Electronic Supplementary Information for:

Visible Light Intensity Dependent Negative Photochromism of Binaphthyl-Bridged Phenoxyl-Imidazolyl Radical Complex

Izumi Yonekawa, Katsuya Mutoh and Jiro Abe^{*}

Department of Chemistry, School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan

E-mail: jiro_abe@chem.aoyama.ac.jp

CONTENTS

1. Synthesis	S2
2. ¹ H NMR Spectra	S4
3. HR-ESI-TOF-MS Spectra	S5
4. HPLC Chromatogram	S6
5. X-ray Crystallographic Analysis	S7
6. TDDFT Calculations for the UV–vis Absorption Spectrum	S9
7. Time-resolved UV-vis absorption spectroscopy	S39
8. Laser Flash Photolysis	S43
9. Irradiation power dependence at PSS	S45
10. Reference	S46

1. Synthesis

All reactions were monitored by thin-layer chromatography carried out on 0.2 mm E. Merck silica gel plates (60F-254). Column chromatography was performed on silica gel (Silica gel 60N, Kanto Chemical Co., Inc.). NMR spectra were recorded at 400 MHz on a Bruker AVANCE III 400 NanoBay. DMSO– d_6 and CDCl₃ were used as deuterated solvent. ESI–TOF–MS spectra were recorded on a Bruker micrOTOF II-AGA1. Unless otherwise noted, all reagents and reaction solvents were purchased from Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd., Sigma-Aldrich Inc. and Kanto Chemical Co., Inc. and were used without further purification.

Scheme S1. Synthesis of 1.

2,6-Di-*tert*-butyl-4-[2'-(1,3-dioxolan-2-yl)-[1,1'-binaphthalen]-2-yl]phenol (S1) and 2,7-di-*tert*-butylpyrene-4,5,9,10-tetraone (S2) were synthesized according to a literature procedure.^{S1,S2} The syntheses of **NN-Lp** and **NN** are described below.

NN-Lp and NN

A mixture of S1 (205 mg, 0.385 mmol), S2 (71 mg, 0.19 mmol), and ammonium acetate (625 mg, 8.11 mmol) in acetic acid (25 mL) was stirred for 2 days at 110 °C. The reaction mixture was allowed to cool to room temperature and was neutralized with aqueous ammonia. The precipitate was collected by filtration and washed with water. The solid was purified by silica gel column chromatography twice (hexane/ethyl acetate = 4:1 and toluene) to give a mixture of the structural isomers of 1-Lp as yellow solid (81 mg, 30% yield). This was used in the next step without further purification. 1-Lp was identified by HRMS, (ESI-TOF) calcd for C₉₄H₉₀N₄O₂ [M+H]⁺, 1308.7169; found, 1308.7168. The mixture of structural isomers of 1-Lp (99 mg, 0.076 mmol) was dissolved in degassed benzene (100 mL). A degassed aqueous solution (15 mL) of potassium ferricyanide (2.216 g, 6.723 mmol) and KOH (1.865 mg, 33.24 mmol) was added to the benzene solution. After vigorous stirring for 4 hours at room temperature, the resulting solution was extracted with benzene. The organic layer was washed with water and brine, and the solvent was removed by evaporation under reduced pressure. The residual solid was purified by silica gel column chromatography (ethyl acetate/ $CH_2Cl_2 = 1:100$) to give 1 as the mixture of *anti-anti* and *anti-syn* isomers (mixture 1, $R_f = 0.51$) and the mixture of syn-anti and syn-syn isomers (mixture 2, $R_f = 0.19$). The anti-anti and anti-syn isomers were isolated from the mixture 1 by silica gel column chromatography (hexane/THF = 4:1) to give *anti*anti isomer ($R_f = 0.27$, 34 mg, 34% yield) and anti-syn isomer ($R_f = 0.16$, 37 mg, 37% yield) as red solid. The synanti and syn-syn isomers were isolated from the mixture 2 by silica gel column chromatography (hexane/THF = 3:1) to give syn-anti isomer ($R_f = 0.22, 7.2 \text{ mg}, 7\%$ yield) and syn-syn isomer ($R_f = 0.10, 11.0 \text{ mg}, 14\%$ yield) as red solid. The syn-anti isomer was used for spectroscopic experiments. ¹H NMR for the syn-anti isomer (400 MHz, DMSO- d_6) δ : 9.03 (s, 2H), 8.48 (d, J = 4.2 Hz, 2H), 8.31 (d, J = 4.2 Hz, 2H), 8.22 (d, J = 5.1 Hz, 2H), 8.15 (d, J = 4.2 Hz, 2H) 4.1 Hz, 2H), 8.09 (d, J = 4.1 Hz, 2H), 7.77 (d, J = 5.1 Hz, 2H), 7.69 (s, 2H), 7.62–7.53 (m, 8H), 7.13 (dd, $J_I = 5.2$ Hz, J₂ = 3.4 Hz, 2H), 6.84 (t, J = 3.6 Hz, 2H), 6.60 (d, J = 1.2 Hz, 2H), 6.30 (d, J = 4.0 Hz, 2H), 1.70 (s, 9H), 1.34 (s, 9H), 0.97 (s, 18H), 0.62 (s, 18H). HRMS (ESI-TOF) calcd for C₉₄H₈₆N₄O₂ [M+H]⁺, 1303.6824; found, 1303.6831.

2. ¹H NMR Spectra

Figure S1. ¹H NMR spectrum of 1-(4-(2-(2'-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-[1,1'-binaphthalen]-2-yl)-5-phenyl-1*H*-imidazol-4-yl)phenyl)-2-phenylethane-1,2-dione (**1-Lp**) in DMSO-*d*₆ (* solvent peak).

Figure S2. ¹H NMR spectrum of the *syn-anti* isomer of 1 in DMSO-*d*₆ (* solvent peak).

3. HR-ESI-TOF-MS Spectra

Figure S4. HR-ESI-TOF-MS of the *anti*-type isomers for 1.

Figure S5. HR-ESI-TOF-MS of the *syn*-type isomers for 1.

4. HPLC Chromatogram

HPLC analysis was performed using a normal phase analytical column (Mightysil Si60, 25cm×4.6mm, 5µm particle) from Kanto Chemical Co., Inc. The mobile phase was THF/hexane = 1/2 with a flow rate of 1.0 mL/min (detection wavelength; 254, 300 and 355 nm). The HPLC analytical system consists of a pump unit (PU-2080 plus, JASCO), a photodiode array detector (MD-2018, JASCO), and a control unit (LCNetII/ADC, JASCO).

Figure S6. HPLC chromatograms of the structural isomers of **1**, (a) *anti-anti* isomer; 99 % purity, (b) *anti-syn* isomer; 84 % purity, (c) *syn-anti* isomer; 98 % purity, (d) *syn-syn* isomer; 88 % purity.

Compound **1** has four structural isomers (Figure S7). The HPLC peaks at 9.9 min, 22.8 min, 10.0 min and 28.4 min for *anti-anti, anti-syn, syn-anti*, and *syn-syn* isomers were observed. We succeeded to isolate *anti-anti* and *syn-anti* isomers by purification with silica gel column chromatography. Although the four structural isomers have different absorption spectral shape in UVA region, all isomers have the characteristic similar absorption bands in visible light region (Figure S7).

Figure S7. (a) HPLC chromatograms of the four structural isomers of **1** detected at 355 nm. (b) The absorption spectra of the structural isomers of **1**.

5. X-ray Crystallographic Analysis

The diffraction data of the single crystal of **1** were collected on the Bruker APEX II CCD area detector (Mo K α , $\lambda = 0.71073$ nm). During the data collection, the lead glass doors of the diffractometer were covered to exclude the room light. The data refinement was carried out by the Bruker APEXII software package with SHELXT program.^{S3,S4} All non-hydrogen atoms were anisotropically refined.

Table S1. X-ray Crystallographic Data of 1

14010 51111 149	erystanographie Data					
Empirical formula moiety	C94 H86 N4 O2, 3.75	(C6 H14)				
Empirical formula sum	C116.50 H138.50 N4	C116.50 H138.50 N4 O2				
Empirical formula weight	1626.80					
Temperature	103 K					
Wavelength	0.71073 Å					
Crystal system	monoclinic					
Space group	P 1 21/n 1					
Unit cell dimensions	a = 17.5774(13) Å	α= 90°				
	b = 19.6323(13) Å	β=105.803(3)°				
	c = 29.878(3) Å	$\gamma = 90^{\circ}$				
Volume	9920.7(13) Å ³					
Ζ	4					
Density(calculated)	1.089 g/cm ³					
Absorption coefficient	0.063 mm^{-1}					
F(000)	3526					
Theta range for data collection	2.19 to 25.05°					
Index ranges	-20<=h<=20, -23<=k	<=23, -35<=l<=31				
Reflections collected	58478					
Independent reflections	17505 [R(int) = 0.069	6]				
Absorption correction	Empirical					
Refinement method	Full-matrix least-square	res on F ²				
Data / restrains / parameters	17505 / 0 / 1175					
Goodness-of-fit on F ²	1.039					
Final R indices [I>sigma (I)]	R1 = 0.0839, wR2 = 0	.2525				
R indices (all data)	R1 = 0.1200, wR2 = 0	.2867				
Largest diff. peak and hole	0.783 and -0.688 e. Å	-3				

6. TDDFT Calculations for the UV-vis Absorption Spectrum

All calculations were carried out using the Gaussian 09 program (Revision D.01).^{S5} The molecular structure was fully optimized at the MPW1PW91/6-31G(d) level of the theory, and analytical second derivative was computed using vibrational analysis to confirm each stationary point to be a minimum. TDDFT calculations were performed at the MPW1PW91/6-31G(d) level of the theory for the optimized structures.

Figure S8. (a) UV–vis absorption spectrum of **C-C** estimated by global analysis method using Glotaran. The calculated spectra are shown by the perpendicular lines. (b) The calculated molecular orbitals of **C-C**.

	a 1.1		Coordinates (Angstroms)	
Tag	Symbol	Х	Y	Z
1	С	6.0467660	1.8090050	-3.2934110
2	С	7.3919210	2.1003060	-3.2382100
3	С	8.0900040	2.1399880	-1.9928720
4	С	7.4031360	1.8800500	-0.7682250
5	С	6.0223370	1.5730140	-0.8427410
6	С	5.3701610	1.5453760	-2.0841810
7	С	5.0429430	1.2742970	0.3224440
8	С	5.4519330	0.0418360	1.1228460
9	С	5.8163720	0.2607550	2.5274060
10	С	5.6797070	1.4335070	3.1683350
11	С	5.1519140	2.6176690	2.4952090
12	С	4.8379170	2.5560400	1.1245730
13	С	3.9719560	1.1912710	-1.8765420
14	Ν	2.8459420	0.9601170	-2.5688100
15	С	1.8920560	0.6276040	-1.5966380
16	С	2.4464280	0.6590090	-0.2796870
17	Ν	3.7790090	1.0084930	-0.4610890
18	С	1.6553110	0.3667390	0.8914180
19	С	0.5083170	0.2784270	-1.8158540
20	С	0.2862830	0.0218890	0.6718540
21	С	-0.5083790	-0.2788740	1.8157300
22	С	0.0369310	-0.2317810	3.1082000
23	С	1.3733930	0.1176950	3.2914150
24	С	2.1781010	0.4167330	2.1905960
25	С	-0.0369770	0.2312520	-3.1083250
26	С	-1.3734280	-0.1182720	-3.2915400
27	С	-2.1781480	-0.4172600	-2.1907150
28	С	-1.6553660	-0.3671610	-0.8915380
29	С	-0.2863400	-0.0223090	-0.6719660
30	С	4.9596000	3.8158470	3.2070200
31	С	9.4912020	2.4454720	-1.9513320
32	С	4.3423930	3.7025310	0.4820430
33	С	4.1511490	4.8866840	1.1944340
34	С	8.1340330	1.9465940	0.4633730
35	С	9.4709030	2.2436940	0.4672610
36	С	10.1612490	2.4943030	-0.7577700
37	С	4.4589130	4.9437240	2.5592860
38	Н	5.4954520	1.7777730	-4.2336970
39	Н	7.9465090	2.3082200	-4.1538690
40	Н	6.2163560	-0.6086100	3.0622020
41	Н	5.9578220	1.5432730	4.2175360
42	Н	3.2190470	0.6954140	2.3466880
43	Н	0.5998480	0.4711400	-3.9629410
44	Н	5.1994560	3.8592120	4.2681570
45	Н	10.0079060	2.6384410	-2.8909110
46	Н	4.0984870	3.6719700	-0.5827700
47	Н	3.7578580	5.7671200	0.6870400
48	Н	7.6002070	1.7618020	1.3960730
49	Н	10.0296530	2.2966160	1.4007300

