Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Table of Contents

1. General Information
2. Reaction Optimization ······S2
3. Typical Procedure for Synthesis of (E) -1,2-diaryletheneS3
4. Deprotection of (<i>E</i>)-1,2-bis(4-methoxyphenyl)etheneS13
5. Deprotection of 3-Mesityl-2'-methoxy-[1,1'-binaphthalene]-2-olS13
6. Typical Procedure for Synthesis of (Z)-1,2-diaryletheneS14
7. Gram-scale SynthesisS18
8. Deuterium Labeling Experiments
9. Zebrafish ExperimentsS19
10. Possible Mechanism ······S20
11. NMR Spectra ······S22

1. General Information

Unless stated otherwise, all reactions were conducted in pressure tubes under N_2 . All solvents were received from commercial sources without further purification. Commercially available reagents were used as received. Non-commercially available substrates were synthesized following reported protocols. Thin-layer chromatography (TLC) was visualized using a combination of UV and potassium permanganate staining techniques. Silica gel (particle size $40 - 63 \mu m$) was used for flash column chromatography. NMR spectra were recorded on Bruker AV 400 spectrometer at 400 MHz (¹H NMR), 100 MHz (¹³C NMR). Proton and carbon chemical shifts are reported relative to the solvent used as an internal reference. High-resolution mass spectra were recorded on an IonSpec FT-ICR mass spectrometer with ESI resource.

Ph—==		[lr(COD)Cl] ₂ (2.5 mol %)	_	Ph , Ph
		DPPE, EtOH (20 eq)	Ph ⁻	Ph
1	а	THF, 120 °C, N_2 , 22 h	2a	3a
entry	DPPE	Conv. 1a (%)	yie l d 2a (%) ^[a]	yield 3a (%) ^[a]
1	0.1 eq	62	56	6
2	0.2 eq	92	92	0
3	0.4 eq	84	72	12
4	0.8 eq	16	12	4

2. Reaction Optimization

Table 1 Effect of DPPE amount on the stereoselectivity. 1,2-Diphenylethyne (0.2 mmol), ethanol (4 mmol), $[Ir(COD)Cl]_2$ (10 µmol), THF (1.5 mL), at 120 °C under N₂ for 22 h. [a] Yields were determined by GC analysis.

Ph—	Ph[lr(COD)Cl	[lr(COD)Cl] ₂ (2.5 mol %)		, Ph	
	DPPE (0.2 e	DPPE (0.2 eq), EtOH (20 eq)		+ I Ph	
	1a THF, 120	°C, N ₂ , 40 h	2a	3a	
entry	ligand	Conv. 1a (%)	yield 2a (%) ^[a]	yield 3a (%) ^[a]	
1	COD (0.5 eq)	40	6	34	
2	COD (1.0 eq)	50	8	42	
3	COD (1.5 eq)	76	9	67	
4	COD (2.0 eq)	91	7	84	
5	COE (2.0 eq) ^[b]	59	16	43	
6	Norbornylene (2.0 eq)	37	8	29	

Table 2 Effects of COD amount and other ligand on the stereoselectivity. 1,2-Diphenylethyne (0.2 mmol), ethanol (4 mmol), $[Ir(COD)Cl]_2$ (10 µmol), DPPE (0.04 mmol), THF (1.5 mL), at 120 °C under N₂ for 40 h. [a] Yields were determined by GC analysis. [b] COE = cyclooctene.

3. Typical Procedure for Synthesis of (*E*)-1,2-diphenylethene

$$Ar = Ar + EtOH = \frac{[lr(cod)Cl]_2 (2.5 \text{ mol }\%), \text{ DPPE } (0.2 \text{ eq})}{THF (1.5 \text{ mL}), N_2, 120 \text{ °C}, 22 \text{ h}} Ar$$

To a 15 mL pressure tube were added diarylacetylene **1** (0.20 mmol), $[Ir(cod)Cl]_2$ (5 µmol, 3.6 mg), DPPE (0.04 mmol, 15.9 mg) under N₂, and then EtOH (4 mmol, 232 µL) and THF (1.5 mL) were added. The resulting solution was stirred at 120 °C for 22 h. After the reaction was completed, the solution was cooled to room temperature, and diluted with ethyl acetate (10 mL). The combined organic phases were washed with brine, and the aqueous phase was extracted with ethyl acetate. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The crude product was purified by column chromatography (*n*-Hexane or *n*-Hex/EtOAc = 100:1 to 40:1) to afford the desired product.

2a: (*E*)-**1,2-diphenylethene**,^[1] White solid (33 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃): δ7.49 (m, 4H), 7.34 (m, 4H), 7.26 – 7.22 (m, 2H), 7.09 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ137.4, 128.8, 127.7, 126.6.

2b: (*E*)-**1-chloro-4-styrylbenzene**,^[1] White solid (36 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ7.51 – 7.49 (m, 2H), 7.45 – 7.43 (m, 2H), 7.38 – 7.25 (m, 5H), 7.11 – 7.02 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ137.1, 136.0, 133.3, 129.5, 129.0, 128.9, 128.0, 127.8, 127.5, 126.7.

