Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Difluorocarbene-derived trifluoromethylselenolation of benzyl halides

Xin-Lei Chen^{ab}, Sheng-Hua Zhou^b, Jin-Hong Lin^b, Qing-Hai Deng^{a*}, Ji-Chang Xiao^{b*}

^aCollege of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China; E-mail: qinghaideng@shnu.edu.cn, Tel: +86-21-64321305.

^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. E-mail: jchxiao@sioc.ac.cn, Tel: +86-21-54925340

Content

1. General information	S2
2. Procedure for the preparation of 2	S2
3. The observation of [CuSeCF ₃] intermediate	S6
4. References	S9
5. Copies of ¹⁹ F NMR, ¹ H NMR, and ¹³ C NMR spectra	S10

1. General information

Solvents and reagents were purchased from commercial sources and used as received unless otherwise noted. 1 H, 13 C and 19 F NMR spectra were detected on a 500 MHz, 400MHz or 300 MHz NMR spectrometer. Data for 1 H NMR, 13 C NMR and 19 F NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, coupling constant (J) in Hz). Mass spectra were obtained on a GC-MS or LC-MS. High resolution mass data were recorded on a high resolution mass spectrometer in the EI mode.

2. Procedure for the preparation of 2

$$R-X + Ph_{3}P^{+}CF_{2}COO^{-} + Se + CsF \xrightarrow{\text{nBu}_{4}NCl, Ag}_{\text{DMA, 70 °C, 1.5 h}} R-SeCF_{3}$$
1

Into a 10 mL sealed tube were added 1a (0.2 mmol, 49.4mg), $Ph_3P^+CF_2COO^-$ (0.4 mmol, 142.4 mg), Se (1.2 mmol, 94.8 mg), CsF (0.6 mmol, 91.2 mg), CuI (0.6 mmol, 114.3 mg), 2,2'-bpy (0.4 mmol, 62.4 mg), nBu_4NCI (0.4 mmol, 111 mg), Ag_2CO_3 (0.04 mmol, 11.1 mg) and DMA (3 mL) under a N_2 atmosphere. The tube was sealed and the mixture was stirred at 70 oC for 1.5 h. After being cooled to room temperature, the mixture was filtrated. The solid was washed by DCM, and the combined organic phase was washed with water (20 mL \times 3) to remove DMA. The organic phase was dried over Na_2SO_4 . After the solvent was removed by concentration, the residue was subjected to flash column chromatography to afford the final product 2a.

2a

([1,1'-biphenyl]-4-ylmethyl) (trifluoromethyl) selane; 71%; white solid; M. P.: 65 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.54 (m, 4H), 7.45-7.39 (m, 4H), 7.34 (t, J = 6.8Hz, 1H), 4.28 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -34.41 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 140.8 (s), 140.5 (s), 135.1 (s), 130.6 (s), 129.5 (s), 128.8(s), 127.6 (s), 127.1 (s), 122.9 (q, J = 331.0 Hz), 28.9 (q, J = 1.3 Hz). IR (neat) v = 1488, 1407, 1191, 1103, 842, 765, 738, 728, 662cm⁻¹; HRMS (EI) Calcd for $C_{14}H_{11}F_3^{74}Se[M]^+$: 310.0038, Found: 310.0051.

2b

([1,1'-biphenyl]-2-ylmethyl) (trifluoromethyl) selane; 41%; yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.38 (m, 4H), 7.34-7.31 (m, 4H), 7.24 (t, J = 4.4 Hz, 1H), 4.20 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -34.75 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 142.4 (s), 140.3 (s), 133.4 (s), 130.6 (s), 130.3 (s), 129.0 (s), 128.4 (s), 127.93 (s), 127.90 (s), 127.6 (s), 122.9 (q, J = 331.0 Hz), 27.3 (q, J = 1.7 Hz). IR (neat) ν = 3062, 1478, 1451, 1438, 1099, 762, 744, 702cm⁻¹; HRMS (EI) Calcd for $C_{14}H_{11}F_{3}^{74}Se[M]^{+}$: 310.0038, Found: 310.0045.

