Supplementary Materials for

The hidden story in $BaNiO_3$ to $BaNiO_2$ reduction: adaptive structural series and NiO exsolution.

Angel M. Arevalo-Lopez, Marielle Huvé, Pardis Simon and Olivier Mentré *

XPS experiments were carried out in a Kratos AXIS Ultra DLD spectrometer, using a monochromatic AI K α radiation (1486.6 eV). High-resolution spectra were collected using an analysis area of \approx 300 μ m×700 μ m and a 40 eV pass energy. Instrument base pressure was 4×10⁻¹⁰ Torr. The bending energy scale was calibrated taking C 1s peak at 284.8 eV as reference. High-resolution spectra were collected at the center of the crater using an analysis area of 110 μ m in diameter.

Figure S1: Rietveld refinement of $BaNiO_3$ from crushed single crystals, used for High Temperature XRD.

Figure S2: Rietveld refinement of $BaNiO_2$ cooled from 900 °C but kept under inert N_2 atmosphere. BNO was treated in a Lebail-mode. NiO is refined to *ca.* 20% compared to the main phase.

Figure S3: Rietveld refinement of $BaNiO_2$ recovered from 900 °C and exposed to air. BNO vanished, with NiO now represents only few w% of the sample.

Figure S4: LeBail fit after re-oxydation of $BaNiO_2$ single crystals during TG under flowing air (900°C). Grinding the crystals shows a mixture of two 2H-BaNiO_{3-x} phases with distinct mixed valent Ni^{3/4+} states. The analogy of the refined lattice parameters for those listed in ref[1] after systematic nickel titration in the BaNiO_{3-x} series gives : for the main phase (a1, c1) BaNiO_{-2.4} and for the second one (a2, c2) BaNiO_{-2.5}.

S5: Ba_{1.16}NiO₃ Crystal structure refinement

Starting from an hexagonal 2H-ABO3 compound, the reduction of [BO₃]_∞ 1D-chains of face sharing octahedra (B_0) of the 2H-perovskite, induce the removal of MO₃ units which locally creates a trigonal prism (B_P) in the octahedral chains with stoichiometry $A_{1+x}BO_3$. In the studied system, evidence of the reduction product Ba₇Ni⁴⁺₅Ni²⁺ predicted to occur above 600°C was given by single crystal XRD in the sample heated at 700°C and cooled down. The new isolated Ba_{1.16}NiO₃ structure presents a sequence of 5 octahedra per 1 trigonal prism with an average nickel oxidation state of +3.666. The structure was refined in Jana2006² as a composite, following the methodology proposed in a number of prior works. ³⁻⁷ The crystal structure was treated according to the composite description, for which the strategy and key parameter and relations are well described.³⁻⁷ In few words the trigonal lattice parameters $[NiO]_{1-x}$ and [Ba] composite lattices are refined as a= 9.842(1), c_1 =2.5600(6), c_2 =4.4082(8). The system is treated with a (3+1)D symmetry considering $\gamma = c_1/c_2 = 0.58074$ (i.e. 7/12 in a commensurate approximation) and the modulation wave vector of the two composite parts $q_1^*=c_2^*=\gamma c_1^*$ and $q_2^*=c_1^*=\gamma^1 c_2^*$. According to the specificities of each lattice, the super space group pair is R-3m(00 γ) : P-3c1(00 γ^{-1}). Finally it is of primordial importance that in this system c₁ and c_2 reflecting the average NiO₆ polyhedron height (averaging P and O) and the mean Ba-Ba interlayer distances, the final composition $Ba_{1+x}(NiO_3)$ is γ dependent such that $\gamma = (1+x)/2$. In our case we find $Ba_{1.162}NiO_3$ (i.e.1/6 in a commensurate approximation). Automatically, one can deduce the ideal (i.e. commensurate) 2x [1P/50] sequence along c using a 12 fold supercell approximation γ =7/12 and x =1/6. Using the composite setting, both reflexions of the two sublattices are main reflections and the collected "true" satellites of 1st and 2nd orders are due to the interaction between the two lattices. The final R% are 4.97%(all), 3.84% (main), 12.83%(1st order) and 12.71% (2nd order) using positional waves of 4th, 1st, 4th orders and thermal parameters waves of 2nd, 1st and 0th orders for the three Ni, O and Ba atoms. The oxygen occupancy is responsible for the octahedral vs. prismatic cavities and was modelled by a Crenel function (width along x4 : Δ = 0.5, center x4₀ = 0.25) smoothed by one harmonic.⁶ Finally the refinement of the crystal structure in a commensurate approximation whatever the origin of t is, seriously damaged the R% values, especially on the satellites (R_{satt} 1st ~16 to 20 %), which the reality of an incommensurate sequence where the 50/1P sequence is sometimes broken.

