Transition-metal-free Regioselective Construction of 1,5-Diaryl-1,2,3triazoles through Dehydrative Cycloaddition of Alcohols with Arylazides Mediated by $\mathrm{SO}_{2} \mathbf{F}_{\mathbf{2}}$
Xu Zhang, K. P. Rakesh and Hua-Li Qin*
State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science Wuhan University of Technology, Wuhan 430070 (China)
E-mail: qinhuali@whut.edu.cn

Table of Contents

1. General Information 3
2. Screening the Optimized Reaction Conditions for One-Pot Synthesis of 1,5- Disubstituted Triazole 4
3. General Procedures 6
4. Product Characterization 9
5. References 34
6. NMR Spectra 36

1. General Information

Unless otherwise specified, NMR spectra were recorded in CDCl_{3} on a 500 MHz (for
${ }^{1} \mathrm{H}$), 471 MHz (for ${ }^{19} \mathrm{~F}$), 126 MHz (for ${ }^{13} \mathrm{C}$) spectrometer. All chemical shifts were reported in ppm relative to TMS $\left({ }^{1} \mathrm{H}\right.$ NMR, 0 ppm$)$ as internal standards. The HPLC experiments were carried out on a Waters e2695 instrument (column: J\&K, RP-C18, 5 $\mu \mathrm{m}, 4.6 \times 150 \mathrm{~mm}$), and the yields of the products were determined by using the corresponding pure compounds as the external standards. The coupling constants were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, $\mathrm{dd}=$ doublet of doublets. HRMS experiments were performed on a TOF-Q ESI or CI/EI instrument. Melting points were measured and uncorrected. Reagents used in the reactions were all purchased from commercial sources and used without further purification.
2. Screening the Optimized Reaction Conditions for One-Pot Synthesis of 1,5-

Disubstituted Triazole

Table 1 Screening the base ${ }^{\text {a }}$

 1a	$\frac{\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}_{2} \mathrm{SO}_{2} \mathrm{~F}_{2} \text {, r.t, } 2 \mathrm{~h}}{\text { then Ph- } \mathrm{N}_{3}, \text { Base, } \mathrm{DMSO}, \mathrm{Ar}, \text { r.t, } 12 \mathrm{~h}}$	3a
Entry	Base (2.0 eq.)	Yield (3a, \%) ${ }^{\text {b }}$
1	t-BuOK	40
2	CsF	<5
3	KOH	25
4	KNO_{3}	n.d.

5	KF	n.d.
6	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	<5
7	$\mathrm{CH}_{3} \mathrm{COOK}^{2}$	n.d.
8	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	n.d.

${ }^{\text {a }}$ Reaction conditions: 4-biphenylethanol ($\mathbf{1 a}, 0.4 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.8 \mathrm{mmol}, 2.0$ eq.), DMSO (3.0 mL) were added to a reaction tube (10 mL) and $\mathrm{SO}_{2} \mathrm{~F}_{2}$ was introduced into the reaction mixture through a balloon before reacting at room temperature for 2 h. The $\mathrm{SO}_{2} \mathrm{~F}_{2}$ balloon was removed from reaction, phenyl-azide (2a, 2 eq.), another base (2.0 eq.) and DMSO (0.5 mL) were subsequently added, then the reaction mixture was allowed to stir at room temperature for 12 h under argon atmosphere. ${ }^{\mathrm{b}}$ The yield was determined by HPLC using 3a as the external standard $\left(t_{\mathrm{R}}=5.509 \mathrm{~min}\right.$, $\lambda_{\text {max }}=276.0 \mathrm{~nm}$, acetonitrile/water $=70: 30(\mathrm{v} / \mathrm{v})$).

Table 2 Screening the amount of base ${ }^{\text {a }}$

Entry t-BuOK (X eq.)	Yield (3a, \%) ${ }^{\text {b }}$	
1	1.0	<5
2	2.0	40
$\mathbf{3}$	$\mathbf{3 . 0}$	$\mathbf{8 2}$
4	4.0	87
5	4.5	83
6	5.0	68

${ }^{\text {a Reaction conditions: }}$ 4-biphenylethanol (1a, 0.4 mmol$), \mathrm{K}_{2} \mathrm{CO}_{3}(0.8 \mathrm{mmol}, 2.0$ eq.), DMSO (3.0 mL) were added to a reaction tube $(10 \mathrm{~mL})$ and $\mathrm{SO}_{2} \mathrm{~F}_{2}$ was introduced into the reaction mixture through a balloon before reacting at room temperature for 2 h. The $\mathrm{SO}_{2} \mathrm{~F}_{2}$ balloon was removed from reaction, phenyl azide (2a, 2 eq.), t - BuOK (X eq.) and DMSO (0.5 mL) were subsequently charged, then the reaction stirred at room temperature for 12 h under argon atmosphere. ${ }^{\mathrm{b}}$ The yield was determined by HPLC using 3a as the external standard $\left(t_{\mathrm{R}}=5.509 \mathrm{~min}, \lambda_{\max }=276.0 \mathrm{~nm}\right.$, acetonitrile/water $=70: 30(\mathrm{v} / \mathrm{v})$).