Table S2. Standard Orientation of the Optimized Geometry for C-C

50	Н	11.2248360	2.7257110	-0.7199720
51	Н	4.3051900	5.8690940	3.1132630
52	С	5.4735930	-1.2199570	0.6127700
53	С	5.1474070	-1.5847250	-0.7774770
54	С	5.7951460	-2.3974380	1.4511500
55	С	4.5564160	-2.7552110	-1.0709200
56	Н	5.4308930	-0.8719050	-1.5529500
57	С	5.2411070	-3.5958110	1.2065320
58	Н	6.4993280	-2.2336720	2.2694760
59	С	4.2485640	-3.6876020	0.0703560
60	0	3.2898530	-4.4273740	0.0963000
61	С	5.5080780	-4.8674810	2.0057880
62	С	4.1371400	-3.1948580	-2.4717840
63	С	2.6050850	-3.0807400	-2.5537130
64	Н	2.1177510	-3.6895620	-1.7777740
65	Н	2.2290550	-3.4181060	-3.5230100
66	Н	2.2689180	-2.0454800	-2.4118370
67	С	4.5802500	-4.6544950	-2.6949150
68	Н	4.3564300	-4.9807680	-3.7156370
69	Н	4.0518550	-5.3404920	-2.0200820
70	Н	5.6545820	-4.7795400	-2.5354080
71	С	4.7753320	-2.3096280	-3.5579450
72	Н	5.8672400	-2.3142600	-3.5000970
73	Н	4.4293440	-1.2697490	-3.4865730
74	Н	4.4977010	-2.6606100	-4.5578160
75	С	4.2671850	-5.1503790	2.8708040
76	Н	4.3790320	-6.0757830	3.4421980
77	Н	3.3679890	-5.2581360	2.2424280
78	Н	4.0699520	-4.3393110	3.5776460
79	С	5.7523700	-6.0320310	1.0263480
80	Н	4.8509920	-6.2582360	0.4405200
81	Н	6.0200000	-6.9492150	1.5605110
82	Н	6.5617360	-5.8083100	0.3253130
83	С	6.7453290	-4.7184200	2.9123520
84	Н	6.6048270	-3.9435030	3.6717650
85	Н	7.6422620	-4.4749430	2.3338990
86	Н	6.9485370	-5.6534740	3.4468950
87	Н	-3.2190820	-0.6959880	-2.3467980
88	Н	-0.5999000	-0.4716970	3.9628060
89	С	-1.8921270	-0.6279880	1.5965120
90	Ν	-2.8460290	-0.9604680	2.5686810
91	С	-2.4465050	-0.6593570	0.2795580
92	С	-3.9720590	-1.1915460	1.8764120
93	Ν	-3.7790940	-1.0087920	0.4609590
94	С	-5.3703230	-1.5454130	2.0840560
95	С	-5.0431080	-1.2742850	-0.3225580
96	С	-6.0469550	-1.8090130	3.2932760
97	С	-6.0225340	-1.5728530	0.8426270
98	С	-5.4518580	-0.0417110	-1.1229130
99	С	-4.8383760	-2.5560560	-1.1247200
100	С	-7.3921640	-2.1000600	3.2380820
101	Н	-5.4956140	-1.7779570	4.2335520

102	С	-7.4033890	-1.8796180	0.7681130
103	С	-5.8162900	-0.2605020	-2.5274900
104	С	-5.4733660	1.2200480	-0.6127520
105	С	-5.1524370	-2.6175870	-2.4953470
106	С	-4.3430860	-3.7026710	-0.4822370
107	С	-8.0902810	-2.1395140	1.9927560
108	Н	-7.9467730	-2.3079450	4.1537370
109	С	-8.1343280	-1.9459250	-0.4634710
110	С	-5.6799250	-1.4332760	-3.1684440
111	Н	-6.2160140	0.6089790	-3.0622950
112	С	-5.1471940	1.5846810	0.7775340
113	С	-5.7947430	2.3976350	-1.4510490
114	С	-4.9604550	-3.8158030	-3.2071840
115	С	-4.1521610	-4.8868580	-1.1946540
116	Н	-4.0991070	-3.6721820	0.5825620
117	С	-9.4915380	-2.4447250	1.9512270
118	С	-9.4712550	-2.2427680	-0.4673500
119	Н	-7.6004930	-1.7611620	-1.3961680
120	Н	-5.9580620	-1.5429410	-4.2176550
121	С	-4.5560570	2.7550680	1.0710890
122	Н	-5.4308520	0.8718630	1.5529650
123	С	-5.2405290	3.5959060	-1.2063320
124	Н	-6.4989550	2.2340480	-2.2693890
125	С	-4.4600120	-4.9438100	-2.5594900
126	Н	-5.2003830	-3.8590940	-4.2683070
127	Н	-3.7590510	-5.7673950	-0.6872940
128	С	-10.1616220	-2.4933380	0.7576770
129	Н	-10.0082560	-2.6376640	2.8908050
130	Н	-10.0300380	-2.2955090	-1.4008100
131	С	-4.2480110	3.6874820	-0.0701150
132	С	-4.1368590	3.1946000	2.4720160
133	С	-5.5073010	4.8676720	-2.0054990
134	Н	-4.3065460	-5.8692140	-3.1134820
135	Н	-11.2252560	-2.7245370	0.7198850
136	0	-3.2891770	4.4270960	-0.0959860
137	С	-2.6048240	3.0803650	2.5540740
138	С	-4.5798910	4.6542610	2.6951540
139	С	-4.7752210	2.3093850	3.5580900
140	С	-4.2663400	5.1504480	-2.8704600
141	С	-5.7514490	6.0321840	-1.0259780
142	С	-6.7445470	4.7188630	-2.9121100
143	Н	-2.1173720	3.6891430	1.7781700
144	Н	-2.2288560	3.4176980	3.5234020
145	Н	-2.2687250	2.0450780	2.4122110
146	Н	-4.3561360	4.9804910	3.7159070
147	Н	-4.0513970	5.3402400	2.0203880
148	Н	-5.6542040	4.7793780	2.5355670
149	Н	-5.8671280	2.3141680	3.5001980
150	Н	-4.4293720	1.2694640	3.4866570
151	Н	-4.4975940	2.6602700	4.5579930
152	Н	-4.3780400	6.0759030	-3.4418020
153	Н	-3.3671470	5.2580400	-2.2420520

154	Н	-4.0	692050		4.3393960	-3.5773470
155	Н	-4.8	500550		6.2582060	-0.4401010
156	Н	-6.0189270			6.9494490	-1.5600790
157	Н	-6.5608730			5.8085340	-0.3249870
158	Н	-6.6	041380		3.9439820	-3.6715760
159	Н	-7.6	415320		4.4754760	-2.3336990
160	Н	-6.9	475990		5.6539860	-3.4465890
161	С	-1.9	656250		-0.1762143	-4.7119433
162	C	-2.2	539926		-1.6240036	-5.0483242
163	C	-3.2	410607		0.6394042	-4.7292754
164	C	-0.9	501847		0.4023322	-5.6744844
165	Н	-1.3	148007		-2.2263980	-5.0096285
166	н	-2.9	833052		-2.0541640	-4 3206484
167	н	-2.9	864518		-1 7093312	-6.0742846
167	ц	-2.0	075650		1 7005128	-0.0742040
160	11 Ц	-3.0	0275059		0.6228258	5 7457826
109	П П	-3.7	029781		0.0220230	-3.7437830
170	п	-5.9	427170		0.2247349	-3.9998008
171	п	-1.5	42/1/9		1.4620214	-0./19009/
172	п	-0.7	213393		1.4020214	-3.40/3004
175	п	-0.0	021080		-0.1803180	-3.0393700
174	C	1.9	000229		0.1/55312	4./118088
175	C	3.2	408/19		-0.6404631	4./289933
176	C	2.2	544023		1.6231724	5.0482783
177	C	0.9	500675		-0.402//17	5.6743748
178	H	3.0	268843		-1.7015913	4.4557278
179	H	3.9	//1194		-0.2261950	3.9990835
180	H	3.7	032032		-0.6236801	5.7452928
181	H	1.3	155145		2.2260261	5.0091417
182	Н	2.6	864358		1.7082788	6.0744535
183	Н	2.9	842036		2.0531512	4.3209721
184	Н	1.34	430700		-0.3794533	6.7193488
185	Н	0.0	025200		0.1866577	5.6399846
186	Н	0.72	204878		-1.4621191	5.4068796
SCF Done: E(RmPW1PW91)		=	-4002.5023	39122	A.U.	
Zero-point correction		=	1.572297 (Hartree/Pa	rticle)	
Thermal correction to Energy		=	1.658443)	
Thermal correction to Enthalpy		=	1.659388			
Thermal correction to Gibbs Fre	e Energy	=	1.450182			
Sum of electronic and zero-poin	t Energies	=	-4000.9300	94		
Sum of electronic and thermal E	nergies	=	-4000.8439	948		
Sum of electronic and thermal E	nthalpies	=	-4000.8430	004		
Sum of electronic and thermal F	ree Energies	=	-4001.0522	209		
Low frequencies2.2482Low frequencies6.4093	-0.0027 10.5252	-0.0015 11.0875	0.0022	3.5467	3.7987	
The Result for the TDDFT calcu						

Excited State 1: Singlet-A 1.5791 eV 785.16 nm f=0.0000 <S**2>=0.000 346 -> 349 0.10841 347 -> 348 0.69672