2c: (*E*)-**1**-chloro-**3**-styrylbenzene,^[1] White solid (36 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.51 – 7.49 (m, 3H), 7.38 – 7.34 (m, 3H), 7.29 – 7.21(m, 3H), 7.11 (d, *J* = 16.3 Hz, 1H), 7.02 (d, *J* = 16.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 137.0, 134.8, 130.3, 130.0, 128.9, 128.2, 127.6, 127.4, 126.8, 126.4, 124.9.

2d: (*E*)-1-bromo-4-styrylbenzene,^[2] White solid (44 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.43 (m, 4H), 7.35 – 7.31 (m, 4H), 7.23 (t, *J* =7.2 Hz, 1H), 7.02 (d, *J* = 16.0 Hz, 1H), 6.95 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 136.4, 131.9, 129.6, 128.9, 128.1, 128.1, 127.6, 126.7, 121.5.

2e: (E)-1-bromo-3-styrylbenzene,^[3] White solid (47 mg, 91% yield). ¹H NMR (400

MHz, CDCl₃): δ 7.66 (t, J = 4.0 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.42 – 7.35 (m, 4H), 7.28 (t, J = 8.0 Hz, 1H), 7.22 (t, J = 8.0 Hz, 1H), 7.10 (d, J = 16.4 Hz, 1H), 7.01 (d, J = 16.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 136.9, 130.5, 130.3, 130.3, 129.4, 128.9, 128.2, 127.2, 126.8, 125.3, 123.0.

2f: (*E*)-**1-methoxy-2-styrylbenzene**,^[2] White solid (56 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.61 – 7.59 (m, 1H), 7.55 – 7.53 (m, 2H), 7.49 (d, *J* = 16.4 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.27-7.22 (m, 2H), 7.12 (d, *J* = 16.4 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.91 (m, d, *J* = 8.0 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 138.1, 129.3, 128.8, 128.7, 127.5, 126.7, 126.6, 126.6, 123.7, 120.9, 111.1, 55.7.

2g: (*E*)-**2**-(**3-bromophenyl**)-**1**-(**4-bromophenyl**)ethene,^[2] White solid (56 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.65 (s, 1H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.41 – 7.35 (m, 4H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 16.8 Hz, 1H), 6.99 (d, *J* = 16.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 135.9, 132.0, 130.8, 130.4, 129.4, 129.0, 128.2, 128.0, 125.4, 123.1, 122.0.

2h: (*E*)-1, 2-bis(4-bromophenyl)ethene,^[4] White solid (58 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, *J* = 8.4 Hz, 4H), 7.08 (d, *J* = 8.4 Hz, 4H), 6.54 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 135.8, 131.7, 130.6, 129.9, 121.4.

2i: (*E*)-**1**-(**4**-bromostyryl)-**3**-chlorobenzene, White solid (48 mg, 82% yield). ¹HNMR (400 MHz, CDCl₃): δ 7.50 – 7.48 (m, 3H), 7.38 – 7.35 (m, 3H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.25 – 7.23 (m, 1H), 7.02 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 135.9, 134.9, 132.0, 130.1, 129.0, 128.2, 128.1, 127.9, 126.5, 124.9, 122.0; HRMS(ESI) m/z Calcd for C₁₄H₁₀BrCl 291.9654, Found 291.9644.

2j: (*E*)-**1**-(**4**-bromostyryl)-**4**-chlorobenzene,^[5] White solid (47 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ7.37 – 7.34 (m, 2H), 7.22 – 7.08 (m, 6H), 6.59 – 6.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 135.9, 135.4, 133.2, 131.7, 130.6, 130.3, 129.8, 129.8, 128.7, 121.4.

2k: (*E*)-**1**-(**4**-bromostyryl)-**3**-methylbenzene, White solid (49 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.46 (m, 2H), 7.38 – 7.35 (m, 2H), 7.31 – 7.29 (m, 2H), 7.24 – 7.21 (m, 1H), 7.09 (d, *J* = 7.2 Hz, 1H), 7.06 (d, *J* = 16.4 Hz, 1H), 7.00 (d, *J* = 16.4 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 137.0, 136.5, 131.9, 129.7, 128.9, 128.8, 128.1, 127.4, 127.3, 123.9, 121.3, 21.6; HRMS(ESI) m/z Calcd for C₁₅H₁₃Br [M+H]⁺ 273.0279, Found 273.0281.

21: (*E*)-**1**-(**4**-bromostyryl)-**4**-methylbenzene,^[5] White solid (41 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ 7. 48 – 7. 45 (m, 2H), 7.41 – 7.35 (m, 4H), 7.18 – 7.16 (m, 2H), 7.07 (d, *J* = 16.4 Hz, 1H), 6.98 (d, *J* = 16.4 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.0, 136.6, 134.3, 131.9, 129.6, 129.5, 128.0, 126.6, 126.5, 121.2, 21.4.