Table 3 Screening the amount of azidobenzene ${ }^{\mathrm{a}}$

1a	$\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}, \mathrm{SO}_{2} \mathrm{~F}_{2}$, r.t, 2 h	
Entry	Ph- $\mathrm{N}_{3}(\mathrm{Xeq})$.	Yield $(\mathbf{3 a}, \%)^{\mathrm{b}}$
1	1.0	77
$\mathbf{2}$	$\mathbf{1 . 5}$	$\mathbf{8 2}$
3	2.0	84
4	3.0	73

${ }^{\text {a Reaction conditions: }}$ 4-biphenylethanol ($\mathbf{1 a}, 0.4 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.8 \mathrm{mmol}, 2.0$ eq.), DMSO (3.0 mL) were added to a reaction tube $(10 \mathrm{~mL})$ and $\mathrm{SO}_{2} \mathrm{~F}_{2}$ was introduced into the reaction mixture through a balloon before reacting at room temperature for 2 h. The $\mathrm{SO}_{2} \mathrm{~F}_{2}$ balloon was removed from reaction, phenyl azide (2a, X eq.), t-BuOK (3 eq.) and DMSO (0.5 mL) were subsequently charged, then the reaction stirred at room temperature for 12 h under argon atmosphere. ${ }^{\text {b }}$ The yield was determined by HPLC using 3a as the external standard $t_{\mathrm{R}}=5.509 \mathrm{~min}, \lambda_{\max }=276.0 \mathrm{~nm}$, acetonitrile/water $=70: 30(\mathrm{v} / \mathrm{v}))$.

3. General Procedures.

3.1 General Procedure for Synthesis Aryl Ethanols.

$\mathbf{1 a}$ and $\mathbf{1 c}$ were prepared according to the literatures. ${ }^{[1,2]} \mathbf{1} \mathbf{j} \mathbf{- 1 t}$ were prepared according to the literatures. ${ }^{[3 \sim 9]}$ Others were all purchased from commercial sources and used without further purification.

3.2 General Procedure for Synthesis Aryl Azides.

2ba-2bx were all prepared according to the literatures. ${ }^{[10,11]}$ 2by was prepared according to the literature. ${ }^{[12]}$ (Caution: extraction should never be performed with halogenated solvents such as DCM or CHCl_{3} as these solvents can react with residual sodium azide to form diazidomethane or azidoform which are highly shock sensitive
and energetic explosives.).

3.3 General Procedure for Synthesis 1,5-Disubstituted Triazole.

Procedure A

Aryl ethanol (1, 1.0 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{mmol}, 2.0$ eq., 277 mg), DMSO (0.13 M) were added to a reaction tube (25 mL) and $\mathrm{SO}_{2} \mathrm{~F}_{2}$ was introduced into the reaction mixture through a balloon before reacting at room temperature for 2 h , the $\mathrm{SO}_{2} \mathrm{~F}_{2}$ balloon was removed from reaction, then azido benzene ($\mathbf{2 a}, 1.5 \mathrm{mmol}, 1.5 \mathrm{eq} ., 179$ mg), t-BuOK ($3 \mathrm{mmol}, 3.0$ eq., 337 mg) were subsequently added and the mixture was stirred at room temperature for 12 h under argon atmosphere before extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$ and the combined organic layers was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude products were further purified by column chromatography on silica gel by gradient elution with petroleum ether/ethyl acetate ($85 / 15$ to $50 / 50$) as eluent to obtain pure triazoles 3 .

Procedure B

Phenyl ethanol (1b, 1.0 mmol$), \mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{mmol}, 2.0$ eq., 277 mg), DMSO (0.13 M) were added to a reaction tube (25 mL) and $\mathrm{SO}_{2} \mathrm{~F}_{2}$ was introduced into the reaction mixture through a balloon before reacting at room temperature for 2 h , the $\mathrm{SO}_{2} \mathrm{~F}_{2}$ balloon was removed from reaction, then aryl azide ($2,1.5 \mathrm{mmol}, 1.5$ eq., 179 mg), t -

BuOK ($3 \mathrm{mmol}, 3.0$ eq., 337 mg) were subsequently added and mixture was stirred at room temperature for 12 h under argon atmosphere. The reaction mixture was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$) and the combined organic layers was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude products were further purified by column chromatography on silica gel by gradient elution with petroleum ether/ethyl acetate ($85 / 15$ to $50 / 50$) as eluent to obtain pure triazoles 3 .

3.4 General Procedure for Synthesis 1,5-Disubstituted Triazole through Alkyl

Alcohol.

In first step, 4-phenylbutan-1-ol (1ag, 1.0 mmol$), \mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{mmol}, 1.2$ eq., 166 mg$)$, DMSO $(0.13 \mathrm{M})$ were added to a reaction tube $(25 \mathrm{~mL})$ and $\mathrm{SO}_{2} \mathrm{~F}_{2}$ was introduced into the reaction mixture through a balloon before reacting at room temperature for 12 h , then added DBU (6 eq., $6 \mathrm{mmol}, 914 \mathrm{mg}$) into the reaction tube and $\mathrm{SO}_{2} \mathrm{~F}_{2}$ was introduced into the reaction mixture through a balloon stirred for another 12 h . The reaction mixture was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$ and the combined organic layers was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude products were further purified by column chromatography on silica gel by gradient elution with petroleum ether/ethyl acetate (90/10 to 80/20) as eluent to obtain isomer 4.