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -4002.44436066 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Singlet-A	1.5799 eV	784.75 nm	f=0.0006	<s**2>=0.000</s**2>
346 -> 348		0.10854				
347 -> 349		0.69664				
Excited State	3.	Singlet-A	2 3788 eV	521 20 nm	f=0.0010	<\$**2>=0.000
340 -> 340	5.	0.15698	2.5700 € 4	521.20 mm	1 0.0010	< <u>5</u> 2× 0.000
340 -> 349		0.15098				
341 -> 348		-0.20284				
342 -> 349		0.20190				
343 -> 349		-0.16411				
344 -> 348		0.13491				
346 -> 348		0.56964				
Evolted State	4.	Simplet A	2 2705 aV	521.05 mm	£-0.0000	~~~~~0.000
Exciled State $240 > 249$	4:	Singlet-A	2.3795 eV	521.05 nm	1=0.0000	<8**2>=0.000
340 -> 348		0.16222				
341 -> 349		-0.20767				
342 -> 348		0.20406				
343 -> 348		-0.16808				
344 -> 349		0.13037				
346 -> 349		0.56537				
Evolted State	5.	Simplet A	2 4100 eV	512.26 mm	£-0.0008	~5**2>-0.000
	5.	Singlet-A	2.4199 6 V	512.50 IIII	1-0.0008	<3**2>=0.000
339 -> 348		0.16510				
340 -> 349		-0.37465				
341 -> 348		0.37934				
342 -> 349		-0.14950				
343 -> 349		0.13497				
344 -> 348		0.11313				
346 -> 348		0.33313				
Excited State	6.	Singlet-A	2 4202 eV	512 29 nm	f=0.0000	<s**2>=0 000</s**2>
330 -> 340	0.	0 16360	2.1202.01	512.29 mm	1 0.0000	5 2 0.000
337 -> 347		0.10500				
240 -> 348		-0.37239				
341 -> 349		0.3/56/				
342 -> 348		-0.14658				
343 -> 348		0.13362				
344 -> 349		0.11522				
346 -> 349		0.34160				
Evoited State	7.	Singlet A	2 4014 N	407.65 nm	£-0.0000	~~***2~-0.000
	7.	Singlet-A	2.4914 6 V	497.03 1111	1-0.0000	<3**2>=0.000
340 -> 348		0.11/03				
341 -> 349		-0.11400				
343 -> 348		0.66189				
345 -> 348		0.11054				
Excited State	8:	Singlet-A	2,4923 eV	497.48 nm	f=0.0002	<s**2>=0 000</s**2>
340 -> 340	0.	0 11596	2	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 0.0002	~ _ 0.000
2/11 > 2/10		_0 11306				
341 -> 348		-0.11500				
343 -> 349		0.00248				
345 -> 349		0.11061				
Excited State	9:	Singlet-A	2.7154 eV	456.60 nm	f=0.0000	<s**2>=0.000</s**2>
344 -> 348		0.34998				
344 -> 349		0.33592				
345 -> 348		0 34514				
345 - 340		0 35122				
515-7 577		0.55144				

Excited State 10: 344 -> 348 344 -> 349 345 -> 348 345 -> 349	Singlet-A -0.34007 0.34657 0.35478 -0.34085	2.7154 eV	456.60 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 11: 344 -> 349 345 -> 348 346 -> 349	Singlet-A -0.47339 0.48257 0.13461	2.7912 eV	444.19 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 12: 344 -> 348 345 -> 349 346 -> 348 347 -> 350	Singlet-A -0.43229 0.45381 0.13031 0.26090	2.8129 eV	440.77 nm	f=1.1889	<s**2>=0.000</s**2>
Excited State 13: 344 -> 348 345 -> 349 347 -> 350	Singlet-A 0.18534 -0.18221 0.63400	2.9218 eV	424.34 nm	f=0.4770	<s**2>=0.000</s**2>
Excited State 14: 339 -> 349 342 -> 348 347 -> 351	Singlet-A 0.12294 0.16331 0.65519	2.9623 eV	418.54 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 15: 339 -> 348 340 -> 349 341 -> 348 342 -> 349 347 -> 350	Singlet-A 0.36476 -0.25625 -0.13078 0.50545 0.10475	2.9902 eV	414.63 nm	f=0.0323	<s**2>=0.000</s**2>
Excited State 16: 339 -> 349 340 -> 348 341 -> 349 342 -> 348 347 -> 351	Singlet-A 0.34792 -0.24578 -0.12419 0.48539 -0.22515	2.9911 eV	414.51 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 17: 336 -> 348 337 -> 349 338 -> 348 341 -> 348	Singlet-A -0.30284 -0.35962 0.47380 -0.17434	3.2590 eV	380.44 nm	f=0.0120	<s**2>=0.000</s**2>
Excited State 18: 336 -> 349 337 -> 348 338 -> 349 341 -> 349	Singlet-A -0.30405 -0.36162 0.47189 -0.17358	3.2593 eV	380.40 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 19: 335 -> 349 336 -> 348 337 -> 349 339 -> 348 340 -> 349	Singlet-A -0.12571 -0.22674 -0.17789 -0.20364 0.14760	3.3253 eV	372.85 nm	f=0.0017	<s**2>=0.000</s**2>

341 -> 348	0.44013				
342 -> 349	0.36139				
F					
Excited State 20:	Singlet-A	3.3255 eV	372.82 nm	f=0.0000	<s**2>=0.000</s**2>
335 -> 348	-0.12569				
336 -> 349	-0.22604				
337 -> 348	-0.17763				
339 -> 349	-0.20296				
340 -> 348	0.14871				
341 -> 349	0.44128				
342 -> 348	0.35998				
Excited State 21.	Singlet-A	3 3600 eV	367 91 nm	f=0.0060	<\$**2>=0.000
$\frac{1}{236} > \frac{3}{248}$	0.31184	5.5077 CV	507.91 IIII	1 0.0000	< <u>5</u> 2× 0.000
330 -> 340	0.26285				
229 > 249	0.20283				
338 -> 348 220 > 248	0.43043				
339 -> 348	-0.295/4				
341 -> 348	0.10426				
342 -> 349	0.17068				
Excited State 22:	Singlet-A	3.3703 eV	367.87 nm	f=0.0000	<s**2>=0.000</s**2>
336 -> 349	0.30990				
337 -> 348	0.26177				
338 -> 349	0.43198				
339 -> 349	-0 29670				
$341 \rightarrow 349$	0.10476				
341 -> 349 342 -> 348	0.17054				
542 -> 546	0.17054				
Excited State 23:	Singlet-A	3.4554 eV	358.82 nm	f=0.0003	<s**2>=0.000</s**2>
338 -> 348	0.22575				
339 -> 348	0.42619				
340 -> 349	0.45760				
341 -> 348	0.19519				
Evolted State 24:	Singlet A	2 4555 N	258 80 nm	£-0.0000	~\$**2\-0.000
$\frac{1}{229} > 240$	o oocaz	5.4555 ev	558.80 1111	1-0.0000	<3**2>=0.000
338 -> 349	0.22647				
339 -> 349	0.42/05				
340 -> 348	0.45661				
341 -> 349	0.19467				
Excited State 25:	Singlet-A	3.5333 eV	350.91 nm	f=0.1443	<s**2>=0.000</s**2>
343 -> 352	0.11825				
344 -> 351	0.21571				
345 -> 350	0.23371				
347 -> 352	0.28631				
347 > 354	0.50110				
347 -> 359	0.13872				
Excited State 26:	Singlet-A	3.5403 eV	350.20 nm	t=0.0000	<s**2>=0.000</s**2>
344 -> 350	0.46249				
345 -> 351	0.47077				
346 -> 350	-0.18667				
Excited State 27:	Singlet-A	3.5421 eV	350.03 nm	f=0.0560	<s**2>=0.000</s**2>
344 -> 351	0.38267		-		· · · · •
345 -> 350	0.42966				
346 -> 351	-0 19674				
347 -> 351	_0 2/300				
347 - 352	0.10192				
34/-~ 334	-0.19162				

Excited State 28: 343 -> 350 343 -> 352 343 -> 359 347 -> 352 347 -> 354	Singlet-A -0.30921 -0.10927 -0.11127 0.52295 -0.26393	3.5517 eV	349.09 nm	f=0.0637	<s**2>=0.000</s**2>
Excited State 29: 346 -> 350 347 -> 353	Singlet-A 0.13830 0.66862	3.6064 eV	343.79 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 30: 335 -> 349 344 -> 351 346 -> 351 347 -> 354	Singlet-A -0.12976 0.17954 0.61396 -0.10733	3.7148 eV	333.76 nm	f=0.3797	<s**2>=0.000</s**2>
Excited State 31: 344 -> 350 346 -> 350 347 -> 353 347 -> 356	Singlet-A 0.18306 0.61049 -0.12048 -0.15045	3.7152 eV	333.73 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 32: 331 -> 349 332 -> 349 333 -> 349 334 -> 348 335 -> 348 337 -> 348 346 -> 350	Singlet-A -0.11359 -0.12792 0.29102 -0.18145 0.52850 -0.12411 -0.10706	3.7355 eV	331.91 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 33: 331 -> 348 332 -> 348 333 -> 348 334 -> 349 335 -> 349 337 -> 349 346 -> 351 347 -> 355	Singlet-A -0.11643 -0.11939 0.27893 -0.17493 0.50716 -0.11914 0.14047 -0.17670	3.7369 eV	331.78 nm	f=0.0710	<s**2>=0.000</s**2>
Excited State 34: 335 -> 349 343 -> 350 346 -> 356 347 -> 355	Singlet-A 0.15692 -0.15065 0.10584 0.64347	3.7534 eV	330.32 nm	f=0.0048	<s**2>=0.000</s**2>
Excited State 35: 343 -> 351 346 -> 350 346 -> 355 347 -> 356	Singlet-A -0.14542 0.11806 0.10952 0.63191	3.7670 eV	329.13 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 36: 332 -> 349 333 -> 349 334 -> 348	Singlet-A -0.30893 -0.29903 0.44071	3.8019 eV	326.11 nm	f=0.0000	<s**2>=0.000</s**2>

335 -> 348	0.21819				
337 -> 348	-0.16185				
343 -> 351	0.10232				
Excited State 37:	Singlet-A	3.8030 eV	326.01 nm	f=0.0412	<s**2>=0.000</s**2>
332 -> 348	-0.31241				
333 -> 348	-0.30921				
334 -> 349	0.45005				
335 -> 349	0.20805				
337 -> 349	-0.16040				
Excited State 38:	Singlet-A	3.8121 eV	325.24 nm	f=0.0000	<s**2>=0.000</s**2>
343 -> 351	0.65535				
345 -> 351	0.10011				
347 -> 356	0.14855				
Excited State 39:	Singlet-A	3.8399 eV	322.88 nm	f=0.2479	<s**2>=0.000</s**2>
330 -> 349	-0.13601				
331 -> 348	-0.12865				
343 -> 350	0.51588				
343 -> 352	0.10737				
346 -> 351	-0.12855				
347 -> 352	0.19329				
347 -> 354	-0.25554				
347 -> 359	0.12625				
Excited State 40:	Singlet-A	3.9185 eV	316.41 nm	f=0.0000	<s**2>=0.000</s**2>
330 -> 348	0.42370				
331 -> 349	0.38717				
332 -> 349	-0.14284				
333 -> 349	0.12781				
344 -> 352	-0.12921				
344 -> 355	0.14334				
345 -> 353	-0.15388				
345 -> 356	-0.13121				

Figure S9. (a) UV–vis absorption spectrum of **CL-C** estimated by global analysis method using Glotaran. The calculated spectra are shown by the perpendicular lines. (b) The calculated molecular orbitals of **CL-C**.