2c

(4-chlorobenzyl) (trifluoromethyl) selane; 57%; slightly yellow liquid; 1 H NMR (400 MHz, CDCl₃) δ 7.30-7.24 (m, 4H), 4.18 (s, 2H). 19 F NMR (376 MHz, CDCl₃) δ - 34.37 (s, 3F). 13 C NMR (101 MHz, CDCl₃) δ 134.8 (s), 133.7 (s), 130.3 (s), 129.1 (s), 122.7 (q, J = 331.4 Hz), 28.3 (q, J = 1.8 Hz). IR (neat) v = 2962, 1492, 1408, 1261, 1095, 864, 800, 739, 704cm⁻¹; HRMS (EI) Calcd for $C_8H_6ClF_3^{74}Se[M]^+$: 267.9335, Found: 267.9330.

2d

(3,4-dichlorobenzyl) (trifluoromethyl) selane; 55%; slightly yellow liquid; 1 H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 2.1 Hz, 1H), 7.38 (d, J = 8.3 Hz, 1H), 7.16 (dd, J = 8.2, 2.1 Hz, 1H), 4.14 (s, 2H). 19 F NMR (376 MHz, CDCl₃) δ -34.29 (s, 3F). 13 C NMR (101 MHz, CDCl₃) δ 136.7 (s), 132.9 (s), 132.0 (s), 130.9 (s), 130.8 (s), 128.3 (s), 122.6 (q, J = 331.5 Hz), 27.7 (q, J = 1.8 Hz). IR (neat) v = 1593, 1470, 1396, 1201, 1096, 1073, 1034, 891, 738cm⁻¹; HRMS (EI) Calcd for $C_8H_5Cl_2F_3^{74}Se[M]^+$: 301.8945, Found: 301.8957.

2e

(4-bromobenzyl) (trifluoromethyl) selane; 71%; white liquid; ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 4.16 (s, 2H). ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -34.36 (s, 3F). ${}^{13}C$ NMR (101 MHz, CDCl₃) δ 135.3 (s), 132.0 (s), 130.7 (s), 122.5 (q, J = 331.0 Hz), 121.8 (s), 28.4 (q, J = 1.7 Hz). IR (neat) ν = 2960, 2925, 2853, 1590, 1488, 1420, 1403, 1261, 1097, 1012, 801, 477cm⁻¹; HRMS (EI) Calcd for $C_8H_6^{79}BrF_3^{74}Se[M]^+$: 311.8830, Found: 311.8844.

2f

(3,5-dibromobenzyl) (trifluoromethyl) selane; 81%; slightly yellow liquid; 1 H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.42 (s, 2H), 4.12 (s, 2H). 19 F NMR (376 MHz, CDCl₃) δ -34.29 (s, 3F). 13 C NMR (101 MHz, CDCl₃) δ 140.3 (s), 133.5 (s), 130.8 (s), 123.2 (s), 122.4 (q, J = 331.0 Hz), 27.5 (s). IR (neat) ν = 1584, 1556, 1425, 1219, 1097, 1074, 858, 742, 684cm⁻¹; HRMS (EI) Calcd for $C_8H_5^{79}Br_2F_3^{74}Se[M]^+$: 389.7935, Found: 389.7932.

2g

(2-iodobenzyl) (trifluoromethyl) selane; 43%; slightly yellow liquid; 1 H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.8 Hz, 1H), 7.38 (d, J = 7.5 Hz, 1H), 7.30 (t, J = 7.4 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 4.29 (s, 2H). 19 F NMR (376 MHz, CDCl₃) δ -34.29 (s, 3F). 13 C NMR (101 MHz, CDCl₃) δ 139.84 (s), 139.75 (s), 130.0 (s), 129.4 (s), 128.8 (s), 122.8 (q, J = 331.9 Hz), 100.6 (s), 34.8 (q, J = 1.6 Hz). IR (neat) ν = 2924, 1563, 1468, 1437, 1199, 1096, 1013, 754, 737, 718, 646cm⁻¹; HRMS (EI) Calcd for $C_8H_6F_3I^{74}Se[M]^+$: 359.8691, Found: 359.8695.