In second step, 4-phenylbut-1-en-1-yl sulfurofluoridate (4, 1 mmol, 230.3 mg) was added to a reaction tube (25 mL), then t-BuOK ($2 \mathrm{mmol}, 2.0$ eq., 225 mg) and azido benzene (2a, $1.5 \mathrm{mmol}, 1.5$ eq., 179 mg) were subsequently added at $0^{\circ} \mathrm{C}$ and mixture was stirred at room temperature for 12 h under argon atmosphere in mixed solvent DMSO : THF $=5: 2(\mathrm{v} / \mathrm{v})$. The reaction mixture was extracted with ethyl acetate
($3 \times 50 \mathrm{~mL}$) and the combined organic layers was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude products were further purified by column chromatography on silica gel by gradient elution with petroleum ether/ethyl acetate ($85 / 15$ to $50 / 50$) as eluent to obtain pure triazoles 3ag.

4. Product Characterization.

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $214 \mathrm{mg}, 72 \%$ yield, mp 157.8-159.0 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 7 \mathrm{H})$, $7.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.0,139.9,137.5,136.7,133.5,129.5,129.4$, 128.98 128.96, 128.0, 127.5, 127.0, 125.6, 125.3.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3}:$ 298.1266, found: 298.1265.
1,5-diphenyl-1H-1,2,3-triazole (3b). ${ }^{[13]}$

3b
According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $190 \mathrm{mg}, 86 \%$ yield, mp 104.0-106.0 ${ }^{\circ} \mathrm{C}$ (lit. 113-114 ${ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 5 \mathrm{H})$, 7.23-7.21 (m, 2H).

1-phenyl-5-(p-tolyl)-1H-1,2,3-triazole (3c). ${ }^{[16]}$

3c
According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $183 \mathrm{mg}, 78 \%$ yield, mp 142.0-143.5 ${ }^{\circ} \mathrm{C}$ (lit. $141-142{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 2 \mathrm{H})$, 7.16-7.11 (m, 4H), 2.36 (s, 3H).

5-(4-(tert-butyl) phenyl)-1-phenyl-1H-1,2,3-triazole (3d).

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange liquid, $140 \mathrm{mg}, 51 \%$ yield, mp 157.0$158.0^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 4 \mathrm{H})$, 7.15 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.31$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 152.5, 137.8, 136.8, 133.3, 129.4, 129.3, 128.2, 125.9,
125.3, 123.7, 34.8, 31.2.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3}: 278.3710$, found: 278.3712 .
5-(4-methoxyphenyl)-1-phenyl-1H-1,2,3-triazole (3e). ${ }^{[16]}$

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange liquid, $226 \mathrm{mg}, 90 \%$ yield, mp 61.0-63.0 ${ }^{\circ} \mathrm{C}$ (lit. $97-98^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$.

5-(4-(benzyloxy) phenyl)-1-phenyl-1H-1,2,3-triazole (3f).

According to general procedure A , petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $186 \mathrm{mg}, 57 \%$ yield, mp 95.8-97.3 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 10 \mathrm{H}), 7.15\left(\mathrm{dt}, J_{1}=8.8 \mathrm{~Hz}\right.$, $\left.J_{2}=2.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.94\left(\mathrm{dt}, J_{1}=8.9 \mathrm{~Hz}, J_{2}=2.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.06(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,137.6,136.7,136.4,133.0,130.0,129.4,129.2$, 128.7, 128.2, 127.5, 125.3, 119.2, 115.2, 70.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}: 328.1372$, found: 328.1370 .

5-(4-(methylthio) phenyl)-1-phenyl-1H-1,2,3-triazole (3g).

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $165 \mathrm{mg}, 62 \%$ yield, mp 103.8-105.3 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.36-7.34(\mathrm{~m}$, 2H), 7.19-7.15 (m, 2H), 7.11 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.7,137.4,136.6,133.2,129.5,129.3,128.8,126.1$, 125.3, 122.9, 15.1.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S}: 268.0830$, found: 268.0830 .

5-(4-fluorophenyl)-1-phenyl-1H-1,2,3-triazole (3h). ${ }^{[15]}$

3h
According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $175 \mathrm{mg}, 74 \%$ yield, mp 89.0-91.0 ${ }^{\circ} \mathrm{C}$ (lit. $100-103{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H})$, $7.03(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.9-111.0(\mathrm{~m}, \mathrm{Ar}-\mathrm{F})$.

5-(4-chlorophenyl)-1-phenyl-1H-1,2,3-triazole (3i). ${ }^{[16]}$

3i
According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $190 \mathrm{mg}, 75 \%$ yield, mp 114.0-116.0 ${ }^{\circ} \mathrm{C}$ (lit. $105-106^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 4 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$.

5-(4-bromophenyl)-1-phenyl-1H-1,2,3-triazole (3j). ${ }^{[13]}$

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $178 \mathrm{mg}, 60 \%$ yield, mp 139.5-141.5 ${ }^{\circ} \mathrm{C}$ (lit. $151-152^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.09\left(\mathrm{dt}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 2 \mathrm{H}\right)$.

1-phenyl-5-(4-(trifluoromethoxy) phenyl)-1H-1,2,3-triazole (3k).

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange liquid, $175 \mathrm{mg}, 58 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 2 \mathrm{H})$, 7.27-7.25 (m, 2H), 7.19 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,136.4(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 133.6,130.2,129.6$, 125.4, 125.3, 121.2.

In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k}$, theoretically, there should be eleven peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.8(\mathrm{~s}, 3 \mathrm{~F})$.
HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}: 306.0776$, found: 306.0770.