T	C11		Coordinates (Angstroms)			
Tag 5	Symbol	Х	Y	Z		
1	С	6.793413	3.346649	0.365859		
2	С	8.11725	3.242926	0.032752		
3	С	8.599685	2.165888	-0.757692		
4	С	7.701332	1.152101	-1.233117		
5	С	6.338866	1.279054	-0.867734		
6	С	5.914305	2.349063	-0.097204		
7	С	5.12716	0.393733	-1.26253		
8	С	5.292756	-1.088852	-0.871709		
9	С	5.464233	-2.02554	-1.95304		
10	С	5.357342	-1.707304	-3.264256		
11	С	5.009764	-0.381119	-3.710012		
12	С	4.853994	0.638577	-2.759339		
13	С	4.497064	2.206634	0.125374		
14	Ν	3.557601	2.872182	0.746176		
15	С	2.43128	2.128019	0.505681		
16	С	2.694218	0.999906	-0.279226		
17	Ν	4.059492	1.062974	-0.493204		
18	С	1.658354	0.092769	-0.685121		
19	С	1.116039	2.428534	0.980477		
20	С	0.342308	0.391146	-0.218179		
21	С	-0.698459	-0.48484	-0.609677		
22	С	-0.458995	-1.586538	-1.418186		
23	С	0.823269	-1.881408	-1.888035		

Table S3. Standard Orientation of the Optimized Geometry for CL-C

24	С	1.859356	-1.02959	-1.506746
25	С	0.863614	3.557882	1.777506
26	С	-0.408778	3.86126	2.239276
27	С	-1.449006	2.986695	1.880582
28	С	-1.224898	1.865479	1.098325
29	С	0.073958	1.550842	0.617896
30	С	4.802882	-0.103445	-5.069556
31	С	9.972123	2.078553	-1.091403
32	С	4.48571	1.911464	-3.188512
33	С	4.273161	2.175061	-4.53736
34	С	8.229377	0.104551	-2.028149
35	С	9.567611	0.055726	-2.332789
36	С	10.451063	1.048383	-1.861331
37	С	4.436173	1.165976	-5.484455
38	Н	6.414197	4.162227	0.970602
39	Н	8.827063	3.991146	0.372114
40	Н	5.742029	-3.041284	-1.707462
41	Н	5.525877	-2.472343	-4.01636
42	Н	2.863768	-1.234016	-1.858684
43	Н	1 712669	4 186758	2 015166
44	Н	4 926068	-0.904226	-5 792796
45	Н	10 643812	2 848916	-0 724223
46	Н	4 356605	2 710925	-2 466989
47	Н	3 980081	3 172575	-4 846673
48	Н	7 568757	-0.668391	-2 397908
49	Н	9 949377	-0.756545	-2 942891
50	Н	11 506092	0.995379	-2 108766
51	н	4 273956	1 370727	-6 537263
52	C II	5 317592	-1 531699	0 447345
53	C C	5 430041	-0.648354	1 585485
54	C C	5 227178	-2 947647	0 746246
55	C C	5.489665	-1 078	2 86997
56	н	5 535407	0.405893	1 394336
57	C II	5 236084	-3 460955	1 99791
58	н	5.077302	-3.630168	-0.076696
50	n C	5 379094	-2 533233	3 1/10258
60	0	5.403655	-2.961371	4 303622
61	C C	5.089644	-4.958592	2 267501
62	C C	5.674623	-9.117105	4 044836
63	C C	J.074025	-0.200866	4 981273
64	ч	4.334766	-0.200800	5 300351
65	и П	4.534700	-1.203997	5 912229
66	н Н	4.382933	0.30100	J.012320
67	II C	6 055447	0.07470	4.448904
68	ч	7.088527	-0.477813	4.821801 5.650756
60	11	6.004020	1 497005	5.030750
70	п	0.904029	-1.48/003	3.229301 4 174672
70 71	п	1.022702	-0.402033	4.1/40/3
/ 1 72	U U	5.000402	1.330/38	5.38U2/ 2.029542
12 72	11 TT	0.07033	1.401/43	2.720342
15 74	п u	4.710430 5 017677	1.0928/3	5.0555/5 A A56615
/4 75	п	3.74/0//	1.7//438	4.40010
15	U	3.83/880	-3.21/913	3.12/100

76	Н	3.730701	-6.293553	3.305167
77	Н	3.908665	-4.712902	4.090229
78	Н	2.93479	-4.870679	2.614127
79	С	6.341958	-5.480454	2.997982
80	Н	6.476302	-4.981864	3.957421
81	Н	6.241318	-6.556777	3.17554
82	Н	7.23998	-5.323002	2.391006
83	С	4.940196	-5.762326	0.971219
84	Н	4.045788	-5.476952	0.406834
85	Н	5.81347	-5.657158	0.31793
86	Н	4.844635	-6.823787	1.218376
87	Н	-2.46801	3.169629	2.205362
88	Н	-1.309635	-2.207113	-1.67066
89	С	-2.0419	-0.191277	-0.138365
90	С	-2.304116	0.970243	0.726677
91	Ν	-3.133037	-0.830266	-0.382746
92	Ν	-3.551733	1.030158	1.038939
93	С	-4.161044	-0.102855	0.364754
94	С	-4.819469	-1.052997	1.356235
95	С	-5.277931	0.433468	-0.629529
96	С	-4.479804	-1.001357	2.722146
97	С	-5.781846	-1.935511	0.885202
98	С	-5.895376	-0.803111	-1.29391
99	С	-6.334903	1.163262	0.137008
100	С	-4.604403	1.289412	-1.650971
101	С	-5.126312	-1.80021	3.628079
102	Н	-3.708894	-0.312862	3.04541
103	С	-6.580752	-2.650135	1.842508
104	С	-6.01676	-1.986747	-0.576006
105	С	-6.308003	-0.740134	-2.641059
106	С	-6.677187	2.448106	-0.050184
107	Н	-6.853125	0.564091	0.876153
108	С	-4.865619	2.587878	-1.867187
109	Н	-3.84536	0.778358	-2.232599
110	С	-6.212052	-2.609124	3.223512
111	Н	-4.849233	-1.776064	4.677808
112	С	-7.778087	-3.335366	1.503268
113	С	-6.298383	-3.198081	-1.291628
114	С	-6.74079	-1.861897	-3.298003
115	Н	-6.276206	0.215057	-3.15423
116	С	-5.934257	3.252506	-1.061172
117	C	-7.789435	3.122662	0.758032
118	C	-4.104198	3.414915	-2.906729
119	C	-6.975304	-3.332188	4.174527
120	C	-8.515165	-3.998443	2.453116
121	H	-8.126377	-3.317409	0.478831
122	C	-6.693668	-3.123012	-2.662789
123	C	-6.120833	-4.488868	-0.726418
124	H	-7.072753	-1.801473	-4,330268
125	0	-6 195419	4 439904	-1 234042
126	C	-7.203694	4.287907	1.254042
127	C	-8 887132	3 645741	-0 185977
141		0.00/152	5.015/71	0.105777

128	С	-8.444009	2.145593	1.740558
129	С	-3.37233	4.57738	-2.210229
130	С	-5.078966	3.968814	-3.961901
131	С	-3.052421	2.573492	-3.638319
132	С	-8.099117	-4.022308	3.801011
133	Н	-6.662326	-3.306247	5.214378
134	Н	-9.431636	-4.502488	2.163486
135	С	-6.989828	-4.31397	-3.372035
136	С	-6.382407	-5.626061	-1.44988
137	Н	-5.74929	-4.574011	0.287024
138	Н	-6.77384	5.051175	0.928292
139	Н	-7.993607	4.748513	2.180716
140	Н	-6.425694	3.927587	2.258365
141	Н	-9.687723	4.109803	0.400692
142	Н	-8.493358	4.387658	-0.88063
143	Н	-9.327377	2.824382	-0.761581
144	Н	-8.909108	1.296198	1.229173
145	Н	-7.729351	1.757389	2.473689
146	Н	-9.231227	2.667335	2.293646
147	Н	-2.803978	5.15104	-2.95082
148	Н	-4.075651	5.248814	-1.718009
149	Н	-2.666317	4.199976	-1.463003
150	Н	-5.82839	4.616449	-3.507602
151	Н	-4.524681	4.548427	-4.708267
152	Н	-5.59056	3.153494	-4.485453
153	Н	-2.295545	2.173093	-2.955849
154	Н	-3.499988	1.73708	-4.185927
155	Н	-2.535198	3.203325	-4.368653
156	Н	-8.681872	-4.563496	4.539403
157	С	-6.845927	-5.542148	-2.780223
158	Н	-7.311436	-4.233039	-4.406497
159	Н	-6.223716	-6.598827	-0.995459
160	Н	-7.064527	-6.448143	-3.336333
161	С	1.09381	-3.085585	-2.795036
162	С	1.644623	-2.591224	-4.142737
163	С	2.121138	-4.012486	-2.125047
164	С	-0.174348	-3.90083	-3.06857
165	Н	0.916623	-1.949589	-4.648755
166	Н	2.565919	-2.016241	-4.019291
167	Н	1.861279	-3.441987	-4.798457
168	Н	1.748728	-4.376795	-1.162455
169	Н	2.3209	-4.880161	-2.763473
170	Н	3.070836	-3.500789	-1.948928
171	Н	0.070627	-4.749148	-3.715253
172	Н	-0.609926	-4.302186	-2.148374
173	Н	-0.93957	-3.308431	-3.579479
174	С	-0.712739	5.086329	3.102113
175	С	-1.723266	5.984266	2.367483
176	С	-1.315932	4.626984	4.440672
177	С	0.543179	5.911237	3.397017
178	Н	-1.316588	6.33212	1.412858
179	Н	-2.660718	5.460656	2.159805

180			Н	-1	.961007		6.862927	2.976777
181			Н	-0	.615118		3.988399	4.987421
182			Н	-1	.547042		5.494379	5.068188
183			Н	-2	242616		4.06385	4.298502
184			н	0	278771		6 772913	4 017693
104			п u	0.	202686		5 220102	2.041265
105			11	1.	295060		6 202177	3.941203
180			П	1.	003/90		0.2931//	2.480321
SCF Done: E(R	mPW	PW91)		=	-4002.4881	14308	A.U.	
Zero-point correc	tion			=	1.571781 (Hartree/Part	ticle)	
Thermal correction	n to E	nergy		=	1.657678		,	
Thermal correction	n to E	nthalpy		=	1.658622			
Thermal correction	on to G	ibbs Free	Energy	=	1.449370			
Sum of electronic	and z	ero-point	Energies	=	-4000.9163	362		
Sum of electronic	and th	nermal En	ergies	=	-4000.8304	65		
Sum of electronic	and th	ermal En	thalpies	=	-4000.8295	521		
Sum of electronic	and th	ermal Fre	ee Energie	s =	-4001.0387	73		
Low frequencies - Low frequencies -		0.4962 6.7010	-0.0019 9.8885	-0.0007 12.3979	0.0012	2.9470	3.4733	
The Result for the	e TDD	FT calcula	ation					
Excited State $246 > 248$	1:	Single	et-A	1.9206 eV	645.54 nm	f=0.0005	<s**2>=0.000</s**2>	
540 -> 540 This state for on	timiza	0.7054 tion and/o	r second c	order correct	ion			
Total Energy F(TD_H	F/TD_KS	= -4002	41756109	1011.			
Copying the exc	ited st	ate density	v for this s	tate as the 1.	-particle Rho	CI density.		
copying the ene	nea su	ate density	, ioi unis s	tate as the 1	purifiere ruio	er aensity.		
Excited State 347 -> 348	2:	Single 0.7056	et-A 60	2.2431 eV	552.73 nm	f=0.0000	<s**2>=0.000</s**2>	
Excited State	3:	Single	et-A	2.3898 eV	518.80 nm	f=0.0006	<\$**2>=0.000	
338 -> 348	5.	-0.1979	4	2.5090 01	210.00 mm	1 0.0000	15 2 0.000	
339 -> 348		0.5179	07					
341 -> 348		0.3956	57					
Excited State	4:	Single	et-A	2.6319 eV	471.08 nm	f=0.0001	<s**2>=0.000</s**2>	
343 -> 348		0.4504	6					
344 -> 348		0.5269	95					
Evolted State	5.	Simolo	4 A	2 6975 N	461 22 mm	£-0.0022	~5**2>-0.000	
Excited State $247 > 240$	5:	Single	сt-А 15	2.08/3 eV	401.33 nm	1=0.0022	<8**2>=0.000	
547 -~ 549		0.7010	13					
Excited State	6.	Single	-t_ Δ	2 8086 eV	441 44 nm	f=0.6280	<\$**2>=0.000	
345 -> 348	0.	0.6629)?	2.0000 € 1	++1.++ IIIII	1 0.0200	< <u>5</u> 2× 0.000	
346 -> 349		0.2038	-					
345 <- 348		-0.1029	6					
			-					
Excited State	7:	Single	et-A	2.8545 eV	434.35 nm	f=0.1302	<s**2>=0.000</s**2>	
345 -> 348		-0.2027	8					
346 -> 349		0.6661	2					
Excited State	8:	Single	et-A	2.9024 eV	427.17 nm	f=0.0008	<s**2>=0.000</s**2>	
339 -> 348		0.1440	07					
341 -> 348		-0.1982	4					