2m: (*E*)-**1**-(**4**-bromostyryl)-**4**-fluorobenzene,^[6] White solid (50 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.49 – 7.45 (m, 4H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.07 – 7.03 (m, 3H), 6.94 (d, *J* = 16.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, *J*_{C-F} = 240 Hz), 136.3, 133.3, 132.0, 128.3 (d, *J*_{C-F} = 10 Hz), 128.0, 127.3 (d, *J*_{C-F} = 2.0 Hz), 121.5, 116.0, 115.9 (d, *J*_{C-F} = 20.0 Hz).

2n: (*E*)-**1**-(**4**-bromostyryl)naphthalene,^[7] White solid (53 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ 8. 20 (d, *J* =8.0 Hz, 1H), 7.89 – 7.81 (m, 3H), 7.74 (d, *J* = 7.2 Hz, 1H), 7.57 – 7.46 (m, 7H), 7.08 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 134.8, 133.9, 132.0, 131.5, 130.6, 128.8, 128.5, 128.3, 126.7, 126.4, 126.1, 125.8, 123.8, 121.7.

20: (*E*)-1-(3-bromostyryl)-3-methylbenzene,^[8] White solid (50 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.64 (t, *J* =4.0 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.31 – 7.28 (m, 2H), 7.24 – 7.18 (m, 2H), 7.09 (d, *J* = 8.0 Hz, 1H), 7.06 (d, *J* = 16.0 Hz, 1H), 6.98 (d, *J* = 16.0 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 138.4, 136.8, 130.4, 130.4, 130.3, 129.3, 129.0, 128.8, 127.5, 127.0, 125.3, 124.0, 123.0, 21.6.

2p: (*E*)-**2**-(**3-bromostyryl**)**naphthalene**,^[9] White solid (54 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃): δ7.85 – 7.71 (m, 6H), 7.51 – 7.39 (m, 4H), 7.29 – 7.23 (m, 2H),

7.15 (d, J = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 134.4, 133.8, 133.3, 130.6, 130.4, 129.4, 128.6, 128.2, 127.9, 127.5, 127.2, 126.6, 125.4, 123.5, 123.1.

2q: (*E*)-**2**-(**3-chlorophenyl**)-**1**-(**4-chlorophenyl**)ethene,^[8] White solid (39 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48 (s, 1H), 7.43 – 7.41 (m, 2H), 7.36 – 7.30 (m, 3H), 7.28 – 7.22 (m, 2H), 7.05 (d, *J* = 16.4 Hz, 1H), 6.98 (d, *J* = 16.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 135.5, 134.9, 133.8, 130.1, 129.1, 128.9, 128.0, 127.9, 127.9, 126.5, 124.9.

2r: (*E*)-1-(4-chlorostyryl)-3-bromobenzene,^[8] White solid (49 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.65 (s, 1H), 7.44 – 7.32 (m, 6H), 7.24 – 7.20 (m, 1H), 7.05 (d, *J* = 16.0 Hz, 1H), 6.98 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 135.4, 133.8, 130.8, 130.4, 129.4, 129.1, 129.0, 127.9, 127.8, 125.4, 123.1.

2s: (*E*)-**1**-(**4-chlorostyryl**)-**3-methylbenzene**,^[10] White solid (42 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.43 – 7.40 (m, 2H), 7.32 – 7.29 (m, 4H), 7.24 – 7.22 (m, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 7.04 (s, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 137.0, 136.1, 133.5, 129.5, 129.0, 128.8, 128.8, 127.8, 127.4, 127.3, 123.9, 21.6.

2t: (*E*)-**2**-(**4**-chlorostyryl)naphthalene,^[11] White solid (47mg, 89% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.85 – 7.71 (m, 5H), 7.51 – 7.44 (m, 4H), 7.37 – 7.33 (m, 2H),

7.25 (d, J = 16.0 Hz, 1H), 7.18 (d, J = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 136.0, 134.6, 133.8, 133.4, 133.3, 129.6, 129.0, 128.5, 128.2, 127.9,127.8, 127.0, 126.6, 126.2, 123.5.

2u: (*E*)-1-(3-chlorostyryl)-4-methylbenzene,^[5] White solid (38 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.49 (s, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.27 (t, *J* = 8.0 Hz, 1H), 7.22 – 7.17 (m, 3H), 7.09 (d, *J* =16.0 Hz, 1H), 6.98 (d, *J* =16.0 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.6, 139.2, 134.7, 134.2, 130.2, 130.0, 129.6, 127.4, 126.7, 126.3, 126.3, 124.8, 21.4.

2v: (*E*)-**1**-(**4-chlorostyryl**)-**4-methylbenzene**,^[5] White solid (35 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.44 – 7.40 (m, 4H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 16.0 Hz, 1H), 7.00 (d, *J* = 16.0 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.0, 136.2, 134.3, 133.0, 129.6, 129.4, 128.9, 127.7, 126.6, 126.5, 21.4.