	Ba _{1+x} NiO ₃
Refined X value/ideal	0.162 / 1/6
Composite approach	Sublattice 1 : [NIO ₃]
Lattice 1	Rhombohedral
a1 (Å)	9.842(1,)
_c1 (Å)	2.5600(6)
	Sublattice 2 : [Ba] _{1+x}
Lattice 2	Trigonal
a2 = a1	
c2 (Å)	4.4082(8).
γ =c1/c2	0.58074
Superspace group	R-3m(00γ)0s : P-3c1(00γ ⁻¹)
	Data Collection
Wavelength (Å)	0.71073 (Å)
$ heta_{min ext{-max}}$ (°)	2.71-31.42
scan	ω- φ
h,k,l _{min,max}	-14 <h,k<-14 -5<l<-5<="" ;="" td=""></h,k<-14>
	Refinement
Ref. Program	JANA 2006
Convergence/weight	Refinement on F, w=1/($\sigma^2(F)$ +0.0001F ²)
N Ref. (all/I>3 σ (I)) -	
R _{obs} /wR _{obs} (%)	4.96/5.26
N Main – R _{obs} /wR _{obs} (%)	417/152 - 3.83/4.16
N 1 st order – R _{obs} /wR _{obs} (%)	499/72 – 12.83/16.78
N 2 nd order – R _{obs} /wR _{obs} (%)	326/10 - 12.81/15.16
R _{int} (%) (-3m Laue class)	14.4
Δho _{min/max} (e/ų)	4.87/-5.35
Twin (obv/Rev)	0.488(4)/0.512(4)

Table S6: crystal data and refinement parameters for $\mathsf{Ba}_{1.16}\mathsf{NiO}_3$

	х	У	Z	U iso/eq (Ų)
Ni1 3(a)	0	0	0	0.0324(9)
Sin ¹ _{x,y,z}	0	0	0	
Cos ¹ _{x,y,z}	0	0	0	
Sin ² _{x,y,z}	0	0	-0.063(2)	
Cos ² _{x,y,z}	0	0	0	
Sin ³ _{x,y,z}	0	0	0	
Cos ³ _{x,y,z}	0	0	0	
Sin ⁴ _{x,y,z}	0	0	0.024(3)	
Cos ⁴ _{x,y,z}	0	0	0	
O1 18(g),	0.1427(7)	0.1427(7)	0.5	0.041(4)
Cresnel $x_{40} = \frac{1}{4}, \Delta = \frac{1}{2}$			/	
Sin ¹ _{x,y,z}	-0.0011(10)	-0.0011(10)	-0.171(6)	
Cos ¹ _{x,y,z}	0.002(2)	0.002(2)	0	
Ba1 36(i), Occ. 1/6 Cresnel x₄₀ = 0 , ∆ = 1	1/3	1/4	0.0139(15)	
Sin ¹ _{x,y,z}	0.025(5)	0.013(2)	-0.013(10)	
Cos ¹ _{x,y,z}	0	0.000(6)	0	
Sin ² _{x,y,z}	0.002(7)	0.001(4)	-0.0.029(7)	
Cos ² _{x,y,z}	0	0.004(5)	0	
Sin ³ _{x,y,z}	0.000(10)	0.000(5)	0.050(15)	
Cos ³ _{x,y,z}	0	0.012(11)	0	
Sin ⁴ _{x,y,z}	-0.014(6)-	0.007(3)	-0.059(12)	
Cos ⁴ _{x,y,z}	0	0.038(15)	0	

Table S7: atomic parameters and displacement for Ba_{1.16}NiO₃

Table S8: ADP parameters and displacement for Ba_{1.16}NiO₃

	U11	U22	U33	U12	U13	U23
Ni1	0.0326(9)	0.0326(9)	0.0321(19)	0.0163(4)	0	0
Sin ¹	0.0520(5)	0.0520(5)	0.0521(15)	0.0105(4)	0	0
Cos ¹	0	0	0	0	0	0
Sin ² u	0	0	0	0	0	0
Cos ² _U -	0.019(2)	-0.019(2)	-0.021(3)	-0.0097(11)	0	0
01 Sin ¹	0.038(4)	0.038(4)	0.051(7) 0	0.021(4)	-0.008(3)	0.008(3
Cos ²¹ U	- 0.024(12)	-0.024(12)	0.09(2)	-0.047(13)	-0.032(11)	0.032(11)

Table S9: Main distances for Ba_{1.16}NiO₃

Average min max

Ni-O (6x) : 1.911(13) 1.744(16) 2.333(16) Ba-O (6x) : 2.850(3) 2.60(2) 3.02(3) Ba-O (6x) : 2.983(3) 2.90(3) 3.41(4)

References

¹ M. Arjoman, D.J. Machin, (1975). Oxide chemistry. Part I. Ternary oxides containing nickel in oxidation states II, III, and IV. Journal of The Chemical Society-dalton Transactions - J CHEM SOC DALTON TRANS. 10.1039/dt9750001055.

² V. Petricek, V. Eigner, M. Dusek and A. Cejchan, Z. Kristallogr. Cryst. Mater., 2016, 231, 583.

³ A. El Abed, S. E. Elqebbaj, M. Zakhour, M. Champeaux, J.M. Perez-Mato, J. Darriet, *J. Solid State Chem.*, 2001, **161**, 300.

⁴ M. Zakhour-Nakhl, F. Weill, J. Darriet, J.M. Perez-Mato, Int. J. Inorg. Chem., 2000, **2**, 71.

⁵ M. Evain, F. Boucher, O. Gourdon, V. Petricek, M. Dusek, and P. Bezdicka, *Chem. Mater.*, 1998, **10**, 3068.
 ⁶ O. Gourdon, V. Ptricek, M. Dusek, P. Bezdicka, S. Durovic, D. Gyepesova, M. Evain, *Acta cryst.*, 1999, **B55**, 841.

⁷ P. Roussel, O. Perez, E. Quarez, H. Leligny, O. Mentré, Z. Kristallogr., 2010, **225**, 1.