343 -> 348	0.50805				
344 -> 348	-0.42212				
Excited State 9.	Singlet-A	2 9229 eV	424 18 nm	f=0.0064	<\$**2>=0.000
$\frac{1}{320} > \frac{3}{8}$	0.37551	2.9229 CV	424.10 IIII	1 0.0004	< <u>5</u> 2× 0.000
339 -> 340	-0.57551				
341 -> 348	0.32043				
343 -> 348	0.16969				
344 -> 348	-0.18808				
Excited State 10	Singlet-A	3 1281 eV	396 35 nm	f=0.0001	<\$**2>=0 000
$\frac{2}{3} \frac{1}{2} > \frac{3}{4} \frac{1}{8}$	0.60700	5.1201 01	570.55 IIII	1 0.0001	·5 2· 0.000
542 -> 546	0.09799				
Excited State 11:	Singlet-A	3.2362 eV	383.11 nm	f=0.0068	<s**2>=0.000</s**2>
334 -> 348	0.37327				
336 -> 348	0 11079				
337 -> 348	0 35245				
337 > 348 338 > 348	0.33245				
338 -> 348	-0.55588				
240 > 240	-0.10021				
340 -> 348	0.21851				
341 -> 348	-0.10621				
Excited State 12:	Singlet-A	3.2511 eV	381.36 nm	f=0.0071	<s**2>=0.000</s**2>
342 -> 349	0 38643	0.2011 0	201120 1111	1 010071	2 2 01000
342 > 352	0.38013				
342 > 352	0.12786				
343 -> 349	-0.13780				
344 -> 349	-0.21036				
346 -> 350	-0.11518				
347 -> 352	-0.11180				
Excited State 13:	Singlet-A	3.2590 eV	380.44 nm	f=0.1898	<s**2>=0.000</s**2>
342 -> 349	0.15228	0.2090 01	2001111	1 011070	2 2 0.000
342 -> 352	0.15220				
342 > 352	0.13730				
343 -> 349	0.21010				
344 -> 349	0.21388				
346 -> 350	0.5/51/				
Excited State 14:	Singlet-A	3.2799 eV	378.01 nm	f=0.0900	<s**2>=0.000</s**2>
342 -> 349	0 11332				
342 -> 352	0.10461				
342 > 352 343 > 340	0.36665				
343 - 349	0.30003				
344 -> 349	0.43927				
346 -> 350	-0.3494/				
Excited State 15:	Singlet-A	3.2875 eV	377.14 nm	f=0.0061	<s**2>=0.000</s**2>
333 -> 348	-0.11093				
334 -> 348	-0.26456				
340 -> 348	0.63249				
Excited State 16:	Singlet-A	3.3220 eV	373.23 nm	f=0.0048	<s**2>=0.000</s**2>
333 -> 348	0.21493				
334 -> 348	0.44830				
336 -> 348	-0.10424				
337 -> 348	-0.20836				
338 -> 348	0.35778				
339 -> 348	0.13284				
340 -> 348	0.19448				
Excited State 17:	Singlet-A	3.4371 eV	360.72 nm	f=0.0003	<s**2>=0.000</s**2>
345 -> 349	0.69874				

Excited State 18:	Singlet-A	3.4612 eV	358.21 nm	f=0.0092	<s**2>=0.000</s**2>
343 -> 349	0.53437				
344 -> 349	-0.44383				
Excited State 19:	Singlet-A	3.4816 eV	356.11 nm	f=0.0007	<s**2>=0.000</s**2>
336 -> 348	0.16093				
337 -> 348	0.48964				
338 -> 348	0 44732				
339 -> 348	0.10903				
Excited State 20:	Singlet-A	3.5276 eV	351.47 nm	f=0.0093	<s**2>=0.000</s**2>
345 -> 350	-0.34318				
347 -> 350	0.58058				
347 -> 351	0.14685				
Excited State 21:	Singlet-A	3.5287 eV	351.36 nm	f=0.0124	<s**2>=0.000</s**2>
345 -> 350	0 56947				
347 -> 350	0.35439				
Excited State 22:	Singlet-A	3.5460 eV	349.65 nm	f=0.0010	<s**2>=0.000</s**2>
333 -> 348	0.36647				
334 -> 348	-0.12740				
335 -> 348	0.10273				
336 -> 348	0.52988				
337 -> 348	-0.14848				
345 -> 350	0.16161				
E : 10 / 22	C: 1 / A	2 5510 14	240.07	6 0 1000	-C**O 0 000
Excited State 23:	Singlet-A	3.5519 eV	349.06 nm	f=0.1292	<\$**2>=0.000
347 -> 350	-0.16588				
347 -> 351	0.64736				
347 -> 352	-0.17273				
Excited State 24:	Singlet-A	3.6263 eV	341.90 nm	f=0.0385	<s**2>=0.000</s**2>
342 -> 349	0.18529				
347 -> 351	0.18874				
347 -> 352	0.64412				
E 10 10		2 7202 14	222.54	6 0 00 00	
Excited State 25:	Singlet-A	3.7282 eV	332.56 nm	f=0.0068	<s**2>=0.000</s**2>
331 -> 349	0.13653				
336 -> 349	-0.11413				
340 -> 349	0.61200				
342 -> 349	-0.17961				
342 -> 352	0.11131				
Excited State 26.	Singlet-A	3.7622 eV	329.55 nm	f=0.0009	<s**2>=0.000</s**2>
333 -> 348	0 49543	5.7622.07	529.55 min	1 0.0009	5 2 0.000
334 -> 348	-0.22401				
226 > 248	-0.22401				
330 -> 348	-0.37933				
557 - 510	0.10000				
Excited State 27:	Singlet-A	3.7819 eV	327.84 nm	f=0.0064	<s**2>=0.000</s**2>
336 -> 349	-0.10101				
338 -> 349	0.37638				
340 -> 349	0.12545				
341 -> 349	0.11506				
342 -> 349	0.33489				
342 -> 352	-0.27775				
346 -> 353	-0.22829				

347 -> 352	-0.11132				
Excited State 28:	Singlet-A	3 7908 eV	327 07 nm	f=0.0393	<\$**2>=0.000
332 -> 348	0 64247	5.7900 01	527.07 1111	1 0.0575	·5 2· 0.000
335 -> 348	0.19363				
555 - 510	0.17505				
Excited State 29:	Singlet-A	3.8075 eV	325.63 nm	f=0.0489	<s**2>=0.000</s**2>
337 -> 349	0.11695				
342 -> 349	0.26215				
342 -> 352	-0.21179				
343 -> 350	-0.19324				
344 -> 350	-0.22036				
346 -> 351	-0.20142				
346 -> 353	0.43876				
E 1 C C			222.40		
Excited State 30:	Singlet-A	3.8329 eV	323.48 nm	f=0.0730	<s**2>=0.000</s**2>
336 -> 349	-0.10199				
337 -> 349	0.14779				
338 -> 349	0.42089				
340 -> 349	-0.21303				
341 -> 349	0.1//4/				
342 -> 349	-0.22620				
342 -> 332	0.20915				
340 - 331 346 > 352	-0.10323				
340 - 333 346 > 254	0.13220				
540 -> 554	-0.10038				
Excited State 31:	Singlet-A	3.8383 eV	323.02 nm	f=0.0464	<s**2>=0.000</s**2>
341 -> 350	0.11516				
343 -> 350	-0.23106				
344 -> 350	-0.25829				
346 -> 352	-0.17159				
346 -> 353	-0.19907				
346 -> 354	0.44148				
Evolted State 22.	Singlet A	2 9557 N	221 56 mm	£-0.0021	~5**2>-0.000
Exclicit State 52 :	o 10174	5.8557 ev	521.30 mm	1-0.0031	<52>=0.000
332 -> 348 333 > 348	-0.19174				
335 -> 348	-0.14830				
555 - 546	0.03327				
Excited State 33:	Singlet-A	3.8848 eV	319.15 nm	f=0.0526	<s**2>=0.000</s**2>
330 -> 348	-0.17193				
344 -> 350	-0.11304				
346 -> 351	0.60394				
346 -> 352	-0.12038				
346 -> 353	0.17003				
Excited State 34.	Singlet_A	3 9140 eV	316 77 nm	f=0.0140	<\$**2>=0.000
330 -> 348	0 54579	5.9140 CV	510.77 IIII	1 0.0147	S 2× 0.000
337 -> 349	0.13574				
345 -> 353	-0.15951				
345 -> 354	0.10423				
345 -> 355	0.17751				
346 -> 351	0.19318				
346 -> 353	0.14637				
	-				
Excited State 35:	Singlet-A	3.9398 eV	314.70 nm	f=0.0102	<s**2>=0.000</s**2>
329 -> 349	0.16695				
330 -> 348	-0.15532				

331 -> 349	0.24093				
335 -> 349	-0.11008				
336 -> 349	-0.11222				
337 -> 349	0.37624				
338 -> 349	-0.13736				
340 -> 349	-0.11896				
341 -> 349	-0.11687				
343 -> 350	0.15764				
344 -> 350	0.18793				
346 -> 354	0.14410				
347 -> 353	0.14491				
Excited State 36:	Singlet-A	3.9500 eV	313.88 nm	f=0.0310	<s**2>=0.000</s**2>
343 -> 351	-0.12880				
344 -> 351	0.14091				
346 -> 352	-0.36487				
346 -> 354	-0.15106				
347 -> 353	0.37915				
347 -> 354	0.19759				
347 -> 356	-0.21728				
Excited State 37:	Singlet-A	3.9628 eV	312.87 nm	f=0.0053	<s**2>=0.000</s**2>
341 -> 349	-0.13829				
346 -> 351	0.13476				
346 -> 352	0.53525				
347 -> 353	0.28146				
347 -> 354	0.13759				
347 -> 356	-0.14956				
Excited State 38:	Singlet-A	3.9859 eV	311.06 nm	f=0.1097	<s**2>=0.000</s**2>
329 -> 349	0.11359				
331 -> 349	0.23612				
335 -> 349	-0.11097				
336 -> 349	-0.22940				
337 -> 349	-0.17702				
338 -> 349	-0.26274				
339 -> 349	-0.10863				
341 -> 349	0.31358				
343 -> 350	-0.14783				
344 -> 350	-0.17733				
346 -> 353	-0.13097				
346 -> 354	-0.13048				
Excited State 39:	Singlet-A	4.0085 eV	309.30 nm	f=0.0287	<s**2>=0.000</s**2>
331 -> 349	-0.17438				
341 -> 349	0.41547				
341 -> 350	0.10341				
343 -> 351	-0.12613				
344 -> 350	0.12118				
344 -> 351	0.17952				
346 -> 353	0.11978				
346 -> 354	0.21351				
346 -> 355	-0.13435				
347 -> 356	-0.23539				
Excited State 40:	Singlet-A	4.0354 eV	307.24 nm	f=0.0116	<s**2>=0.000</s**2>
341 -> 349	0.23015				
343 -> 351	0.22305				
344 -> 351	-0.23864				

Figure S10. (a) UV–vis absorption spectrum of **CL-CL** estimated by global analysis method using Glotaran. The calculated spectra are shown by the perpendicular lines. (b) The calculated molecular orbitals of **CL-CL**.