2w: (*E*)-1-(3-bromostyryl)-4-methylbenzene,^[12] White solid (49 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.66 (s, 1H), 7.40 – 7.36 (m, 4H), 7.23 – 7.17 (m, 3H), 7.08 (d, *J* = 16.0 Hz, 1H), 6.97 (d, *J* = 16.0 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.9, 138.2, 134.1, 130.3, 130.3, 130.2, 129.6, 129.2, 126.7, 126.2, 125.2, 123.0, 21.4.

2x: (*E*)-**1**-(**3**,**5**-dimethoxystyryl)-**4**-fluorobenzene,^[13] White solid (44 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.45 (m, 2H), 7.06 – 6.92 (m, 3H), 6.94 (d, *J* = 16.4 Hz, 1H), 6.66 (d, *J* = 2.0 Hz, 2H), 6.40 (t, *J* = 2.4 Hz, 1H), 3.83 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 162.6 (d, *J*_{C-F} = 246.0 Hz), 161.2, 139.3, 133.5, 128.6 (d, *J*_{C-F} = 2.0 Hz), 128.2 (d, *J*_{C-F} = 5.0 Hz), 128.1, 115.8 (d, *J*_{C-F} = 21.0 Hz), 104.7, 100.5, 55.5.

2y: (*E*)-1-(3,5-dimethoxystyryl)benzene,^[3] White solid (38 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.51 – 7.49 (m, 2H), 7.37 – 7.33 (m, 2H), 7.28 – 7.24 (m, 1H), 7.09 (d, *J* = 16.4 Hz, 1H), 7.03 (d, *J* = 16.4 Hz, 1H), 6.7 (d, *J* = 2.4 Hz, 2H), 6.40 (t, *J* = 2.0 Hz, 1H), 3.82 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 161.1, 139.5, 137.3, 129.3, 128.8, 128.8, 127.9, 126.7, 104.7, 100.1, 55.5.

2z: (*E*)-1,2-bis(4-methoxyphenyl)ethene,^[11] White solid (35 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.44 – 7.41 (m, 4H), 6.93 (s, 2H), 6.90 – 6.87 (m, 4H), 3.82 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 130.6, 127.6, 126.3, 114.3, 55.5.

2a: (*E*)-**1**-(**4**-propylstyryl)-**4**-methoxybenzene, White solid (35 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46 – 7.41 (m, 4H), 7.17 (d, *J* =8.0 Hz, 2H), 7.04 (d, *J* = 16.0 Hz, 1H), 6.96 (d, *J* = 16.0 Hz, 1H), 6.92 – 6.89 (m, 2H), 3.83 (s, 3H), 2.59 (t, *J* =

8.0 Hz, 2H), 1.70 – 1.61 (m, 2H), 0.96 (t, J = 8.0 Hz, 3H); ¹³C NMR(100 MHz, CDCl₃): δ 159.3, 142.1, 135.2, 130.5, 128.9, 127.7, 127.4, 126.7, 126.3, 114.2, 55.5, 37.9, 24.7, 14.0; HRMS(ESI) m/z Calcd for C₁₈H₂₀O [M+H]⁺ 253.1592, Found 253.1581.

2β: (*E*)-1-styryl-3,5-bis(trifluoromethyl)benzene,^[14] White solid (46 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.92 (s, 2H), 7.74 (s, 1H), 7.55 (d, *J* = 7.2 Hz, 2H), 7.40 (t, *J* = 7.2 Hz, 2H), 7.35 – 7.32 (m, 1H), 7.20 (d, *J* = 16.4 Hz, 1H), 7.20 (d, *J* = 16.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 139.6, 136.2, 132.7, 132.2 (d, *J*_{C-F}= 33.0 Hz), 129.1, 128.9, 127.1, 126.3 (d, *J*_{C-F} = 3.4 Hz), 125.7, 123.5 (d, *J*_{C-F} = 271.1 Hz), 121.0-120.9 (m).

2γ: (*E*)-**1**-styryl-4-(trifluoromethyl)benzene,^[1] White solid (41 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃): δ7.60 (s, 4H), 7.54 (m, 2H), 7.38 (t, *J* = 8.0 Hz, 2H), 7.35 – 7.32 (m, 1H), 7.25 (d, *J* =16.4 Hz, 1H), 7.14 (d, *J* =16.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ141.0, 136.8, 131.4, 129.6, 129.3, 129.0, 128.4, 127.3, 126.9, 126.7, 125.8 (q, *J*_{C-F} = 3.8 Hz).

2 ϵ : (*E*)-**prop-1-en-1-ylbenzene**,^[15] Colorless liquid (20 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.26 (m, 4H), 7.20 – 7.16 (m, 1H), 6.40 (dd, *J* = 16.0, 1.2 Hz, 1H), 6.28 – 6.19 (m, 1H), 1.88 (dd, *J* = 6.4, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 138.1, 131.2, 128.6, 126.9, 126.0, 125.8, 18.6.

²\[o]: (*E*)-dec-5-ene,^[16] Colorless liquid (20 mg, 70% yield). ¹H NMR (400 MHz,

CDCl₃): δ 5.40 – 5.36 (m, 2H), 1.98 – 1.97 (m, 4H), 1.34 – 1.27 (m, 8H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 130.5, 32.5, 32.0, 22.4, 14.1.

