\mathbf{C O D})(\mathbf{1 1})] \mathbf{B F}_{4}(\mathbf{1 2})$: over a stirred solution of $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}(81.5 \mathrm{mg}$, 0.2 mmol) in DCM (3 mL) was added diphosphine $\mathbf{1 1}(100 \mathrm{mg}, 0.21 \mathrm{mmol})$ dropwise. After 2 h , the mixture was evaporated and the oily residue thoroughly washed with n pentane $(4 \times 20 \mathrm{~mL})$, yielding $\mathbf{1 2}$ as an orange powder ($82 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right.$): $\delta=7.73$ (br m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.63 (br s, $2 \mathrm{H}, \mathrm{CH}-\mathrm{COD}$), 4.98 (br s, 2H, CH-COD), 2.47 (m, 13H, $4 \mathrm{CH}+\mathrm{CHH}$), 1.89 (m, 5H, CHH), 1.32 (m, 23H, CHH), $0.87\left(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.81(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} H \mathrm{H}), 0.75(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=6.8 \mathrm{~Hz}, 6 \mathrm{H}$,
$\left.\mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}\right): \delta=70.4(\mathrm{~d}, J(\mathrm{P}-\mathrm{Rh})=149 \mathrm{~Hz}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125 \mathrm{MHz}\right): \delta=141.9\left(\right.$ virt dt, $J_{\text {app }}(\mathrm{C}-\mathrm{P})=36 \mathrm{~Hz}, J(\mathrm{C}-\mathrm{Rh})=4$ $\mathrm{Hz}, 2 \mathrm{C}_{\mathrm{q}}$ arom), 132.9 (t virt, $J_{\text {app }}(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), $132.0(2 \mathrm{CH}$ arom), 105.9 (brm, 2 =CH COD), 92.0 (brm, 2 =CH COD), 51.0 (virt t, $\left.J_{\text {app }}(\mathrm{C}-\mathrm{P})=13 \mathrm{~Hz}, 2 \mathrm{CH}\right)$, 43.1 (virt t, $\left.J_{a p p}(\mathrm{C}-\mathrm{P})=12 \mathrm{~Hz}, 2 \mathrm{CH}\right), 34.7\left(2 \mathrm{CH}_{2} \mathrm{COD}\right), 34.3\left(2 \mathrm{CH}_{2} \mathrm{COD}\right), 33.3$ (brs, $\left.2 \mathrm{CH}_{2}\right), 33.0\left(\right.$ virt $\left.\mathrm{t}, J_{\text {app }}(\mathrm{C}-\mathrm{P})=5 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 32.9\left(2 \mathrm{CH}_{2}\right), 31.5\left(\right.$ virt $\mathrm{t}, J_{\text {app }}(\mathrm{C}-\mathrm{P})=4$ $\left.\mathrm{Hz}, 2 \mathrm{CH}_{2}\right)$, $29.1\left(2 \mathrm{CH}_{2}\right), 27.9\left(2 \mathrm{CH}_{2}\right), 22.8\left(2 \mathrm{CH}_{2}\right), 22.4\left(2 \mathrm{CH}_{2}\right), 13.6\left(2 \mathrm{CH}_{3}\right), 13.4$ $\left(2 \mathrm{CH}_{3}\right) \mathrm{ppm} ;$ HRMS (ESI) m/z: 685.3533, $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$(calcd for: $\mathrm{C}_{38} \mathrm{H}_{64} \mathrm{P}_{2} \mathrm{Rh}$: 685.3533).