			Coordinates (Angstroms)	
Tag	Symbol	Х	Y	Z
1	С	4.974578	-0.719388	2.641159
2	С	5.772439	-0.703058	3.755034
3	С	7.00889	-0.019275	3.740674
4	С	7.385208	0.726996	2.580431
5	С	6.457825	0.834501	1.488205
6	С	5.326351	0.030515	1.502261
7	С	6.709659	1.653776	0.280647
8	С	6.348937	1.119142	-0.950283
9	С	6.744853	1.751213	-2.147051
10	С	7.40474	2.951908	-2.123344
11	С	7.62165	3.622942	-0.89906
12	С	7.245078	2.984096	0.322417
13	С	4.492458	-0.061587	0.230693
14	Ν	3.644848	-1.240697	0.232976
15	С	2.443909	-0.786659	0.146048
16	С	2.449252	0.684554	0.101658
17	Ν	3.654618	1.134804	0.124952
18	С	1.202877	1.429898	0.044718
19	С	1.196474	-1.527631	0.076536
20	С	0.000123	0.69005	0.001742

S28

21	С	-1 198068	1 43111	-0.04108
21	C	-1 187059	2 82797	-0.041506
23	C	0.001166	3,555524	-0.000706
24	C	1.191251	2.82186	0.042856
2.5	C	1.185728	-2.924674	0.075152
25 26	C	-0.000317	-3 653085	0.00093
20	C C	-1 18843	-2 918749	-0.074072
27	C C	-1.200137	-1 526545	-0.074072
20	C C	0.000401	-0.785893	0.001239
30	C C	8 16773	4 930577	-0.865687
31	C C	7 905524	0.113203	-0.805087
22	C C	7.303324	-0.113203	1.520216
22	C C	7.944955	5.018555	1.520510
24	C C	7.040308 9.702596	1.254477	2 527016
34 25	C C	6.705580 0.561720	1.234477	2.337910
55 26	C C	9.361739	1.11/355	3.000/80
30	C	9.155951	0.449404	4.//4832
37	C U	8.286665	5.615641	0.31578
38	H	4.0/2921	-1.318839	2.61/944
39	H	5.491087	-1.265362	4.640379
40	H	6.5177	1.2/1958	-3.093349
41	H	7.7205	3.42427	-3.048813
42	H	2.153875	3.32152	0.079463
43	H	2.146636	-3.421781	0.132309
44	Н	8.469471	5.38872	-1.803248
45	Н	7.589491	-0.665179	5.715299
46	Н	6.997908	3.305788	2.449244
47	Н	7.898158	5.576901	2.445657
48	Н	9.04489	1.755726	1.641649
49	Н	10.566989	1.520528	3.532422
50	Н	9.836515	0.361567	5.61386
51	Η	8.696062	6.620601	0.328427
52	С	5.486324	-0.146786	-1.007332
53	С	6.362706	-1.351951	-0.86961
54	С	4.663753	-0.164722	-2.253794
55	С	6.408703	-2.377181	-1.734914
56	Н	7.00649	-1.348366	0.001527
57	С	4.631905	-1.16827	-3.144348
58	Н	4.053005	0.719229	-2.40056
59	С	5.493304	-2.368077	-2.910199
60	Ο	5.44742	-3.325228	-3.677488
61	С	3.73624	-1.136597	-4.385555
62	С	7.347858	-3.570472	-1.537737
63	С	6.521467	-4.854952	-1.339836
64	Н	5.906763	-5.069345	-2.213942
65	Н	7.193846	-5.703451	-1.170584
66	Н	5.869021	-4.762074	-0.465111
67	С	8.271943	-3.724483	-2.759191
68	Н	8.951867	-4.569182	-2.602995
69	Н	7.701161	-3.906056	-3.669825
70	Н	8.882031	-2.825764	-2.900466
71	С	8.234664	-3.39143	-0.300338
72	Н	8.867877	-2.500766	-0.372379

73	Н	7.648248	-3.324436	0.621905
74	Н	8.895775	-4.258354	-0.20577
75	С	2.720328	-2.292708	-4.324138
76	Н	2.0611	-2.250659	-5.198343
77	Н	3.223054	-3.259554	-4.314886
78	Н	2.095786	-2.213185	-3.427903
79	С	4.592812	-1.261114	-5.65896
80	Н	5.139612	-2.203515	-5.679919
81	Н	3.947794	-1.214097	-6.543157
82	Н	5.311348	-0.436805	-5.726409
83	С	2.947163	0.173796	-4.481759
84	Н	2.274548	0.316184	-3.6294
85	Н	3.603918	1.047494	-4.552722
86	Н	2.329582	0.154053	-5.384904
87	Н	-2.149695	-3.418946	-0.131173
88	Н	-2.149099	3.324886	-0.079293
89	С	-2.446374	0.689612	-0.097956
90	С	-2.445671	-0.781606	-0.144224
91	Ν	-3.650867	1.143024	-0.1208
92	Ν	-3.647462	-1.232344	-0.232398
93	С	-4.491892	-0.050692	-0.228856
94	С	-5.324127	0.045548	-1.501258
95	С	-5.487039	-0.136239	1.007983
96	С	-4.97151	-0.701742	-2.641641
97	С	-6.454634	0.85091	-1.486865
98	С	-6.348334	1.13059	0.952296
99	С	-6.364629	-1.340222	0.867552
100	С	-4.665956	-0.15683	2.255387
101	С	-5.767718	-0.681737	-3.756627
102	Н	-4.070392	-1.302037	-2.618933
103	С	-7.380704	0.746848	-2.580575
104	С	-6.707124	1.66798	-0.277967
105	С	-6.74564	1.760232	2.149893
106	С	-6.412358	-2.366847	1.731113
107	Н	-7.00749	-1.334574	-0.00428
108	С	-4.636588	-1.16143	3.144871
109	Н	-4.054651	0.726409	2.404087
110	С	-7.003559	0.003147	-3.742192
111	Н	-5.485593	-1.241965	-4.643042
112	С	-8.698704	1.275304	-2.538439
113	С	-7.241798	2.998691	-0.317587
114	С	-7.405098	2.961171	2.127856
115	Н	-6.520059	1.278799	3.095459
116	С	-5.498293	-2.360371	2.907477
117	С	-7.351834	-3.559326	1.530615
118	С	-3.743693	-1.13166	4.388105
119	С	-7.898799	-0.087168	-4.837771
120	С	-9.555582	1.141609	-3.602781
121	Н	-9.04078	1.774538	-1.641347
122	С	-7.62	3.634942	0.904729
123	С	-7.339568	3.757914	-1.513908
124	Н	-7.722079	3.431604	3.053892

125	Ο	-5.453534	-3.319178	3.672756
126	С	-6.525481	-4.843433	1.330074
127	С	-8.276727	-3.716267	2.751067
128	С	-8.237801	-3.377144	0.29308
129	С	-2.727492	-2.287508	4.327578
130	С	-4.603338	-1.258033	5.659259
131	С	-2.954973	0.178686	4.488046
132	С	-9.146789	0.476451	-4.778017
133	Н	-7.58207	-0.637166	-5.719248
134	Н	-10.560585	1.545464	-3.534679
135	С	-8.165733	4.942756	0.873468
136	С	-7.840883	5.035983	-1.507919
137	Н	-6.991056	3.325169	-2.443244
138	Н	-5.910339	-5.05941	2.203506
139	Н	-7.197783	-5.691707	1.159415
140	Н	-5.873655	-4.748658	0.455046
141	Н	-8.956726	-4.56041	2.592236
142	Н	-7.706605	-3.900266	3.661619
143	Н	-8.886716	-2.817782	2.894192
144	Н	-8.870612	-2.48634	0.366771
145	Н	-7.650825	-3.308296	-0.628672
146	Н	-8.899252	-4.243548	0.196109
147	Н	-2.071373	-2.247337	5.204218
148	Н	-3.229766	-3.254529	4.314236
149	Н	-2.099776	-2.205925	3.433801
150	Н	-5.149994	-2.200572	5.677656
151	Н	-3.960455	-1.212148	6.545065
152	Н	-5.322203	-0.433959	5.726133
153	Н	-2.280319	0.322278	3.637498
154	Н	-3.611973	1.05224	4.558645
155	Н	-2.339534	0.157682	5.392623
156	Н	-9.828326	0.391331	-5.618182
157	С	-8.282736	5.63047	-0.306643
158	Н	-8.468731	5.398886	1.811605
159	Н	-7.890802	5.596473	-2.435947
160	Н	-8.69184	6.635567	-0.317662
161	C	0.042803	5.084086	-0.002326
162	C	0.734846	5.572032	1.281988
163	C	0.838564	5.566826	-1.227204
164	C	-1.358175	5.69975	-0.061467
165	Н	0.185802	5.247168	2.171187
166	Н	1.758556	5.195828	1.362881
167	Н	0 780796	6 66612	1 291972
168	н	0.365697	5 237048	-2 15743
169	н	0.884253	6 660866	-1 238576
170	н	1 86611	5 192112	-1 220721
171	н	-1 276792	6 790851	-0.062280
172	н	-1 895018	5 408446	-0.002289
173	н	-1 967052	5 415725	0.909755
174	C	-0.041662	-5 18134	-0.001621
175	C C	-0.872322	-5 666618	1 10001921
176	C	-0.672322	-5.665613	_1 306088
1/0	C	-0.070203	-5.005015	-1.500988

178H-0.426287-5.3399782.143488179H-1.899274-5.2915171.16655180H-0.918806-6.7605841.205858181H-0.123149-5.336389-2.179325182H-0.739707-6.759657-1.322058183H-1.71844-5.29151-1.414115184H1.276966-6.8873630.091706	177	С	1.357568	-5.796305	0.095135
179H-1.899274-5.2915171.16655180H-0.918806-6.7605841.205858181H-0.123149-5.336389-2.179325182H-0.739707-6.759657-1.322058183H-1.71844-5.29151-1.414115184H1.276966-6.8873630.091706	178	Н	-0.426287	-5.339978	2.143488
180H-0.918806-6.7605841.205858181H-0.123149-5.336389-2.179325182H-0.739707-6.759657-1.322058183H-1.71844-5.29151-1.414115184H1.276966-6.8873630.091706	179	Н	-1.899274	-5.291517	1.16655
181H-0.123149-5.336389-2.179325182H-0.739707-6.759657-1.322058183H-1.71844-5.29151-1.414115184H1.276966-6.8873630.091706	180	Н	-0.918806	-6.760584	1.205858
182H-0.739707-6.759657-1.322058183H-1.71844-5.29151-1.414115184H1.276966-6.8873630.091706	181	Н	-0.123149	-5.336389	-2.179325
183H-1.71844-5.29151-1.414115184H1.276966-6.8873630.091706	182	Н	-0.739707	-6.759657	-1.322058
184 H 1.276966 -6.887363 0.091706	183	Н	-1.71844	-5.29151	-1.414115
	184	Н	1.276966	-6.887363	0.091706
185 H 1.990629 -5.510511 -0.750879	185	Н	1.990629	-5.510511	-0.750879
186 H 1.867143 -5.506882 1.019731	186	Н	1.867143	-5.506882	1.019731