2 η : (*E*)-tetradec-7-ene,^[17] Colorless liquid (28 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ 5.40 – 5.34 (m, 2H), 2.03 – 1.95 (m, 4H), 1.30 – 1.27 (m, 16H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 130.5, 32.8, 32.0, 29.8, 29.0, 22.8, 14.3..

2A: **Methyl cinnamate**,^[18] White solid (25 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃): δ 770 (d, J = 16.0 Hz, 1H), 7.54-7.52 (m, 2H), 7.40-7.38 (m, 3H), 6.45 (d, J = 16.0 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.7, 145.1, 134.5, 130.5, 129.0, 128.2, 117.9, 51.9.

2B: **2-vinylnaphthalene**,^[15] White solid (24 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.82 – 7.76 (m, 4H), 7.64 (dd, J = 8.0, 1.6Hz, 1H), 7.49 – 7.42 (m, 2H), 6.89 (dd, J = 17.6, 11.2 Hz, 1H), 5.88 (d, J = 17.6 Hz, 1H), 5.35 (d, J =14.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 137.1, 135.2, 133.7, 133.3, 128.3, 128.2, 127.8, 126.5, 126.4, 126.1, 123.3, 114.3.

2C: **1-methyl-4-vinylbenzene**,^[15] Colorless liquid (22 mg, 93% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 6.74 (dd, J = 17.6, 11.2 Hz, 1H), 5.75 (d, J = 17.6 Hz, 1H), 5.23 (d, J = 10.8 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 137.7, 136.8, 134.9, 129.3, 126.2, 112.8, 21.3.

2D: **1-chloro-4-vinylbenzene**,^[15] Colorless liquid (25 mg, 91% yield). ¹H NMR (400

MHz, CDCl₃): δ 7.34-7.25 (m, 4H), 6.66 (dd, J = 17.6, 11.2 Hz, 1H), 5.72 (d, J = 17.6 Hz, 1H), 5.26 (d, J =11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 136.2, 135.8, 133.6, 128.8, 127.6, 114.6.

4, Deprotection of (*E*)-1,2-bis(4-methoxyphenyl)ethene

To a solution of (*E*)-1,2-bis(4-methoxyphenyl)ethene (0.2 mmol) in anhydrous DCM (6 mL) maintained under nitrogen at -20 °C with stirring was added BBr₃ dropwise (0.34 g, 1.34 mmol, 30% in DCM). The mixture, maintained under nitrogen with stirring, was allowed to warm up to room temperature for 4 – 5 h, and then it was poured into water (10 mL) and extracted with DCM (3×10 mL). The collected organic phases were washed with brine (10 mL) and then dried over Na₂SO₄. After filtration, the solvent was evaporated and the residue purified by column chromatography on silica gel using 6:4 hexane–acetone.

Pinosylvin,^[19] White solid (33mg, 77.8% yield). ¹H NMR (400 MHz, (CD₃)₂CO): δ 8.04 (s, 2H), 7.40 (d, J = 8.8 Hz, 4H), 6.96 (s, 2H), 6.83 (d, J = 8.8 Hz, 4H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 157.7, 130.5, 128.3, 126.5, 116.4.

5, Deprotection of 3-Mesityl-2'-methoxy-[1,1'-binaphthalene]-2-ol

To a solution of (E)-1,3-dimethoxy-5-styrylbenzene (0.2 mmol) in anhydrous DCM (6

mL) maintained under nitrogen at -20 °C with stirring was added BBr₃ dropwise (0.34 g, 1.34 mmol, 30% in DCM). The mixture, maintained under nitrogen with stirring, was allowed to warm up to room temperature for 4 – 5 h, and then it was poured into water (10 mL) and extracted with DCM (3×10 mL). The collected organic phases were washed with brine (10 mL) and then dried over Na₂SO₄. After filtration, the solvent was evaporated and the residue purified by column chromatography on silica gel using 6:4 hexane–acetone.

4,4'-dihydroxystilbene (DHS),^[13] White solid (35mg, 83% yield). ¹H NMR (400 MHz, (CD₃)₂CO): δ 7.57 (d, J = 7.2 Hz, 2H), 7.35 (t, J = 7.2 Hz, 2H), 7.25 (t, J = 7.2 Hz, 1H), 7.10 (s, 2H), 6.60 (d, J = 2.0 Hz, 2H), 6.32 (t, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, (CD₃)₂CO): δ 159.6, 140.4, 138.4, 129.8, 129.5, 129.2, 128.3, 127.3, 105.9, 103.1.