Generation and Characterization of complex $[\operatorname{Rh}(1 a)\{(S, S)-M e-D u p h o s\}]^{+}$

In a Wilmad quick pressure valve NMR tube was introduced a solution of $[\operatorname{Rh}(\mathrm{COD})\{(S, S)-\mathrm{Me}-$ Duphos $\}] \mathrm{BF}_{4}$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$. The tube was pressurized with 4 bar H_{2} and heated at $40^{\circ} \mathrm{C}$ for 1 h . At this point full conversion was observed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. The tube was then depressurized introduced in a glove-box and the solution transferred to an ampoule. Then was added $\mathbf{1 a}(10 \mathrm{mg}, 0.05 \mathrm{mmol})$ and the resulting solution stirred for 15 min and evaporated. The residue was further dried with additional portions of DCM ($3 \times 2 \mathrm{~mL}$). Finally, the residue obtained was dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and the solution transferred to a NMR tube.

Figure S1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) of $[\mathrm{Rh}(\mathbf{1 a})\{(\mathrm{S}, \mathrm{S})-\mathrm{Me}-$ Duphos $\}] \mathrm{BF}_{4}$. M and m denote major and minor isomers, respectively, while S corresponds to remaining $[\operatorname{Rh}\{(S, S)-\mathrm{Me}-$ Duphos $\left.\}(\mathrm{MeOH})_{2}\right] \mathrm{BF}_{4}$.

pro-S (Major)
$H^{a}(M) \quad H^{b}(m)$

pro- R (minor)
$H^{a}(m) \quad H^{b}(M)$ n \square

Figure S2. Region of the olefinic protons of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 263 \mathrm{~K}$) of $[\mathrm{Rh}(\mathbf{1 a})\{(\mathrm{S}, \mathrm{S})-\mathrm{Me}-\mathrm{Duphos}\}] \mathrm{BF}_{4} . \mathrm{M}$ and m denote signals corresponding to major and minor isomers, respectively.

Figure S3. Region of the olefinic protons of the ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMQC experiment $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 263 \mathrm{~K}\right)$ of $[\operatorname{Rh}(\mathbf{1 a})\{(\mathrm{S}, \mathrm{S})-\mathrm{Me}-$ Duphos $\}] \mathrm{BF}_{4}$.

Figure S4. Region of the olefinic protons of the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC experiment $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 263 \mathrm{~K}\right)$ of $[\operatorname{Rh}(\mathbf{1 a})\{(\mathrm{S}, \mathrm{S})-\mathrm{Me}-$ Duphos $\}] \mathrm{BF}_{4}$.

pro-S (major)

Figure S5. Selected region of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY experiment ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 263 \mathrm{~K}$) of $[\operatorname{Rh}(1 \mathbf{a})\{(\mathrm{S}, \mathrm{S})-\mathrm{Me}-$ Duphos $\}] \mathrm{BF}_{4}$. Structurally meaningful signals are marked with 1 and 2.

X-Ray crystal structure determination of diene 1f

Crystals suitable for X-ray diffraction analysis were obtained by slow diffusion of hexane into a saturated solution of $\mathbf{1 f}$ in ethyl acetate. The most relevant crystal and refinement data are collected in Table S1, and an ORTEP-type view of the structure with selected structural parameters is given in Figure S6. Diffraction data were recorded on an Oxford Diffraction Xcalibur Nova single-crystal diffractometer, using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.5418 \AA$), with a crystal-to-detector distance fixed at 62 mm and using the oscillation method, with 1° oscillation and variable exposure time per frame of $2.0-$ 9.0 s. The data collection strategy was calculated with the program CrysAlis Pro CCD. ${ }^{\text {S7 }}$ Data reduction and cell refinement was performed with the program CrysAlis Pro RED. ${ }^{\text {S7 }}$ Empirical absorption correction was applied by means of SCALE3 ABSPACK algorithm as implemented in the program CrysAlis Pro RED. ${ }^{\text {S7 }}$ The software package WINGX was used for space group determination, structure solution and refinement. ${ }^{\text {S8 }}$ The structure was solved by direct methods using SHELXL97. ${ }^{\text {S9 }}$ Isotropic least-squares refinement on F^{2} using SHELXL97 was performed. ${ }^{\text {S9 }}$ During the final stages of the refinement, all the positional parameters and the anisotropic temperature factors of all the non- H atoms were refined. The coordinates of the H atoms were found from different Fourier maps, and included in the refinement with isotropic parameters. The function minimized was $\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right) / \Sigma w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)\right]^{1 / 2}$ where $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0532 P)^{2}+\right.$ $0.2099 P$] with $\sigma\left(F_{\mathrm{o}}^{2}\right)$ from counting statistics and $P=\left(\operatorname{Max}\left(F_{\mathrm{o}}^{2}, 0\right)+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$. Supplementary crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC-1869873.