SCF Done: E(RmPW1PW91)	=	-4002.47241591 A.U.
Zero-point correction	=	1.570438 (Hartree/Particle)
Thermal correction to Energy	=	1.656361
Thermal correction to Enthalpy	=	1.657305
Thermal correction to Gibbs Free Energy	=	1.446739
Sum of electronic and zero-point Energies	=	-4000.901978
Sum of electronic and thermal Energies	=	-4000.816055
Sum of electronic and thermal Enthalpies	=	-4000.815111

Sum of electronic and thermal Enthalpies			=	-4000.8151	11	
Sum of electronic and thermal Free Energies		=	-4001.0256	77		
Low frequencies Low frequencies	-0.0010 8.2810	-0.0004 10.4356	0.0010 13.2383	0.4497	2.3413	3.8189

The Result for the TDDFT calculation

Excited State	1:	Singlet-A	2.5429 eV	487.58 nm	f=0.0014	<s**2>=0.000</s**2>
346 -> 348		-0.19018				
346 -> 349)	-0.22313				
347 -> 348		0.45776				
347 -> 349)	0.44340				
This state fam an						

This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -4002.37896721

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Singlet-A	2.5448 eV	487.21 nm	f=0.0009	<s**2>=0.000</s**2>
346 -> 348		0.46532				
346 -> 349		-0.42869				
347 -> 348		0.20239				
347 -> 349		-0.22502				
Excited State	3:	Singlet-A	2.8785 eV	430.72 nm	f=0.0001	<s**2>=0.000</s**2>
346 -> 348		0.10299				
346 -> 349		0.45463				
347 -> 348		0.47750				
347 -> 349		-0.22123				
Excited State	4:	Singlet-A	2.8843 eV	429.86 nm	f=0.0020	<s**2>=0.000</s**2>
346 -> 348		0.48088				
346 -> 349		0.23206				
347 -> 348		-0.11913				
347 -> 349		0.44589				
Excited State	5:	Singlet-A	3.1985 eV	387.63 nm	f=0.0017	<s**2>=0.000</s**2>
341 -> 348		-0.26951				

341 -> 353	0.25627				
342 -> 348	-0.17281				
342 -> 349	0.32515				
342 -> 352	-0.31902				
342 -> 353	0.13194				
343 -> 348	0.14611				
Excited State 6:	Singlet-A	3.1989 eV	387.59 nm	f=0.0005	<s**2>=0.000</s**2>
341 -> 348	-0.14620				
341 -> 349	-0.29778				
341 -> 352	0.28724				
341 -> 353	0.16863				
342 -> 348	0.30061				
342 -> 353	-0.28359				
343 -> 349	0.14735				
343 -> 352	-0.10477				
Excited State 7:	Singlet-A	3.2750 eV	378.58 nm	f=0.0056	<s**2>=0.000</s**2>
341 -> 348	0.24155				
343 -> 348	0.56041				
344 -> 348	-0.17388				
345 -> 348	0.21007				
345 -> 349	0.12991				
Excited State 8:	Singlet-A	3.2966 eV	376.10 nm	f=0.0156	<s**2>=0.000</s**2>
343 -> 349	0.11702				
344 -> 348	0.28781				
344 -> 349	-0.31336				
345 -> 348	0.37132				
345 -> 349	0.36241				
Excited State 9:	Singlet-A	3.3024 eV	375.44 nm	f=0.0244	<s**2>=0.000</s**2>
343 -> 348	0.28442				
344 -> 348	0.37091				
344 -> 349	-0.35232				
345 -> 348	-0.21913				
345 -> 349	-0.30378				
Excited State 10:	Singlet-A	3.3439 eV	370.78 nm	f=0.0576	<s**2>=0.000</s**2>
341 -> 349	0.21801				
343 -> 349	0.63072				
345 -> 348	-0.13845				
Excited State 11:	Singlet-A	3.5360 eV	350.63 nm	f=0.0574	<s**2>=0.000</s**2>
346 -> 350	0.49243				
346 -> 351	0.26324				
346 -> 352	-0.10610				
346 -> 353	0.13965				
347 -> 351	0.31681				
347 -> 352	-0.11572				
Excited State 12:	Singlet-A	3.5377 eV	350.46 nm	f=0.1460	<s**2>=0.000</s**2>
346 -> 351	0.31513				
346 -> 352	-0.10807				
347 -> 350	0.42042				
347 -> 351	-0.35682				
347 -> 352	0.11448				
347 -> 353	0.15315				

Excited State 13:	Singlet-A	3.5450 eV	349.74 nm	f=0.0108	<s**2>=0.000</s**2>
343 -> 348	0.10075				
344 -> 348	0.25473				
$344 \rightarrow 349$	0 22054				
345 -> 348	-0 39831				
345 -> 349	0.43238				
JTJ -> JTJ	0.45256				
Excited State 14:	Singlet-A	3.5466 eV	349.58 nm	f=0.0010	<s**2>=0.000</s**2>
344 -> 348	0 39594				
$344 \rightarrow 349$	0.45306				
345 -> 348	0.77276				
345 > 340	0.27270				
545 -> 545	-0.22349				
Excited State 15:	Singlet-A	3.5847 eV	345.87 nm	f=0.0456	<s**2>=0.000</s**2>
339 -> 348	0.34973				
340 -> 349	0.36961				
341 -> 348	-0 13518				
341 > 340 342 > 340	0.20542				
342 -> 349	0.20542				
342 -> 332	0.10601				
346 -> 352	-0.20/62				
347 -> 353	0.20229				
Excited State 16	Singlet-A	3 5924 eV	345 13 nm	f=0.0007	<\$**2>=0 000
339 -> 349	0 36562	5.552101	5 15.15 1111	1 0.0007	.5 2 0.000
340 > 348	0.38142				
340 -> 340	0.36142				
341 - 349	-0.14015				
342 -> 348	0.20061				
346 -> 353	-0.19245				
347 -> 352	0.19971				
Excited State 17.	Singlet-A	3 6105 eV	343 40 nm	f=0.0492	<\$**2>=0 000
339 -> 348	-0 20249	010100 01	0.0110.111	1 010 172	2 2 0.000
339 -> 349	-0 14824				
340 > 348	0 18048				
340 > 340	0.10240				
340 - 349	-0.22326				
340 - 352	-0.13983				
346 -> 353	-0.126/4				
347 -> 350	-0.14862				
347 -> 351	0.14902				
347 -> 352	0.27108				
347 -> 353	0.33200				
Excited State 18	Singlet-A	3.6120 eV	343 25 nm	f=0 0483	<s**?>=0 000</s**?>
330 > 348	0 20622	5.0120 0 1	5 15.25 1111	1 0.0105	·5 2· 0.000
339 -> 340	0.20022				
339 - 349	-0.21/8/				
340 - 340	-0.16950				
340 -> 349	0.14515				
346 -> 350	0.15513				
346 -> 351	0.11896				
346 -> 352	0.31419				
346 -> 353	-0.29075				
347 -> 352	0.18535				
Excited State 10.	Singlet_A	3 6840 eV	336 55 nm	f=0.0614	<\$**7>=0 000
336 -> 3/0	-0 18894	5.0040 € 1	550.55 mm	1 0.0014	-5 2- 0.000
330 - 347 327 < 349	0.10074				
337 - 340 220 - 240	0.24522				
JJ8 -> 349	0.30332				
341 -> 353	-0.15193				
	11 1:/11/6				

342 -> 352	0.15769				
346 -> 352	0.19217				
347 -> 353	-0.18552				
Excited State 20:	Singlet_A	3 60/3 eV	335.61 nm	f=0.0167	<\$**2>=0.000
226 > 249	0.14265	5.0745 CV	555.01 IIII	1-0.0107	<5 2>-0.000
330 -> 348	-0.14203				
337 -> 349	0.22752				
338 -> 348	0.20787				
341 -> 349	-0.13452				
341 -> 352	-0.22221				
342 -> 348	0.30722				
342 -> 353	0.24034				
346 > 353	0.19668				
340 > 353	0.10060				
547 -> 552	-0.19900				
E 1 C O		2 5 004 1			atta 0.000
Excited State 21:	Singlet-A	3.7091 eV	334.27 nm	t=0.2198	<s**2>=0.000</s**2>
334 -> 348	-0.14093				
336 -> 349	0.42091				
337 -> 348	-0.14616				
339 -> 348	-0.14357				
341 -> 348	0 17423				
342 > 349	0.35188				
542 -> 549	0.55188				
E: 4-1 S4-4- 22.	Sin -1-4 A	2 7100 -11	224 10	£_0.0040	<c**2>_0.000</c**2>
Excited State 22:	Singlet-A	3./109 eV	334.10 nm	I=0.0040	<8**2>=0.000
337 -> 348	0.18100				
338 -> 349	0.26887				
340 -> 349	0.10152				
341 -> 348	0.44397				
341 -> 353	0.22655				
342 -> 352	-0.23121				
$343 \rightarrow 348$	-0.10846				
346 > 352	0.11583				
340 -> 352	-0.11385				
54/->555	0.10216				
E 1 1 0 1 00		2 7205 11	222.25	6 0 0010	C**2 0.000
Excited State 23:	Singlet-A	3./205 eV	333.25 nm	f=0.0018	<\$**2>=0.000
336 -> 348	-0.27406				
337 -> 349	0.35440				
338 -> 348	0.29999				
340 -> 348	0.12553				
341 -> 352	0.14966				
342 -> 348	-0.21985				
342 -> 353	-0 16387				
512 0000	0.10507				
Excited State 24.	Singlet A	3 7275 eV	337 67 nm	f-0.0003	<\$**2>-0.000
241 > 240	o figict-A	5.1213 EV	<i>332.</i> 02 IIII	1-0.0003	-5 2/-0.000
341 -> 349	0.31782				
342 -> 348	0.39832				
343 -> 349	-0.19882				
Excited State 25:	Singlet-A	3.7501 eV	330.61 nm	f=0.1368	<s**2>=0.000</s**2>
334 -> 348	0.12655				
336 -> 349	-0.32287				
338 -> 349	-0.31700				
341 -> 348	0.24322				
342 -> 340	0.39406				
372 - 347 212 < 210	0.37400				
343 -> 348	-0.10894				
		2 0202 53	224.54	6.0.0100	
Excited State 26:	Singlet-A	3.8203 eV	324.54 nm	t=0.0198	<s**2>=0.000</s**2>
334 -> 349	-0.23214				
336 -> 348	0.41720				