6. Typical Procedure for Synthesis of (Z)-1,2-diarylethene

Ar
$$\rightarrow$$
 Ar + EtOH \rightarrow [lr(cod)Cl]₂ (2.5 mol %)
DPPE (0.2 eq), COD (2.0 eq)
THF (1.5 mL), N₂, 120 °C, 44 h 3

To a 15 mL pressure tube were added diphenylacetylene **1** (0.20 mmol), $[Ir(cod)Cl]_2$ (5 µmol, 3.6 mg), DPPE (0.04 mmol, 15.9 mg) under N₂, and then EtOH (4 mmol, 232 µL), COD (0.4 mmol, 49 µL) and THF (1.5 mL) were added. The resulting solution was stirred at 120 °C for 44 h. After the reaction was completed, the solution was cooled to room temperature, and diluted with ethyl acetate (10 mL). The combined organic phases were washed with brine, and the aqueous phase was extracted with ethyl acetate. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The crude product was purified by column chromatography (*n*-Hexane or *n*-Hex/EtOAc = 100:1 to 40:1) to afford the desired

product.

3a: (**Z**)-1,2-diphenylethene,^[1] Colorless liquid (30 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.27 – 7.21 (m, 10H), 6.63 – 6.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 137.4, 130.4, 130.4, 129.0, 129.0, 128.4, 128.3, 127.2, 127.2.

3b: (**Z**)-**1**-**chloro-2**-**styrylbenzene**,^[20] Colorless liquid (37 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ7.42 – 7.40 (m, 1H), 7.21 – 7.15 (m, 7H), 7.06 – 7.02 (m, 1H), 6.73 (d, *J* = 12.4 Hz 1H), 6.68 (d, *J* = 12.4 Hz 1H); ¹³C NMR (100 MHz, CDCl₃): δ 136.6, 136.2, 133.8, 131.8, 130.9, 129.7, 129.1, 128.6, 128.3, 127.5, 127.4, 126.5.

3c: (**Z**)-**1-fluoro-2-styrylbenzene**,^[20] Colorless liquid (44 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.23 – 7.17 (m, 7H), 7.07 – 7.02 (m, 1H), 7.95 – 7.91 (m, 1H), 6.73 (d, *J* = 12.4 Hz 1H), 6.63 (d, *J* = 12.4 Hz 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5 (d, *J*_{C-F} = 246.2 H), 136.9, 132.4, 130.6 (d, *J*_{C-F} = 3.5 Hz); 129.1 (d, *J*_{C-F} = 8.2 Hz), 128.9, 128.4, 127.5, 125.2 (d, *J*_{C-F} = 14.4 Hz), 123.7 (d, *J*_{C-F} = 3.5 Hz), 122.8 (d, *J*_{C-F} = 3.3 Hz), 115.7 (d, *J*_{C-F} = 21.8 Hz).

3d: (*Z*)-1-methoxy-2-styrylbenzene,^[21] Colorless liquid (36 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.24 – 7.12 (m, 7H), 6.89 (d, *J* = 8.0 Hz, 1H), 6.77 – 6.73 (m, 1H), 6.69 (d, *J* = 12.4 Hz, 1H), 6.62 (d, *J* = 12.4 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 157.2, 137.3, 130.2, 130.1, 128.9, 128.6, 128.0, 126.9, 126.2, 125.8, 120.2, 110.7, 55.5.

3e: (*Z*)-**1**-(**4**-**chlorostyryl**)-**4**-**methylbenzene**, Colorless liquid (37 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.18 (s, 4H), 7.13 – 7.03 (m, 4H), 6.59 (d, *J* = 12.4 Hz, 1H), 6.48 (d, *J* = 12.4 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 137.3, 136.0, 134.0, 132.7, 131.0, 130.3, 129.2, 128.9, 128.5, 128.4, 21.4; HRMS(ESI) m/z Calcd for C₁₅H₁₃Cl [M+H]⁺ 229.0784, Found 229.0789.

3f: (**Z**)-**1**-(**4**-bromostyryl)-**4**-methylbenzene,^[22] Colorless liquid (44 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.33 (m, 2H), 7.13 – 7.03 (m, 6H), 6.60 (d, J = 12.0 Hz, 1H), 6.46 (d, J = 12.0 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 136.5, 134.0, 131.5, 131.1, 130.7, 129.2, 128.8, 128.4, 120.9, 21.4.

3g: **(Z)-1-(3-chlorostyryl)-4-methylbenzene**,^[8] Colorless liquid (36 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): δ7.26 (s, 1H), 7.17 – 7.11 (m, 5H), 7.06 – 7.04 (m, 2H), 6.61 (d, *J* = 12.4 Hz, 1H), 6.47 (d, *J* = 12.4 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.5, 137.4, 134.2, 133.8, 131.7, 129.6, 129.2, 129.0, 128.9, 128.1, 127.2, 127.1, 21.4.

3h: (Z)-1-(4-propylstyryl)-4-methoxybenzene, Colorless liquid (39 mg, 78% yield).
¹H NMR (400 MHz, CDCl₃): δ7.23 – 7.19 (m, 4H), 7.05 (d, J =8.0 Hz,2H), 6.79 – 6.75 (m, 2H), 6.49 (s, 2H), 3.80 (s, 3H), 2.56 (t, J = 8.0 Hz, 2H), 1.68 – 1.59 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.7, 141.6, 135.0, 130.2,

130.1, 129.2, 128.9, 128.8, 128.4, 113.7, 55.3, 37.9, 24.6, 14.0; HRMS(ESI) m/z Calcd for $C_{18}H_{20}O [M+H]^+$ 253.1514, Found 253.1582.