Table S1. Crystal Data and Structure Refinement Details for Compound if

chemical formula	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$
fw	306.39
T (K)	140(2)
cryst syst	monoclinic
space group	$P 2_{1} / \mathrm{n}$
cryst size mm ${ }^{3}$	$0.18 \times 0.18 \times 0.11$
a, \AA	5.4153(2)
b, \AA	16.4548(4)
c, \AA	9.6656 (3)
$\alpha, \operatorname{deg}$	90
β, deg	104.990(3)
$\gamma, \operatorname{deg}$	90
Z	4
V, \AA^{3}	831.97(5)
$\rho_{\text {calcd }}, \mathrm{g} \mathrm{cm}^{-3}$	1.223
μ, mm^{-1}	0.685
F(000)	332
θ range, deg	5.376 to 69.516
index ranges	$-6 \leq \mathrm{h} \leq 6 ;-19 \leq \mathrm{k} \leq 14 ;-11 \leq 1 \leq 11$
completeness to $\theta_{\text {max }}$	98.3\%
no. of data collected	3657
no. of unique data	1532
no. of params/restrains	109/0
refinement method	full-matrix least-squares on F^{2}
goodness of fit on F^{2}	1.041
$\mathrm{R} 1^{a}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0388
$\mathrm{wR} 2^{a}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.1003
R1 (all data)	0.0465
wR2 (all data)	0.1080
largest diff peak and hole, e \AA^{3}	0.212 and -0.176
$a \mathrm{R} 1=\sum\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right) / \sum\left\|F_{\mathrm{o}}\right\| ; \mathrm{wR} 2=\left\{\sum\left[\mathrm{w}\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right) \sum\right] / \sum\left[\mathrm{w}\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$	

Figure S6. ORTEP-type view of the structure of compound if showing the crystallographic labelling scheme. Hydrogen atoms, except those on $\mathrm{C}(4)$ and $\mathrm{C}(4 \mathrm{a})$, have been omitted for clarity. Those atoms labelled with "a" are generated by symmetry. Thermal ellipsoids are drawn at 30% probability level. Selected bond lengths (Å): $\mathrm{C}(1)-\mathrm{O}(1) 1.365(2), \mathrm{C}(1)-\mathrm{O}(2) 1.199(2), \mathrm{C}(1)-\mathrm{C}(2) 1.488(2), \mathrm{C}(3)-\mathrm{O}(1) 1.410(2)$, $\mathrm{C}(3)-\mathrm{C}(4) 1.330(2), \mathrm{C}(3)-\mathrm{C}(5) 1.493(2), \mathrm{C}(4)-\mathrm{C}(4 \mathrm{a}) 1.449(3)$. Selected bond angles $\left({ }^{\circ}\right)$: $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2) 122.7(2), \mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2) 110.7(2), \mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2) 126.6(2), \mathrm{C}(1)-$ $\mathrm{O}(1)-\mathrm{C}(3) 117.9(1), \mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4) 119.3(1), \mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(5) 114.3(1), \mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$ 114.5(1), C(3)-C(5)-C(9) 116.1(1), C(3)-C(4)-C(4a) 125.3(2).