1-phenyl-5-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole (31).

According to general procedure A , petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as
eluent for column chromatography. Orange liquid, $140 \mathrm{mg}, 49 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}$, 3H), 7.36-7.33 (m, 4H).
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.9(\mathrm{~s}, 3 \mathrm{~F})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.4,136.3,133.8,131.4,131.1,130.4,129.64$, 129.61, 128.9, 125.9 (q, $J=3.6 \mathrm{~Hz}$), 125.3, 124.8, 122.6.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3}:$ 290.0827, found: 290.0830 .

1-phenyl-5-(m-tolyl)-1H-1,2,3-triazole (3m). ${ }^{[15]}$

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $173 \mathrm{mg}, 74 \%$ yield, mp 104.0-106.0 ${ }^{\circ} \mathrm{C}$ (lit. $109-113{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 2 \mathrm{H})$, 7.21-7.18 (m, 2H), $7.08(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$.

5-(3-methoxyphenyl)-1-phenyl-1H-1,2,3-triazole (3n).

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $189 \mathrm{mg}, 76 \%$ yield, mp 95.5-97.0 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89\left(\mathrm{dd}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.7,137.6,136.6,133.4,130.0,129.4,129.3,127.9$,
125.3, 121.0, 115.0, 114.0, 55.2.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: 252.1059$, found: 252.1050 .

5-(3-fluorophenyl)-1-phenyl-1H-1,2,3-triazole (30).

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $172 \mathrm{mg}, 72 \%$ yield, $\mathrm{mp} 116.0-117.2$ ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.05(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.30-111.35$ (m, Ar-F).
${ }^{13}$ C NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.6(\mathrm{~d}, J=247.9 \mathrm{~Hz}), 136.60,136.58,136.3,133.6$, 130.7 (d, $J=9.1 \mathrm{~Hz}$), 129.5 (d, $J=2.8 \mathrm{~Hz}$), 128.7 (d, $J=8.1 \mathrm{~Hz}), 125.2,124.4(\mathrm{~d}, J=$ 2.7 Hz), 116.3 (d, $J=20.8 \mathrm{~Hz}$), 115.5 ($\mathrm{d}, J=23.6 \mathrm{~Hz}$).

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{FN}_{3}: 240.0859$, found: 240.0860 .

5-(3-chlorophenyl)-1-phenyl-1H-1,2,3-triazole (3p). ${ }^{[15]}$

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $186 \mathrm{mg}, 73 \%$ yield, $78.0-80.0^{\circ} \mathrm{C}$, (lit. $85-87^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H})$, $7.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$.

3q
According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Red liquid, $150 \mathrm{mg}, 50 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{t}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.97$ (s, 3F).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.3,136.2(\mathrm{~d}, J=17.2 \mathrm{~Hz}), 133.6,130.5,129.64$, 129.58, 129.3, 128.7, 126.9, 125.3, 125.2, 121.7, 121.0.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}: 306.0776$, found: 306.0776.
1-phenyl-5-(o-tolyl)-1H-1,2,3-triazole (3r). ${ }^{[16]}$

$3 r$
According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $200 \mathrm{mg}, 86 \%$ yield, mp 61.0-63.0 ${ }^{\circ} \mathrm{C}$ (lit. $81-82^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H})$, $1.96(\mathrm{~s}, 3 \mathrm{H})$.

5-(2-methoxyphenyl)-1-phenyl-1H-1,2,3-triazole (3s). ${ }^{[15]}$

3s
According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $185 \mathrm{mg}, 74 \%$ yield, mp 86.5-88.0 15/68
${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.23\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}\right.$, $\left.J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.97\left(\mathrm{td}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (s, 3H).

5-(2-fluorophenyl)-1-phenyl-1H-1,2,3-triazole (3t). ${ }^{[17]}$

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $181 \mathrm{mg}, 76 \%$ yield, mp 103.0-105.0 ${ }^{\circ} \mathrm{C}$ (lit. $97-9{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.87-111.92(\mathrm{~m}, \mathrm{Ar}-\mathrm{F})$.

1-phenyl-5-(2-(trifluoromethyl)phenyl)-1H-1,2,3-triazole (3u).

3u
According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $100 \mathrm{mg}, 35 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.7(\mathrm{~s}, 3 \mathrm{~F})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.3,135.2,134.1,132.7,131.8,130.1,129.8,129.3$ 129.1, 126.7 (q, $J=3.5 \mathrm{~Hz}$), $125.9,124.6,122.3$.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3}:$ 290.0827, found: 290.0827 .

5-(2-nitrophenyl)-1-phenyl-1H-1,2,3-triazole (3v). ${ }^{[26]}$

$3 v$
According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Black solid, $45 \mathrm{mg}, 17 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{q}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H})$, $7.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$.

5-(2,5-dimethylphenyl)-1-phenyl-1H-1,2,3-triazole (3w).

According to general procedure A, 4 eq. t-BuOK was used, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, 150 mg , 61% yield, mp 121.8-123.2 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 1 H), 7.08 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.02 (s, 1H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.1,136.9,135.8,134.4,134.1,131.0,130.61$, 130.57, 129.2, 128.7, 126.6, 123.7, 20.8, 19.3.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3}: 250.1266$, found: 250.1260.

5-(3,5-dimethoxyphenyl)-1-phenyl-1H-1,2,3-triazole (3x).