3i: (**Z**)-**1,2-bis(4-methoxyphenyl)ethene**,^[23] Colorless liquid (34 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): δ7.22 – 7.20 (m, 4H), 6.79 – 6.77 (m, 4H), 6.46 (s, 2H), 3.80 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ158.7, 130.2, 130.1, 128.5, 113.7, 55.3.

3j: (**Z**)-**1,2-bis(4-methoxyphenyl)ethene**,^[24] Colorless liquid (39 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.25 – 7.22 (m, 2H), 6.93 (t, *J* = 8.4 Hz, 2H), 6.57 – 6.50 (m, 2H), 6.39 – 6.38 (m, 2H), 6.33 – 6.32 (m, 1H), 3.66 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 163.2, 160.8, 139.0, 133.3 (d, *J*_{C-F} = 3.4 Hz), 130.8 (d, *J*_{C-F} = 7.9 Hz), 130.7, 130.4 (d, *J*_{C-F} = 1.2 Hz), 129.6, 115.2 (d, *J*_{C-F} = 21.3 Hz), 106.8, 100.0, 55.3.

3k: (**Z**)-**1**-styryl-**3**,**5**-bis(trifluoromethyl)benzene,^[25] Colorless liquid (47 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.67 – 7.64 (m, 3H), 7.28 – 7.26 (m, 3H), 7.19 – 7.17 (m, 2H), 6.84 (d, *J* = 12.4 Hz, 1H), 6.59 (d, *J* = 12.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 139.3, 135.8, 134.1, 131.6 (q, *J*_{C-F} = 33.4 Hz), 129.2 (m),128.8 (d, *J*_{C-F} = 8.8 Hz), 128.3, 127.2, 124.7, 122.0, 120.8-120.7 (m).

3l: (**Z**)-2-(3-chlorophenyl)-1-(4-chlorophenyl)ethene, Colorless liquid (35 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.22 – 7.13 (m, 7H), 7.10 – 7.07 (m, 1H), 6.58 (d, *J* = 12.0 Hz, 1H), 6.54 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 138.9,

135.1, 134.4, 133.3, 130.4, 130.3, 129.7, 129.5, 128.9, 128.7, 127.5, 127.0; HRMS(ESI) m/z Calcd for C₁₄H₁₀Cl₂ 248.0160, Found 248.0165.

3m: **(Z)-1-(4-chlorostyryl)naphthalene**, Colorless liquid (41 mg, 78% yield). ¹HNMR (400 MHz, CDCl₃): δ 8.06 – 8.04 (m, 1H), 7.90 – 7.88 (m, 1H), 7.79(d, J = 8.0 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.38 – 7.32 (m, 2H), 7.10 – 6.99 (m, 5H), 6.79 (d, J = 12.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 135.3, 135.0, 133.8, 132.8, 131.6, 130.9, 130.4, 129.4, 128.6, 128.4, 127.9, 126.5, 126.3, 126.2, 125.7, 124.9; HRMS(ESI) m/z Calcd for C₁₈H₁₃Cl [M+H]⁺ 265.0784, Found 265.0788.

7. Gram-scale Synthesis

According to the typical procedure: To a 250 mL pressure tube were added diphenylacetylene **1** (5.62 mmol, 1.0 g), $[Ir(cod)Cl]_2$ (141 µmol, 94 mg), DPPE (1.12 mmol, 447 mg) under N₂, and then EtOH (56.2 mmol, 3.26 mL), and THF (33 mL) were added. The resulting solution was stirred at 130 °C for 72 h. After column purification (*n*-Hexane), coupling product was obtained (0.8 g, 79% yield).

8. Deuterium Labeling Experiments

To a 15 mL pressure tube were added diphenylacetylene **1** (0.20 mmol), $[Ir(cod)Cl]_2$ (5 µmol, 3.6mg), DPPE (0.04 mmol, 15.9mg) under N₂, and then C₂D₅OH or C₂H₅OD (4 mmol, 232 µL), COD (0.4 mmol, 49 µL), THF or tetrahydrofuran-d8 (1.5 mL) were added. The resulting solution was stirred at 120 °C for 44 h. After the reaction was completed, the solution was cooled to room temperature, and diluted with ethyl acetate (10 mL). The combined organic phases were washed with brine, and the aqueous phase was extracted with ethyl acetate. The organic phase was dried

over anhydrous Na_2SO_4 , filtered and concentrated in *vacuo*. The crude product was purified by column chromatography (*n*-Hexane) to afford the desired cis-stilbene **3a** or di-deuterated product **3a'**.