Computational details

Calculations were performed with Gaussian $09^{\text {S10 }}$ at the DFT level, using the Becke Three-Parameter functional ${ }^{\text {S11 }}$ with the non-local correlation by Perdew and Wang ${ }^{\text {S12 }}$ (B3PW91) and the D3 version of Grimme's dispersion with Becke-Johnson damping (GD3BJ). ${ }^{\mathrm{S} 13} \mathrm{H}, \mathrm{C}, \mathrm{P}$ and O atoms were represented with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $^{\text {S14 }}$ whereas Rh atoms were described by the Stuttgart/Dresden Effective Core Potential and the associated basis set as implemented in Gaussian 09. ${ }^{\text {S15 }}$ All molecular geometries were optimized within the SMD continuum solvent (1,2-dichloroethane) model ${ }^{\text {S16 }}$ without any geometry constrains. Frequency calculations were performed at the same level of theory to characterize the stationary points as minima (no imaginary frequencies) or saddle points (transition states, one imaginary frequency), as well as to calculate the Zero-point energy, enthalpy (H) and free energy (G) corrections. The two minima connected by a given transition state were confirmed from vibrational analysis. Energies of calculated structures are given in the Table below:

Coord. Mode	E (RB3PW91) a.u.	Free Energy (298 K), a.u.
A	$-2186,166901$	$-2185,581922$
B	$-2186,166189$	$-2185,581116$
C	$-2186,154027$	$-2185,568504$
D	$-2186,14196$	$-2185,557408$
E	$-2186,142411$	$-2185,555756$
F	$-2186,148372$	$-2185,560916$
G	$-2186,149938$	$-2185,564282$

References

S1. (a) P. J. González-Liste, F. León, I. Arribas, M. Rubio, S. E. García-Garrido, V. Cadierno and A. Pizzano, ACS Catal., 2016, 6, 3056; (b) P. J. González-Liste, J. Francos, S. E. García-Garrido and V. Cadierno, J. Org. Chem., 2017, 82, 1507.

S2. P. Kleman, P. J. González-Liste, S. E. García-Garrido, V. Cadierno and A. Pizzano, Chem. Eur. J., 2013, 19, 16209.

S3. K. W. Barnett, J. Chem. Educ., 1974, 51, 422.
S4. A. Collado, A. Gómez-Suárez, A. R. Martin, A. M. Z. Slawin and S. P. Nolan, Chem. Commun., 2013, 49, 5541.

S5. M. J. Burk, T. G. P. Harper, J. R. Lee and C. Kalberg, Tetrahedron Lett., 1994, 35, 4963.

S6. K. T. Sprott and E. J. Corey, Org. Lett., 2003, 5, 2465.
S7. CrysAlis ${ }^{\text {Pro }}$ 1.171.38.43, Rigaku Oxford Diffraction, Yarnton, UK, 2015.
S8. L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
S9. G. M. Sheldrick, SHELXL97: Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.

S10. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E.

Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

S11. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
S12. (a) J. P. Perdew, K. Burke and Y. Wang, Phys. Rev. B., 1996, 54, 533; (b) K. Burke, J. P. Perdew and Y. Wang, in Electronic Density Functional Theory: Recent Progress and New Directions, Ed. J. F. Dobson, G. Vignale, and M. P. Das (Plenum, 1998).

S13. S. Grimme, S. Ehrlich and L. Goerigk, J. Comp. Chem., 2011, 32, 1456.
S14. (a) W. J. Hehre, K. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257; (b) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213; (c) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople, J. Chem. Phys., 1982, 77, 3654.

S15. D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. T. Preuß, Theor. Chim. Acta, 1990, 77, 123.