According to general procedure A , petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $190 \mathrm{mg}, 68 \%$ yield, mp 148.0-149.2
${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 5 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.9,137.7,136.7,133.3,129.4,129.3,128.3,125.3$, 106.7, 101.3, 55.3.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: 282.1164, found: 282.1160.

5-(2,3-dimethoxyphenyl)-1-phenyl-1H-1,2,3-triazole (3y).

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $126 \mathrm{mg}, 45 \%$ yield, $\mathrm{mp} 78.5-80.0$ ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 5 \mathrm{H}), 7.03(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.0,147.0,137.2,134.7,134.1,129.2,128.9,124.2$, 124.1, 122.6, 121.4, 114.0, 60.5, 55.9.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: 282.1164, found: 282.1164.

5-(3,4-dichlorophenyl)-1-phenyl-1H-1,2,3-triazole (3z).

According to general procedure A , petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $130 \mathrm{mg}, 45 \%$ yield, mp 125.3-126.7 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.41-7.36$ (m, $4 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.1,135.6,133.8,133.7,133.3,131.0,130.3,129.8$,
129.7, 127.7, 126.7, 125.2.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3}:$ 290.0174, found: 290.0170 .

1-phenyl-5-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (3aa).

According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange liquid, $127 \mathrm{mg}, 41 \%$ yield.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.38(\mathrm{~m}, 2 \mathrm{H})$, $6.38(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4,138.8,137.8,136.7,132.9,129.4,129.3,125.5$, 121.8, 105.9, 60.9, 56.0.

HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}: 312.1270$, found: 312.1270.

5-(benzo[d] [1,3] dioxol-5-yl)-1-phenyl-1H-1,2,3-triazole (3ab).

According to general procedure A , petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $195 \mathrm{mg}, 74 \%$ yield, mp 133.0-134.5 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.38-7.36(\mathrm{~m}$, $2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73\left(\mathrm{dd}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.63(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.98$ (s, 2H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.5,148.1,137.6,136.6,133.2,129.4$ (d, $J=17.2$ $\mathrm{Hz}), 125.2,122.9,121.9,120.2,109.4,108.8(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 101.6$.

HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}:$ 266.0851, found: 266.0850.
5-(naphthalen-1-yl)-1-phenyl-1H-1,2,3-triazole (3ac). ${ }^{[14]}$

3ac
According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow liquid, $200 \mathrm{mg}, 74 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1$
$\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50\left(\mathrm{td}, J_{1}=6.9 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.44\left(\mathrm{td}, J_{1}\right.$ $\left.=7.2 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.32-7.22(\mathrm{~m}, 6 \mathrm{H})$.

3-(1-phenyl-1H-1,2,3-triazol-5-yl) pyridine (3ad).

According to general procedure A, 4 eq. t-BuOK was used, petroleum ether / ethyl acetate $=50: 50(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, 115 mg , 72% yield, mp $152.9-154.0^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57\left(\mathrm{dd}, J_{1}=4.9 \mathrm{~Hz}, J_{2}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.51(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.3,149.1,136.1,135.7,134.7,133.7,130.0,129.7$, 125.3, 123.5, 123.2.

HRMS-ESI $(\mathrm{m} / \mathrm{z}): ~[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4}: 223.0905$, found: 223.0900.

1-phenyl-5-(thiophen-3-yl)-1H-1,2,3-triazole (3ae).

3ae
According to general procedure A, 4 eq. t-BuOK was used, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, 155 mg , 69% yield, mp 89.5-91. $0^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.41-7.40(\mathrm{~m}$,

2H), 7.32-7.31 (m, 1H), 7.14 (s, 1H), 6.92 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.7,133.6,132.8,129.7,129.5,127.0,126.8,126.7$, 125.6, 124.7.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{~S}: 228.0517$, found: 228.0515 .

1-phenyl-5-(thiophen-2-yl)-1H-1,2,3-triazole (3af). ${ }^{[18]}$

3af
According to general procedure A, 4 eq. t-BuOK was used, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, 186 mg , 82% yield, mp 97.5-99.0 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$.

5-phenethyl-1-phenyl-1H-1,2,3-triazole (3ag).

According to general procedure 3.4, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $167 \mathrm{mg}, 67 \%$ yield.
${ }^{1}{ }^{\mathbf{H}}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.43-7.40 (m, 1H), 7.32-7.29 (m, 2H), 7.24-7.21 (m, 3H), 3.16-3.13 (m, 2H), 3.093.06 (m, 2H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.0,141.1,137.3,129.7,128.53,128.50,126.2$, 120.4, 119.2, 35.5, 27.5.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3}: 250.1266$, found: 250.1260 .

1-(4-fluorophenyl)-5-phenyl-1 H-1,2,3-triazole (3ba). ${ }^{[22]}$

3ba
According to general procedure B , petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $190 \mathrm{mg}, 80 \%$ yield, $\mathrm{mp} 155.0-157.0$ ${ }^{\circ} \mathrm{C}$ (lit. $140-141{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.12(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{19} \mathbf{F}$ NMR (471 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-111.12--111.18(\mathrm{~m}, \mathrm{Ar}-\mathrm{F})$.

1-(4-bromophenyl)-5-phenyl-1H-1,2,3-triazole (3bb). ${ }^{\text {[21] }}$

3bb
According to general procedure B, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $272 \mathrm{mg}, 91 \%$ yield, $\mathrm{mp} 88.0-90.0$ ${ }^{\circ} \mathrm{C}$ (lit. $100-102{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{q}, J=7.2$ Hz, 3H), 7.23-7.20 (m, 4H).