338 -> 348	0.41223				
339 -> 349	-0.14390				
E 10. 10.		2 0015 1	210.00	6 0 01 42	-C**O 0.000
Excited State 27:	Singlet-A	3.8915 eV	318.60 nm	f=0.0143	<s**2>=0.000</s**2>
327 -> 349	-0.12625				
328 -> 348	0.11938				
331 -> 349	0.13565				
333 -> 348	-0.13599				
335 -> 349	0.39671				
336 -> 349	-0.14320				
337 -> 348	-0.19178				
338 -> 349	0.11672				
339 -> 348	-0.10007				
340 -> 349	0.11113				
343 -> 354	-0.11322				
346 -> 351	0.11754				
347 -> 350	-0.17767				
347 -> 354	-0.24633				
Excited State 28:	Singlet-A	3.9149 eV	316.70 nm	f=0.0002	<s**2>=0.000</s**2>
328 -> 349	-0.10534				
337 -> 349	-0.10391				
339 -> 349	-0.38832				
340 -> 348	0.45284				
340 -> 349	-0.16496				
346 -> 354	-0.11489				
Excited State 29:	Singlet-A	3.9169 eV	316.53 nm	f=0.0073	<8**2>=0.000
327 -> 349	0.10449	0.0100	010000 1111	1 010070	5 2 0.000
328 -> 348	-0 11790				
320×310 $334 \rightarrow 348$	0.11314				
337 -> 348	-0 12019				
339 -> 348	-0.12019				
330 -> 340	-0.15537				
337 -> 347 340 > 340	0.15557				
5-0-2 5-7	0.++101				
Excited State 30:	Singlet-A	3.9223 eV	316.10 nm	f=0.0064	<s**2>=0.000</s**2>
339 -> 349	-0.16767				
340 -> 348	0.15823				
346 -> 350	0.26584				
346 -> 354	0.33206				
347 -> 350	-0.20983				
347 -> 351	-0.28178				
347 -> 354	-0.17700				
347 -> 355	0.10768				
Excited State 31:	Singlet-A	3.9338 eV	315.18 nm	f=0.0833	<s**2>=0.000</s**2>
335 -> 349	0.30106		-		
337 -> 348	-0.18767				
338 -> 349	0.10923				
339 -> 348	0.12696				
346 -> 350	0.12913				
346 -> 351	-0.28821				
346 -> 354	0.21364				
346 -> 355	0.11249				
347 -> 350	0.23235				
347 -> 354	0.25375				
-					~
Excited State 32:	Singlet-A	3.9483 eV	314.02 nm	t=0.0066	<s**2>=0.000</s**2>
			\$36		

327 -> 349	0.25798				
328 -> 348	-0.25515				
329 -> 349	0.15924				
330 -> 348	0.19538				
331 -> 349	-0.17591				
334 -> 348	0.13262				
335 -> 349	0.16132				
337 -> 348	-0.20678				
339 -> 348	0.21647				
346 -> 351	0.14278				
347 -> 350	-0.13681				
Excited State 33:	Singlet-A	3.9599 eV	313.10 nm	f=0.0031	<s**2>=0.000</s**2>
327 -> 348	0.27880				
328 -> 349	-0.27300				
329 -> 348	0.18650				
330 -> 349	0.21280				
331 -> 348	-0.15832				
333 -> 349	0.16912				
336 -> 348	0.23610				
338 -> 348	0.10182				
339 -> 349	0.12606				
346 -> 350	0.15770				
346 -> 351	-0.12571				
347 -> 351	-0.14658				
Excited State 34:	Singlet-A	3.9854 eV	311.10 nm	f=0.0193	<s**2>=0.000</s**2>
333 -> 349	-0.10381				
335 -> 348	0.33846				
336 -> 348	-0.12011				
337 -> 349	-0.29693				
338 -> 348	0.26644				
339 -> 349	0.14370				
346 -> 350	-0.18387				
346 -> 354	0.11243				
347 -> 351	0.18364				
347 -> 355	0.10833				
Excited State 35:	Singlet-A	3.9884 eV	310.86 nm	f=0.0111	<s**2>=0.000</s**2>
344 -> 350	0.19982				
344 -> 351	0.14570				
345 -> 350	-0.13180				
345 -> 351	0.18301				
346 -> 350	-0.10004				
346 -> 351	0.31408				
346 -> 355	0.24994				
347 -> 350	-0.27927				
347 -> 354	0.23576				
347 -> 356	0.21657				
Excited State 36:	Singlet-A	3.9923 eV	310.56 nm	f=0.0074	<s**2>=0.000</s**2>
335 -> 348	-0.22305				
336 -> 348	0.10665				
337 -> 349	0.19250				
338 -> 348	-0.14394				
344 -> 350	0.14428				
344 -> 351	0.13632				
345 -> 350	0.16333				
345 -> 351	-0.18014				

346 -> 350	-0.19041				
346 -> 354	0.19275				
346 -> 356	0.19244				
347 -> 350	0.10913				
347 -> 351	0.20141				
347 -> 355	0.22594				
347 -> 356	-0.11332				
Excited State 37:	Singlet-A	4.0378 eV	307.06 nm	f=0.0013	<s**2>=0.000</s**2>
332 -> 349	0.38625				
333 -> 348	0.30070				
334 -> 348	-0.36518				
335 -> 349	-0.10017				
Excited State 38:	Singlet-A	4.0468 eV	306.38 nm	f=0.0179	<s**2>=0.000</s**2>
345 -> 350	-0.15964				
345 -> 351	0.19726				
346 -> 353	0.15588				
346 -> 355	0.10720				
347 -> 350	0.12730				
347 -> 351	0.13019				
347 -> 352	0.31367				
347 -> 353	-0.25545				
347 -> 354	-0.29392				
347 -> 356	0.19177				
Excited State 39:	Singlet-A	4.0495 eV	306.17 nm	f=0.0151	<s**2>=0.000</s**2>
344 -> 350	-0.23770				
344 -> 351	-0.19580				
346 -> 351	0.14100				
346 -> 352	-0.18053				
346 -> 354	0.42541				
346 -> 355	-0.17218				
346 -> 356	-0.19589				
347 -> 351	0.10468				
347 -> 353	-0.12446				
347 -> 354	0.13958				
347 -> 355	-0.10342				
Excited State 40:	Singlet-A	4.0612 eV	305.29 nm	f=0.0019	<s**2>=0.000</s**2>
346 -> 352	0.38184				
346 -> 353	0.47763				
346 -> 354	0.10328				
347 -> 352	0.18670				
347 -> 353	0.21719				

7. Time-resolved UV-vis absorption spectroscopy

The transient absorption spectra and the time profiles of the transient absorbance of **1** were recorded on a USB 4000 or Ocean FX multichannel detector (Ocean Optics). CUV-QPOD (Ocean Optics) equipped TC 125 temperature controller (QUANTUM) was used as a cuvette holder. The probe beam from a deuterium and a halogen lamps, DH-2000-BAL (Ocean Optics) were guided with a QP-600-1-SR optical fiber (Ocean Optics). Optical grade solvents were used for all measurements.

Figure S11. Time evolution of the UV–vis absorption spectrum of **1** in degassed toluene $(1.0 \times 10^{-5} \text{ M})$ (a) under the irradiation with 260 mW, 405-nm CW laser at 298 K and (b) after turning off the laser at 298 K. The inset shows the time variation of the transient absorbance at 420 nm.

Figure S12. Transient absorption spectra of **1** in degassed toluene $(1 \times 10^{-5} \text{ M})$ upon 430-nm light irradiation (350 mW) at 258 K.

Figure S13. Transient absorption spectra of **1** in degassed toluene $(1 \times 10^{-5} \text{ M})$ upon 430-nm light irradiation (350 mW) at 263 K.

Figure S14. Transient absorption spectra of **1** in degassed toluene $(1 \times 10^{-5} \text{ M})$ upon 430-nm light irradiation (350 mW) at 268 K.

Figure S15. Transient absorption spectra of **1** in degassed toluene $(1 \times 10^{-5} \text{ M})$ upon 430-nm light irradiation (350 mW) at 273 K.

Figure S16. Transient absorption spectra of **1** in degassed toluene $(1 \times 10^{-5} \text{ M})$ upon 430-nm light irradiation (350 mW) at 278 K.

Figure S17. Time profiles of the transient absorbance at 421 nm of **1** in degassed toluene $(1 \times 10^{-5} \text{ M})$ upon 430-nm light irradiation (350 mW).

Table S5. Rate Constants for the Thermal Back-Reaction, CL-C to C-C (k₁) and CL-CL to CL-C (k₂).

T / K	k_1 / s ⁻¹	$k_2 \ / \ { m s}^{-1}$
258	0.0039607	0.028335
263	0.0076033	0.047908
268	0.014193	0.10053
273	0.025086	0.15699
278	0.045635	0.27238

Figure S18. Eyring plot for the thermal back reaction from CL-C to C-C.

Figure S19. Eyring plot for the thermal back reaction from CL-CL to CL-C.

Table So. Activation Paral	neters for the Th	ermai Back-Reaction	1, CL-C 10 C-C a	and CL-CL 10 CL-C
	$\Lambda H^{\ddagger}/l_{\rm L} {\rm Imol}^{-1}$	$\Lambda S^{\dagger}/Lmol^{-1}K^{-1}$	$\Lambda C^{\ddagger}/k Lmol^{-1}$	tur @ 208K

1 D

c

	$\Delta H^{\ddagger}/ \text{kJ-mol}^{-1}$	ΔS^{\ddagger} / J•mol ⁻¹ •K ⁻¹	$\Delta G^{\ddagger}/ \text{kJ-mol}^{-1}$	<i>t</i> _{1/2} @ 298K
CL-C to C-C	70.3	-17.1	75.4	1.82 s
CL-CL to CL-C	65.9	-17.8	71.3	0.340 s

8. Laser Flash Photolysis

The laser flash photolysis experiments were carried out with a TSP-1000 time resolved spectrophotometer (UNISOKU). A 10 Hz Q-switched Nd:YAG laser (Continuum Minilite II) with the third harmonic at 355 nm (pulse width, 5 ns) was employed for the excitation light. The excitation pulse at 450 nm and 420 nm (pulse width, 5 ns) were provided by a Continuum Surelite II Q-Switched Nd:YAG coupled to a Continuum Panther EX OPO. The probe beam from a halogen lamp (OSRAM HLX64623) was guided with an optical fiber scope to be arranged in an orientation perpendicular to the exciting laser beam. The probe beam was monitored with a photomultiplier tube (Hamamatsu R2949) through a spectrometer (UNISOKU MD200) for time evolutions of the transient absorbance. The excitation intensity of one pulse was estimated by an energy detector (Gentec Electro-Optics QE12LP-S-MB) with an energy monitor (Gentec Electro-Optics MAESTRO). Optical grade solvents were used for all measurements.

Figure S20 shows the time profiles for the transient absorbance at 650 nm of **1** in benzene upon 450-nm or 355-nm laser pulse irradiation. The decay profiles follow the first-order kinetics and the half-life of the transient species was estimated to be 1.4 µs. Both transient absorption spectra obtained by the irradiation with UV and visible laser show similar broad absorption bands in vis-NIR region, corresponding to the generation of a transient radical species (Figure S21). This indicates that the biradical species was generated upon UV or visible light irradiation.

Figure S20. Time profiles of the transient absorbance at 650 nm for **1** in degassed benzene $(1.5 \times 10^{-5} \text{ M})$ upon 450 nm (5 mJ) or 255 nm (6mJ) laser irradiation. The inset shows the logarithmic plots of the decay profiles.

Figure S21. Normalized transient absorption spectra for 1 in degassed benzene upon laser irradiation.

9. Irradiation power dependence at PSS

Figure S22. (a) Absorption spectra of the PSS for 1 at 298 K under 0.13-2.10 mJ laser irradiation (450 nm, pulse width = 5 ns, 10 Hz).

Figure S23. (a) Experimental absorption spectra at 245 K under 0-260 mW CW laser irradiation (405 nm) at PSS. (b) Calculated absorption spectra with the molecular coefficients and estimated concentration by the global analyses for C-C, CL-C and CL-CL.

10. Reference

- S1. Yamaguchi, T.; Kobayashi, Y.; Abe, J. J. Am. Chem. Soc. 2016, 138, 906.
- S2. Hu, J.; Zhang, D.; Harris, F. W. J. Org. Chem. 2005, 70, 707.
- S3. Sheldrick GM. SHELXS-97 and SHELXL-97 1997; University of Gottingen, Germany.
- S4. Sheldrick GM. SADABS 1996; University of Gottingen, Germany.
- S5. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2009.