Electronic Supplementary Information

In situ confined-synthesis of mesoporous FeS₂@C superparticles and their enhanced sodium-ion storage properties

Luyin Yao,^{a,b} Biwei Wang,^b Yuchi Yang,^a Xiao Chen,^a Jianhua Hu,^a Dong Yang^{*a} and Angang Dong^{*b}

a. State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

b. iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Department of Chemistry, Fudan University, Shanghai 200433, China.

Experimental Section

The Synthesis and Self-Assembly of Fe₃O₄ NPs. In brief, Fe₃O₄ NPs were synthesized according to the procedure reported previously.¹ To assemble the superparticles, Fe₃O₄ NPs in hexane were added into an aqueous solution of dodecyltrimethylammonium bromide (DTAB). Then, the mixture was subjected to homogenization to form an oil-in-water system. After that, the mixture was heated at 50 °C under mechanical stirring to remove hexane. The as-synthesized Fe₃O₄ NPs superlattices were collected by a magnet and washed by deionized water.

The Preparation of FeS₂@C SPs. The Fe₃O₄ NPs superlattices were heated at 500 °C in Ar for 2 h to carbonize OA ligands. The carbonized Fe₃O₄ SPs were treated by 1 M HCl solution for 2 h to partially etch Fe₃O₄ NPs (denoted as Fe₃O₄@C-2 SPs). The resulting Fe₃O₄@C-2 SPs were washed several times with water followed by drying under vacuum for 6 h.

FeS2@C-2 SPs were fabricated by the reaction between Fe3O4@C-2 SPs and

sulfur powder. In a typical procedure, the mixture of Fe₃O₄@C-2 SPs and sulfur powder was heated at 400 °C under Ar for 3 h. After cooling to room temperature, the resulting FeS₂@C-2 SPs were rinsed with carbon disulfide and then washed with water and ethanol several times. The purified FeS₂@C-2 SPs were then dried at 90 °C under vacuum for 12 h. FeS₂@C-0 SPs were synthesized through a similar procedure without the partial etching of Fe₃O₄ NPs.

Material Characterization Powder X-ray diffraction (XRD, X'pert PRO, Cu Kα radiation), field-emission scanning electron microscopy (SEM, Zeiss Ultra-55, 5 kV), and transmission electron microscopy (TEM, Tecnai G2 20 TWIN, 200 kV) were used to characterize the structure and morphology of the as-prepared samples. Thermogravimetric analysis (TGA, TGA1 Mettler Toledo) was carried out to determine the content of the active material. The porosity and Brunauer-Emment-Teller (BET) surface area were determined by N₂ adsorption/desorption measurements (TristarII3020). Leica EM TIC 3X argon ion cutter was used to cut the cross-sections of the electrodes.

Electrochemical Measurements The electrochemical performances of the materials were evaluated by using the 2016-type coin cells which were assembled in an Ar-filled glove box. Sodium foils were used as the counter electrodes, and glass fibres (Whatman, CAT NO. 1825-090) were used as the separator. 1 M NaSO₃CF₃ in diglyme (DGM) was used as the electrolyte. The slurry for making the working electrodes was prepared by mixing the active material, acetylene black, and polyvinylidene fluoride (PVDF) in a weight ratio of 70: 20: 10. The specific capacity was calculated based on the mass of active material. The slurry was coated onto Cu foil with a loading mass of ~ 1 mg cm⁻² and was then dried at 90 °C under vacuum for 12 h. Galvanostatic tests were carried out on a Neware cell test system with a voltage range of 0.8-3 V. Cyclic voltammetry (CV) was performed on AUTOLAB potentiostat/galvanostat apparatus (N204) with a constant scan rate of 0.1 mV s⁻¹. Electrochemical impedance measurements (EIS) was tested at a 5 mV ac oscillation amplitude over the frequency range of 100 kHz to 100 MHz.

Fig. S1 (a) TEM image of Fe₃O₄ NPs used for making superparticles; (b) Size distribution histogram of Fe₃O₄@C SPs.

Fig. S2 Cross-sectional SEM image of a single $FeS_2@C-0$ SP, showing the more compact superstructure due to the growth of large FeS_2 NPs.

Fig. S3 (a) N₂ adsorption and desorption isotherms of $FeS_2@C-2$ SPs and $FeS_2@C-0$ SPs; (b) Pore size distribution of $FeS_2@C-2$ SPs and $FeS_2@C-0$ SPs, which was calculated from the desorption branch using the Barrett-Joyner-Halenda (BJH) model.