1-(4-nitrophenyl)-5-phenyl-1H-1,2,3-triazole (3bc). ${ }^{[22]}$

3bc
According to general procedure B , petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Red solid, $185 \mathrm{mg}, 70 \%$ yield, $\mathrm{mp} 151.0-153.0^{\circ} \mathrm{C}$, (lit. $164-165^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.9$
$\mathrm{Hz}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$.

4-(5-phenyl-1H-1,2,3-triazol-1-yl) benzonitrile (3bd). ${ }^{\text {[23] }}$

3bd
According to general procedure B, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $170 \mathrm{mg}, 70 \%$ yield, $\mathrm{mp} 115.0-117.0$ ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.

5-phenyl-1-(4-(trifluoromethoxy) phenyl)-1H-1,2,3-triazole (3be).

3be
According to general procedure B , petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $245 \mathrm{mg}, 81 \%$ yield, mp 89.7-91.5 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 149.4, 137.9, 134.9, 133.7, 129.6, 129.1, 128.7, 126.6, 126.4, 122.4, 121.7.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.9(\mathrm{~s}, 3 \mathrm{~F})$.
HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}: 306.0776$, found: 306.0775.
5-phenyl-1-(m-tolyl)-1H-1,2,3-triazole (3bf). ${ }^{[24]}$

3bf
According to general procedure B, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange liquid, $230 \mathrm{mg}, 98 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 5 \mathrm{H})$, $7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$.

1-(3-chlorophenyl)-5-phenyl-1H-1,2,3-triazole (3bg). ${ }^{[18]}$

3bg
According to general procedure B , petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange liquid, $254 \mathrm{mg}, 99 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$.

5-phenyl-1-(3-(trifluoromethoxy) phenyl)-1H-1,2,3-triazole (3bh).

3bh
According to general procedure B, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow liquid, $190 \mathrm{mg}, 63 \%$ yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}$, $4 \mathrm{H}), 7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3,136.2(\mathrm{~d}, J=20.0 \mathrm{~Hz}$), 133.7, 130.5, 129.65, 129.58, 128.7, 126.9, 125.3, 121.7, 121.0.

In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b h}$, theoretically, there should be thirteen peaks. Due to
the compact overlaying, it is difficult to specify the overlaying peaks.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.0(\mathrm{~s}, 3 \mathrm{~F})$.
HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}: 306.0776$, found: 306.0780.
1-(3-nitrophenyl)-5-phenyl-1H-1,2,3-triazole (3bi). ${ }^{[25]}$

According to general procedure $\mathrm{B}, 4$ eq. t-BuOK was used, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, 160 mg , 61% yield, mp $110.0-112.0^{\circ} \mathrm{C}$ (lit. $133-134^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31-8.30(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.

5-phenyl-1-(0-tolyl)-1H-1,2,3-triazole (3bj). ${ }^{[19]}$

3bj
According to general procedure B, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $160 \mathrm{mg}, 68 \%$ yield, $\mathrm{mp} 73.0-75.0$ ${ }^{\circ} \mathrm{C}$ (lit. $71-73^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}$, $6 \mathrm{H}), 7.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$.

1-(2-isopropylphenyl)-5-phenyl-1H-1,2,3-triazole (3bk).

3bk
According to general procedure B , petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $220 \mathrm{mg}, 84 \%$ yield, mp 107.5-108.8
${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.16(\mathrm{~m}, 2 \mathrm{H}), 2.46$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{br} \mathrm{s}$, 6 H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) δ 145.7, 139.0, 134.5, 132.2, 130.7, 129.1, 128.8, 127.9, 127.8, 127.1, 126.7, 126.6, 28.0, 22.3.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3}$: 264.1422, found: 264.1425.

1-(2-nitrophenyl)-5-phenyl-1H-1,2,3-triazole (3bl).

зы
According to general procedure A, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Black liquid, $70 \mathrm{mg}, 27 \%$ yield.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{dt}, J=8.0 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H})$, 7.74-7.66 (m, 2H), 7.45 (dt, $J=7.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) δ 145.4, 139.4, 133.9, 133.7, 132.7, 131.6, 131.0, 130.1, 129.7, 129.6, 129.1, 128.4, 125.7, 124.3.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}:$ 267.0804, found: 267.0810 .

1-(2,6-dimethylphenyl)-5-phenyl-1H-1,2,3-triazole (3bm).

3bm
According to general procedure B, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $130 \mathrm{mg}, 53 \%$ yield, mp 58.8-60.5 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $4 \mathrm{H}), 1.93$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 138.3,135.9,135.3,132.2,130.2,129.2,129.0,128.7$,
126.9, 126.6, 17.6.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3}: 250.1266$, found: 250.1268 .
1-(2,6-diethylphenyl)-5-phenyl-1H-1,2,3-triazole (3bn).

3bn
According to general procedure B, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $145 \mathrm{mg}, 53 \%$ yield, $\mathrm{mp} 78.9-80.6$ ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}$, 5 H), 7.16 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.18 (hept, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}$), $1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.5,138.6,134.3,132.1,130.6,129.2,129.0,127.0$, 126.8, 126.6, 24.1, 14.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3}: 278.1579$, found: 278.1580 .