S16. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B., 2009, 113, 6378.
(Z,Z)-Hexa-2,4-diene-2,5-diyl diacetate (1a)

(Z,Z)-Deca-4,6-diene-4,7-diyl diacetate (1b)

(Z,Z)-Dodeca-5,7-diene-5,8-diyl diacetate (1c)

(Z,Z)-Hexadeca-7,9-diene-7,10-diyl diacetate (1d)

（Z，Z）－2，11－Dimethyldodeca－5，7－diene－5，8－diyl diacetate（1e）

1111

$$
\begin{aligned}
& \hat{m} \\
& \stackrel{y}{0} \\
&
\end{aligned}
$$

娟

期果

(Z,Z)-1,4-Dicyclopentylbuta-1,3-diene-1,4-diyl diacetate (1f)

(Z,Z)-1,4-Dicyclohexylbuta-1,3-diene-1,4-diyl diacetate (1g)

(Z,Z)-1,6-Diphenylhexa-2,4-diene-2,5-diyl diacetate (1h)

(Z,Z)-1,8-Diphenylocta-3,5-diene-3,6-diyl diacetate (1i)

(Z,Z)-1,10-Diphenyldeca-4,6-diene-4,7-diyl diacetate (1j)

Hexane-2,5-diyl diacetate (6a)

[^0]Decane-4,7-diyl diacetate (6b)

Dodecane-5,8-diyl diacetate (6c)

Hexadecan-7,10-diyl diacetate (6d)

2,11-Dimethyl-dodecan-5,8-diyl diacetate (6e)

\qquad

1,4-Dicyclopentyl-butane-1,4-diyl diacetate (6f)

[^1]
1,4-Dicyclohexyl-butane-1,4-diyl diacetate (6 g)

1,6-Diphenyl-hexane-2,5-diyl diacetate (6h)

[^2]
1,8-Diphenyl-octane-3,6-diyl diacetate (6i)

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
180	170	160	15	1	130	120	110								30	20		0

1,10-Diphenyl-decane-4,7-diyl diacetate (6j)

(R, R)-5,8-Dodecanediol (8c)

1，6－Diphenyl－2，5－hexanediol（8h）

(R, R)-5,8-Dodecanediol cyclic sulphate (10)

$\stackrel{\infty}{\infty}$

웅	$\stackrel{7}{7}$	$\stackrel{\infty}{\square}$	
¢ัญ	N	ผ	
\|		\|	\|

(S,S)-Bis-1,2(2,5-di-n-butylphospholane)benzene (11)

Abstract

$[\operatorname{Rh}(C O D)(11)] B F_{4}(12)$

Hexane-2,5-diyl diacetate (6a)

Hydrogenation with achiral catalyst

Hydrogenation with 5d (96 \% ee; C_{2} :meso $=85: 15$)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.992	MM	0.0419	6.07087	2.41372	1.49533
2	4.317	BB	0.0421	62.62760	23.50888	15.4259
3	4.546	BB	. 0	. 28	117.60484	. 07

Decane-4,7-diyl diacetate (6b)

Hydrogenation with achiral catalyst

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	$\begin{gathered} \text { Width } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{PA}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.223		0.0550	490.75806	137.21536	36.93435
2	9.594		0.0541	492.65393	138.94101	37.07703
3	9.744		0.0527	345.31870	100.75025	25.98861

Hydrogenation with 5d (94 \% ee; $C_{2}:$ meso $=83: 17$)

Dodecane-5,8-diyl diacetate (6c)

Hydrogenation with achiral catalyst

Hydrogenation with $\mathbf{5 b}\left(96 \%\right.$ ee; $C_{2}:$ meso $\left.=74: 26\right)$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{array}{r} \text { Area } \\ {[\mathrm{pA} * \mathrm{~s}]} \end{array}$	Area $\%$
1	16.353	MM	0.0625	3.97658	1.29809
2	16.529	BB	0.0634	223.18689	72.85567
3	16.834	BB	0.0642	79.17769	25.84625

Hexadecan-7,10-diyl diacetate (6d)

Comparison of ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of Mosher esters of diols resulting from deprotection of product of non asymmetric hydrogenation of 1d (top) and of hydrogenation of $\mathbf{1 d}$ with $\mathbf{5 b}$ (bottom). Signals marked with an asterisk $\left({ }^{*}\right)$ correspond to Mosher diester of meso-10d, characterized by two unequivalent CF_{3} groups. Numerical values correspond to integrals of signals: (i) R, R, R, R isomer overlapped with one of the signals of the meso isomer, (ii) second signal of the meso isomer and (iii) R, S, S, R isomer. From data of the bottom spectrum a value of $(R, R, R, R) /(R, S, S, R)=$ $(85.00-13.22) / 1.77=40.55$ can be obtained, corresponding to a 95% ee of the parent ester $\mathbf{6 d}$.