Fig. S4 TGA analysis of FeS₂@C-0 SPs and FeS₂@C-2 SPs at a temperature ramp of 10 $^{\circ}$ C min⁻¹ in air.

Fig. S5 Charge and discharge voltage profiles of FeS₂@C-2 SPs at a current density of 0.1 A g⁻¹.

Fig. S6 SEM and cross-sectional SEM images of $FeS_2@C-2$ SPs (a, b) and $FeS_2@C-0$ SPs (c, d) after cycling. (e) Elemental mapping of $FeS_2@C-2$ SPs after cycling.

Fig. S7 Nyquist plots of $FeS_2@C-0$ SPs and $FeS_2@C-2$ SPs. Inset shows the magnified plots in the middle-frequency region.

Fig. S8 The variations and fittings of -Z" and $\omega^{-1/2}$ in the low-frequency region of FeS₂@C-0 SPs and FeS₂@C-2 SPs.

Diffusion Coefficient Calculation The value of apparent Na diffusion coefficient

 $(D_{apparent})$ can be calculated using the following equation eq 1, according to EIS data.²

$$D_{apparent} = R^{2}T^{2}/2A^{2}n^{4}F^{4}C^{2}\sigma^{2} \quad (1)$$

-Z"=RD+RL+ $\sigma\omega^{-1/2}$ (2)

In which R, T, A, n, F, C, and σ represent the gas constant (8.314 J K⁻¹ mol⁻¹), absolute temperature (298 K), surface area of the electrode (1.3 cm²), number of electrons per molecule during the redox process (n=1), Faraday's constant (96500 C mol⁻¹), the concentration of sodium ions (calculated from the density and the molecular weight of NaFeS₂, which is 1.59×10^{-2} mol cm⁻³) and Warburg factor, respectively. The values of σ can be estimated in Fig. S8, where the ω is the angular frequency. The Na-ion diffusion coefficient of FeS₂@C-0 SPs and FeS₂@C-2 SPs are 6.48×10⁻¹⁶ and 2.98×10⁻¹⁵ cm² s⁻¹, respectively. This result confirms that FeS₂@C-2 SPs has a higher Na-ion diffusion coefficient due to the smaller NP size and rich void space within the superparticles.

Types of materials	Voltage range (V)	Cycling performance	Rate capability	Ref.
		83.4% of capacity retention after 1000 cycles at 0.2 A g ⁻¹ (329 mAh g ⁻¹)	244 mAb c^{1} at 10 A c^{1} and	
FeS ₂ @C-2 SPs	0.8-3	76.7% of capacity retention after 1000 cycles at 1 A g^{-1} (283 mAh g^{-1})	67.0% of capacity retention at 10 A g ⁻¹ compared with the capacity at 0.1 A g ⁻¹	This work
		52.3% of capacity retention after 4000 cycles at 5 A g^{-1} (201 mAh g^{-1})		
FeS ₂ /rGO-A	0.8-3	58.03 % of capacity retention after 800 cycles at 0.9 A g^{-1} .	52.7% of capacity retention at 5C compared with the capacity at 0.1C.	3
Pyrite FeS ₂	0.8-3	$180 \ mAh \ g^{-1}$ after 20000 cycles at $1 \ A \ g^{-1}$	170 mAh g^{-1} at 20 A g^{-1}	4
Cobalt-doped FeS ₂	0.8-2.9	220 mAh g ⁻¹ after 5000 cycles at 2 A g^{-1}	192 mAh g^{-1} at 10 A g^{-1}	5
FeS ₂ @rGO	0.8-3	79.1% of capacity retention after 250 cycles at 0.5C. (240 mAh g ⁻¹)	192.9 mAh g ⁻¹ at 2C	6
FeS ₂	0.6-3	415 mAh g ⁻¹ after 100 cycles at 0.06 A g^{-1}	290 mAh g^{-1} at 0.2 A g^{-1} .	7
FeS ₂ -PAA	0.5-3	87.8% of capacity retention after 800 cycles at 0.2 A g^{-1} . (460 mAh g^{-1})	323 mAh g^{-1} at 5 A g^{-1}	8
FeS ₂ NCs	0.02-2.5	50% of capacity retention after 600 cycles at 1 A g ⁻¹ . (410 mAh g ⁻¹)	530 mAh g^{-1} after 100 cycles at 5 A g^{-1}	9
FeS2@C	0.01-3	330 mAh g^{-1} after 800 cycles at 2 A g^{-1}	401 mAh g^{-1} at 5 A g^{-1}	10
FeS/C	0.01-2.3	67.6% of capacity retention after 300 cycles at 0.1 A g ⁻¹	72.7% of capacity retention at 5C compared with the capacity at 0.2C	11
CoS ₂	1.0-3.0	\sim 240 mAh g ⁻¹		12
micro/nanostructures		over 800 cycles at 0.1 A g ⁻¹		
CoS ₂ /rGO	0.8-2.4	192 mAh g ⁻¹ after 1000 cycles at 1 A g ⁻¹	202.7 mA h g ⁻¹ at 2 A g ⁻¹	13
Ni ₃ S ₂ /rGo	0.01-3	71.7 % of capacity retention after 140 cycles at 0.3 A g^{-1} . (443mAh g^{-1})	74.8% of capacity retention at 3 A g^{-1} compared with the capacity at 0.2 A g^{-1}	14
MoS2@C-CMC	0.01-3	286 mAh g ⁻¹ after 100 cycles at 0.08 A g ⁻¹ .	205 mA h g ⁻¹ at 1 A g ⁻¹	15