1-(2,3-dimethylphenyl)-5-phenyl-1H-1,2,3-triazole (3bo).

3bo
According to general procedure B, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow liquid, $127 \mathrm{mg}, 51 \%$ yield, mp 61.7-63.2 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 3 \mathrm{H})$, 7.11 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.79,138.76,136.0,133.9,132.3,131.6,129.1$, 128.9, 127.7, 126.7, 126.3, 125.3, 20.3, 14.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3}: 250.1266$, found: 250.1270 .

1-(3,5-dimethylphenyl)-5-phenyl-1H-1,2,3-triazole (3bp).

3bp
According to general procedure B , petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $185 \mathrm{mg}, 75 \%$ yield, mp 85.5-87.0 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 139.3,137.7,136.5,133.2,130.9,129.2,128.8,128.5$, 126.9, 123.0, 120.5, 21.2.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3}:$ 250.1266, found: 250.1265 .

1-(2-methoxy-5-methylphenyl)-5-phenyl-1H-1,2,3-triazole (3bq).

3bq
According to general procedure B, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $216 \mathrm{mg}, 82 \%$ yield, mp 157.7-159.2 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.24-7.21(\mathrm{~m}$, $3 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 151.4, 139.3, 132.1, 131.8, 130.7, 129.1, 128.9, 128.7, 128.6, 127.6, 127.4, 125.4, 55.5, 20.3.

HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: 266.1215$, found: 266.1215 .

1-(2,6-difluorophenyl)-5-phenyl-1H-1,2,3-triazole (3br).

According to general procedure B, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as
eluent for column chromatography. Yellow solid, $233 \mathrm{mg}, 91 \%$ yield, mp 117.5-119.0 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.0\left(\mathrm{dd}, J_{1}=256.2 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}\right), 140.3,132.2(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 129.7,129.0,127.7,126.0,112.4\left(\mathrm{~d}, J_{1}=3.7 \mathrm{~Hz}\right)$, 112.3 (d, $J=3.6 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.44--117.47(\mathrm{~m}, \mathrm{Ar}-\mathrm{F})$.
HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{~N}_{3}: 258.0765$, found: 258.0760 .

1-(3,4-dichlorophenyl)-5-phenyl-1H-1,2,3-triazole (3bs).

According to general procedure $\mathrm{B}, 4$ eq. t-BuOK was used, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, 125 mg , 44% yield, mp 96.3-97. $5^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.14\left(\mathrm{dd}, J_{1}=8.6 \mathrm{~Hz}, J_{2}=2.3\right.$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.8,135.7,133.7,133.64,133.61,131.0,129.8$, 129.2, 128.7, 126.9, 126.1, 124.1.

HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3}: 290.0174$, found: 290.0170 .

1-(3,5-bis(trifluoromethyl)phenyl)-5-phenyl-1H-1,2,3-triazole (3bt). ${ }^{[20]}$

3bt
According to general procedure $\mathrm{B}, 4$ eq. t-BuOK was used, petroleum ether / ethyl acetate $=65: 35(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, 206 mg ,
58% yield, mp 140.0-142.0 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.24(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.2(\mathrm{~s}, 6 \mathrm{~F})$.

1-(naphthalen-1-yl)-5-phenyl-1H-1,2,3-triazole (3bu). ${ }^{[24]}$

3bu
According to general procedure $\mathrm{B}, 4$ eq. t - BuOK was used, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, 225 mg , 83% yield, mp 128.0-130.0 ${ }^{\circ} \mathrm{C}$ (lit.127-129 ${ }^{\circ} \mathrm{C}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$.

3-(5-phenyl-1H-1,2,3-triazol-1-yl) quinoline (3bv).

3bv
According to general procedure B, petroleum ether / ethyl acetate $=65: 35(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Orange solid, $180 \mathrm{mg}, 67 \%$ yield, mp 134.5-136.0 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.80(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-$ $7.34(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.6,146.3,138.2,133.8,131.2,130.9,130.2,129.8$, 129.6, 129.3, 128.7, 128.3, 128.1, 127.3, 126.2.

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4}$: 273.1062, found: 273.1060.

3-(5-phenyl-1H-1,2,3-triazol-1-yl) pyridine (3bw). ${ }^{[24]}$

3bw
According to general procedure B, petroleum ether / ethyl acetate $=50: 50(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $174 \mathrm{mg}, 79 \%$ yield, $\mathrm{mp} 112.0-114.0$ ${ }^{\circ} \mathrm{C}$ (lit. 112.0-114.0 ${ }^{\circ} \mathrm{C}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ (s, 1H), 7.74 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$

4-(5-phenyl-1H-1,2,3-triazol-1-yl) pyridine (3bx). ${ }^{[19]}$

3bx
According to general procedure B, petroleum ether / ethyl acetate $=50: 50(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Yellow solid, $180 \mathrm{mg}, 81 \%$ yield, mp 204.0-206.0 ${ }^{\circ} \mathrm{C}$ (lit. $199-201{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}$, $3 \mathrm{H}), 7.33(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.

5-phenyl-1-(thiophen-3-yl)-1H-1,2,3-triazole (3by).

3by
According to general procedure B, petroleum ether / ethyl acetate $=85: 15(\mathrm{v} / \mathrm{v})$ as eluent for column chromatography. Black solid, $180 \mathrm{mg}, 80 \%$ yield, mp 103.0-105.0 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 1 \mathrm{H})$, $7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.7,134.7,133.2,129.6,128.9,128.7,126.7,126.4$, 123.7, 119.3.

HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{~S}: 228.0517$, found: 228.0517 .

5. References.

[1] I. P. Holmes, S. Gaines, S. P. Watson, O. Lorthioir, A. Walker, S. J. Baddeley, S. Herbert, D. Egan, M. A. Convery, O. M. P. Singh, J. W. Gross, J. M. Strelow, R. H. Smith, A. J. Amour, D. Brown and S. L. Martin, Bioorg. Med. Chem. Lett., 2009, 19, 5760-5763.
[2] N. Eleftheriadis, H. Poelman, N. G. J. Leus, B. Honrath, C. G. Neochoritis, A. Dolga, A. Domling and F. J. Dekker, Eur. J. Med. Chem., 2016, 122, 786-801.
[3] E. Szymanska, K. Frydenvang, A. Contreras-Sanz, D. S. Pickering, E. Frola, Z. Serafimoska, B. Nielsen, J. S. Kastrup, T. N. Johansen, J. Med. Chem., 2011, 54, 7289-7298.
[4] S. Das, K. Moller, K. Junge and M. Beller, Chem. Eur. J., 2011, 17, 7414-7417.
[5] Q. Xie, C. Ni, R. Zhang, L. Li, J. Rong and J. Hu, Angew. Chem., Int. Ed., 2017, 56, 1-6.
[6] R. O. Silva, A. S. de Oliveira, L. F. N. Lemes, L. de Camargo Nascente, P. C. do

Nascimento Nogueira, E. R. Silveira, G. D. Brand, G. Vistoli, A. Cilia, E. Poggesi, M. Buccioni, G. Marucci, M. L. Bolognesi and L. A. S. Romeiro, Eur. J. Med. Chem., 2016, 122, 601-610.
[7] M. Leiendecker, A. Chatupheeraphat and M. Rueping, Org. Chem. Front., 2015, 2, 350-353.
[8] E. Castagnetti and M. Schlosser, Eur. J. Org. Chem., 2001, 691-695.
[9] R. Yoshida, K. Isozaki, T. Yokoi, N. Yasuda, K. Sadakane, T. Iwamoto, H. Takaya and M. Nakamura, Org. Biomol. Chem., 2016, 14, 7468-7479.
[10] S. W. Kwok, J. R. Fotsing, R. J. Fraser, V. O. Rodionov and V. V. Fokin, Org. Lett., 2010, 12, 4217-4219.
[11] N. Chandna, F. Kaur, S. Kumar and N. Jain, Green. Chem., 2017, 19, 4268-4371.
[12] S. Potratz, A. Mishra and P. Bäuerle, Beilstein. J. Org. Chem., 2012, 8, 683-692.
[13] L. K. Rasmussen, B. C. Boren and V. V. Fokin, Org. Lett., 2007, 9, 5337-5339.
[14] D. Liu, W. Gao, Q. Dai and X. Zhang, Org. Lett., 2005, 7, 4907-4910.
[15] U. F. Röhrig, S. R. Majjigapu, A. Grosdidier, S. Bron, V. Stroobant, L. Pilotte, D. Colau, P. Vogel, B. J. Van den Eynde, V. Zoete and O. Michielin, J. Med. Chem., 2012, 55, 5270-5290.
[16] G. Cheng, X. Zeng, J. Shen, X. Wang and X. Cui, Angew. Chem., Int. Ed., 2013, 52, 13265-13268.
[17] F. Gang, Y. Che, Z. Du, H. Feng and Y. Fu, Synlett., 2017, 28, 1624-1629.
[18] L. Hong, W. Lin, F. Zhang, R. Liu and X. Zhou, Chem. Commun., 2013, 49, 55895591.
[19] K. D. B. Yamajala, M. Patil and S. Banerjee, J. Org. Chem., 2015, 80, 3003-3011.
[20] P. Zardi, A. Savoldelli, D. M. Carminati, A. Caselli, F. Ragaini and E. Gallo, ACS Catal., 2014, 4, 3820-3823.
[21] L. Wu, Y. Chen, M. Tang, X. Song, G. Chen, X. Song and Q. Lin, Synlett., 2012, 23, 1529-1533.
[22] N. Kumar, M. Y. Ansari, R. Kantb and A. Kumar, Chem. Commun., 2018, 54, 2627-2630.
[23] C. D. Smith and M. F. Greaney, Org. Lett., 2013, 15, 4826-4829.
[24] L. Wu, Y. Chen, J. Luo, Q. Sun, M. Peng and Q. Lin, Tetrahedron. Lett., 2014, 55, 3847-3850.
[25] K. A. Dururgkar, R. G. Gonnade, C.V. Ramana. Tetrahedron., 2009, 65, 39743979.
[26] A. D. Nino, P. Merino, V. Algieri, M. Nardi, M. L. D. Gioia, B. Russo, M. A. Tallarida and L. Maiuolo, Catalysts., 2018, 8, 364-376.

6. NMR Spectra.

$\underbrace{\text { Luい }}_{\text {Nul }}$

誌	
\cdots	\cdots U +1
$\underbrace{-1.00}$	

$3 q$

$\underbrace{\stackrel{\text { ® }}{2}}$

$\stackrel{\circ}{i}$
\qquad

$\underbrace{-\underbrace{100}_{7.8}}_{8.0}$