2,11-Dimethyl-dodecan-5,8-diyl diacetate (6e)

Hydrogenation with achiral catalyst

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}{ }^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	40.212	BV	0.0658	221.31906	49.15368	36.46331
2	40.334	VB	0.0693	217.43726	48.47878	35.82377
3	40.763	BB	0.0621	168.20734	38.44756	27.71292

Hydrogenation with $\mathbf{5 d}\left(95 \%\right.$ ee; $C_{2}:$ meso $\left.=79: 21\right)$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{pA}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	40.115	MF	0.0630	10.20328	2.70049	2.03825
2	40.240	FM	0.0751	383.43488	85.08346	76.59672
3	40.665	MM	0.0731	106.95099	24.39391	21.36502

1,4-dicyclopentyl-butane-1,4-diyl diacetate (6f)

Hydrogenation with achiral catalyst

Hydrogenation with 5d (60 \% ee; C_{2} :meso $=59: 41$)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\text { min] }} \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{pA*} \mathrm{~s}]} \end{gathered}$	Area $\%$
1	20.436	BV	0.0616	92.76181	11.76943
2	20.674		0.0593	374.28931	47.48908
3	20.956	BB	0.0624	321.10748	40.74148

1,4-dicyclohexyl-butane-1,4-diyl diacetate (6 g)

Hydrogenation with achiral catalyst

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[p A * s]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	44.592	MF	0.1873	159.49078	14.18996	32.02190
2	44.913	FM	0.1838	159.02496	14.41645	31.92838
3	45.577	MM	0.1857	179.55206	16.11417	36.04972

Hydrogenation with 5c (77 \% ee; $C_{2}:$ meso $\left.=36: 64\right)$

1,6-Diphenyl-hexane-2,5-diyl diacetate (6h)

Hydrogenation with achiral catalyst

Peak Results			
	RT	Area	\% Area
1	8.940	1195111	25.92
2	9.423	1706692	37.02
3	10.762	1708246	37.05

Hydrogenation with 5a $\left(96 \%\right.$ ee; $C_{2}:$ meso $\left.=81: 19\right)$

Peak Results		
RT Area \% Area 1 8.952 204666 19.42 2 9.436 832835 79.03 3 10.785 16373 1.55		

1,8-Diphenyl-octane-3,6-diyl diacetate (6i)

Hydrogenation with achiral catalyst

Peak Results			
	RT	Area	\% Area
1	13.157	7276737	24.88
2	14.471	10777514	36.85
3	19.455	11189177	38.26

Hydrogenation with 5a(71\% ee; $C_{2}:$ meso $=64: 36$)

Peak Results			
	RT	Area	\% Area
1	13.113	5161050	36.32
2	14.404	7741560	54.49
3	19.646	1305563	9.19

1,10-Diphenyl-decane-4,7-diyl diacetate (6j)

Hydrogenation with achiral catalyst

Peak Results

	RT	Area	\% Area
1	15.065	3241747	25.84
2	15.815	4730461	37.71
3	16.910	4572818	36.45

Hydrogenation with 5a (89 \% ee; C_{2} :meso $=71: 29$)

Peak Results			
RT Area \% Area 1 14.955 4255091 28.53 2 15.510 567891 3.81 3 16.827 10089147 67.86			

[^0]:

[^1]:

[^2]: | 180 | 1 |
 | :--- |