9. Zebrafish Experiments

At 6 hpf, embryos were screened under anatomical microscope to remove the morphologically abnormal individuals. Around 10 healthy embryos were loaded into

each well of 96-well plate in E3 solution. At the setting time, E3 solutions were replaced with different pinosylvin or DHS treatment solutions. The control and treated groups were analyzed at different intervals. At 55 hpf, the Tg(fli1a:nEGFP) zebrafish embryos were collected for imaging. At 55 hpf, for confocal imaging embryos were anesthetized with E3/0.16 mg/mL tricaine/1% 1-phenyl-2-thiourea (Sigma) and embedded in 0.8% low melt agarose. Confocal imaging was performed with a Leica TCS-SP8 LSM. Analysis was performed using Imaris software.

10. Possible Mechanism

Figure 1 Possible mechanism

References

[1]. S. Fu, N.-Y. Chen, X. Liu, Z. Shao, S.-P. Luo, and Q. Liu, J. Am. Chem. Soc. 2016, **138**, 8588.

[2]. J. Aydin, J. M. Larsson, N. Selander, and K. J. Szabo, Org. Lett. 2009, 11, 2852.

- [3]. S. C. Söderman, and A. L. Schwan, J. Org. Chem. 2012, 77, 10978.
- [4]. K. Esfandiarfard, and J. Mai, S. Ott, J. Am. Chem. Soc., 2017, 139, 2940.
- [5]. N. Zhang, Z.-J. Quan, Z. Zhang, Y.-X. Da, and X.-C. Wang, *Chem. Commun.* 2016, **52**, 14234.

- [6]. M. Das, A. Manvar, M. Jacolot, M. Blangetti, R. C. Jones, and D. F. O'Shea, *Chem. Eur. J.* 2015, **21**, 8737.
- [7]. T. Luo, R. Zhang, W. Zhang, X. Shen, T. Umemoto, and J. Hu, *Org. Lett.* 2014, 16, 888.
- [8]. C.-Z. Cao, B. Sheng, G.-F. Chen, and J. Phys. Org. Chem. 2012, 25, 1315.
- [9]. B. Gorski, D. Basiak, A. Talko, T. Basak, T. Mazurek, and M. Barbasiewicz, *Eur. J. Org. Chem.* 2018. 1774.
- [10]. M.-T. Ma, and J.-M. Lu, *Tetrahedron* 2013, **69**, 2102.
- [11]. R. Kumar, A. Shard, R. Bharti, Y. Thopate, and A. K. Sinha, *Angew. Chem. Int. Ed.* 2012, **51**, 2636.
- [12]. T. Iwasaki, Y. Miyata, R. Akimoto, Y. Fujii, H. Kuniyasu, and N. Kambe, *J. Am. Chem. Soc.* 2014, **136**, 9260.
- [13]. S. Uzura, E. Sekine-Suzuki, I. Nakanishi, M. Sonoda, and S. Tanimori, *Bioorg. Med. Chem. Lett.* 2016, 26, 3886.
- [14]. L. Yu, Y. Huang, Z. Wei, Y. Ding, C. Su, and Q. Xu, J. Org. Chem. 2015, 80, 8677.
- [15]. C.-Z. Yao, Q.-Q. Li, M.-M. Wang, X.-S. Ning, and Y.-B. Kang, *Chem. Commun.*2015, **51**, 7729.
- [16]. K. Tokmic, and A. R. Fout, J. Am. Chem. Soc., 2016, 138, 13700.
- [17]. J. Amani, E. Sodagar, and G. A. Molander, Org. Lett. 2016, 18, 732.
- [18]. B. Zhang, P. Feng, Y. Cui, and N. Jiao, Chem. Commun. 2012, 48, 7280.
- [19]. C. Zhou, G. W. N. Chia, J. C. S. Ho, T. Seviour, T. Sailov, B. Liedberg, S.
- Kjelleberg, J. Hinks, and G. C. Bazan, Angew. Chem., Int. Ed. 2018, 57, 8069.
- [20]. T. N. Gieshoff, A. Welther, M. T. Kessler, M. H. G. Prechtl and A. Jacobi von Wangelin, *Chem. Commun.*, 2014, **50**, 2261.
- [21]. G. Cahiez, O. Gager and F. Lecomte, Org. Lett., 2008, 10, 5255.
- [22]. S. Eltaief, F. Aloui, S. Moussa, P. Retailleau, and B. B. Hassine, *Lett. Org. Chem.* 2012, **9**, 427.
- [23]. C.-C. Tai, M.-S. Yu, Y.-L. Chen, W.-H. Chuang, T.-H. Lin, G. P. A. Yap, and

T.-G. Ong, Chem. Commun. 2014, 50, 4344.

[24]. S. C. Paul, S. Mizuno, H. J. Lee, X. Zheng, S. Chajkowisk, J. M. Rimoldi, A. Conney, N. Suh, and A. M. Rimando, *Eur. J. Med. Chem.* 2010, **45**, 3702.

[25]. C.-C. Tseng, M. Li, B. Mo, S. A. Warren, and A. C. Spivey, *Chem. Lett.* 2011, 40, 995.

11. NMR Spectra

S23

S28

7 86 7 26 7 26 7 20 7 01 7 01 6 96

 $< 7.22 \\ - 7.20 \\ - 6.77 \\ - 6.77 \\ - 6.46 \\ - 3.80$