Table S1 Electrochemical performance comparison between $FeS_2@C-2$ SPs and representative transition-metal-sulfide-based anode materials reported previously.

References

- 1 J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang and T. Hyeon, *Nat. Mater.*, 2004, **3**, 891.
- 2 X. Y. Wang, H. Hao, J. L. Liu, T. Huang and A. S. Yu, *Electrochim. Acta*, 2011, 56, 4065-4069.

- 3 W. H. Chen, S. H. Qi, L. Q. Guan, C. T. Liu, S. Z. Cui, C. Y. Shen and L. W. Mi, J. Mater. Chem. A, 2017, 5, 5332-5341.
- 4 Z. Hu, Z. Q. Zhu, F. Y. Cheng, K. Zhang, J. B. Wang, C. C. Chen and J. Chen, *Energy Environmental Sci.*, 2015, **8**, 1309-1316.
- 5 K. Zhang, M. Park, L. M. Zhou, G.-H. Lee, J. Shin, Z. Hu, S. L. Chou, J. Chen and Y.-M. Kang, *Angew. Chem. Int. Ed.*, 2016, **55**, 12822-12826.
- 6 W. H. Chen, S. H. Qi, M. M. Yu, X. M. Feng, S. Z. Cui, J. M. Zhang and L. W. Mi, *Electrochim. Acta*, 2017, 230, 1-9.
- 7 Y. J. Zhu, L. M. Suo, T. Gao, X. L. Fan, F. D. Han and C. S. Wang, *Electrochem. Commun.*, 2015, **54**, 18-22.
- 8 K. Y. Chen, W. X. Zhang, L. H. Xue, W. L. Chen, X. H. Xiang, M. Wan and Y. H. Huang, *ACS Appl. Mater. Interfaces*, 2017, **9**, 1536-1541.
- 9 M. Walter, T. Zund and M. V. Kovalenko, Nanoscale, 2015, 7, 9158-9163.
- 10 Z. M. Liu, T. C. Lu, T. Song, X. Y. Yu, X. W. Lou and U. Paik, *Energy Environmental Sci.*, 2017, **10**, 1576-1580.
- 11 Y. X. Wang, J. P. Yang, S. L. Chou, H. K. Liu, W. X. Zhang, D. Y. Zhao and S. X. Dou, *Nat. Commun.*, 2015, 6, 8689.
- 12 X. Liu, K. Zhang, K. X. Lei, F. J. Li, Z. L. Tao and J. Chen, *Nano Res.*, 2016, **9**, 198-206.
- 13 Z. W. Li, W. J. Feng, Y. Q. Lin, X. Liu and H. L. Fei, *RSC Adv.*, 2016, **6**, 70632-70637.
- 14 G. D. Park, J. S. Cho and Y. C. Kang, Nanoscale, 2015, 7, 16781-16788.
- 15 X. Q. Xie, T. Makaryan, M. Q. Zhao, K. L. Van Aken, Y. Gogotsi and G. X. Wang, *Adv. Energy Mater.*, 2016, 6, 1502161.