2h

(trifluoromethyl) (4-(trifluoromethyl) benzyl) selane; 50%; slightly yellow liquid; 1 H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.1 Hz, 2H), 4.24 (s, 2H). 19 F NMR (376 MHz, CDCl₃) δ -34.39 (s, 3F), -62.73 (s, 3F). 13 C NMR (101 MHz, CDCl₃) δ 140.6 (s), 130.0 (q, J = 33.0 Hz), 129.3 (s), 125.8 (q, J = 3.8 Hz), 124.0 (q, J = 272.1 Hz), 123.1 (q, J = 333.0 Hz), 28.3 (q, J = 1.6 Hz). IR (neat) v = 1618, 1558, 1326, 1123, 1097, 1067, 1019, 848, 753, 739cm⁻¹; HRMS (EI) Calcd for $C_{9}H_{6}F_{6}^{74}$ Se[M]⁺: 301.9598, Found: 301.9592.

2i

(naphthalen-2-ylmethyl) (trifluoromethyl) selane; 41%; white solid; M. P.: 48 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.83-7.78 (m, 4H), 7.52-7.43 (m, 3H), 4.41 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -34.35 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 133.43 (s), 133.36 (s), 132.8 (s), 128.8 (s), 127.9 (s), 127.76 (s), 127.75 (s), 126.8(s), 126.5 (s), 126.3 (s), 122.9 (q, J = 331.4 Hz), 29.6 (q, J = 1.7 Hz). IR (neat) v = 1598, 1507, 1201, 1096, 966, 953, 867, 826, 751, 737, 480cm⁻¹; HRMS (EI) Calcd for C₁₂H₉F₃⁷⁴Se[M]⁺: 283.9881, Found: 283.9884.

2i

(3-methoxybenzyl) (trifluoromethyl) selane¹; 71%; white liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, J = 7.9 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 6.85 (t, J = 1.9 Hz, 1H), 6.81 (dd, J = 8.2 Hz, 2.0 Hz, 1H), 4.21 (s, 2H), 3.80 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -34.53 (s, 3F).

2k

(3,5-dimethoxybenzyl) (trifluoromethyl) selane; 50%; slightly yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 6.47 (d, J = 2.2 Hz, 2H), 6.35 (t, J = 2.2 Hz, 1H), 4.16 (s, 2H), 3.77 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -34.57 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.1 (s), 138.2 (s), 122.9 (q, J = 331.4 Hz), 107.0 (s), 99.8 (s), 55.3 (s), 29.3 (q, J = 1.7 Hz). IR (neat) ν = 1608, 1598, 1464, 1430, 1325, 1207, 1158, 1099, 1066, 930, 737cm⁻¹; HRMS (EI) Calcd for $C_{10}H_{11}F_3O_2^{74}Se[M]^+$: 293.9936, Found: 293.9944.

21

methylbenzyl) (trifluoromethyl) selane²; 58%; slightly yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), 4.22 (s, 2H), 2.33 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -34.50 (s, 3F).

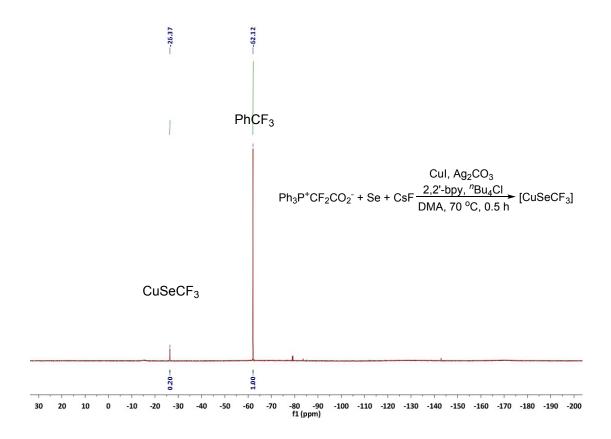
2m

(4-methoxybenzyl)(trifluoromethyl)selane; 45%; slightly yellow liquid; 1 H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8.5 Hz, 2H), 4.21 (s, 2H), 3.79

(s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -34.45 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 159.2 (s), 130.2 (s), 127.8 (s), 122.9 (q, J = 333.2 Hz), 114.3 (s), 55.3 (s), 28.8 (q, J = 1.8 Hz). IR (neat) ν = 2956, 1608, 1512, 1464, 1322, 1251, 1096, 1071, 1034, 737, 598cm⁻¹; HRMS (EI) Calcd for C₉H₉F₃O⁷⁴Se[M]⁺: 263.9830, Found: 263.9819.

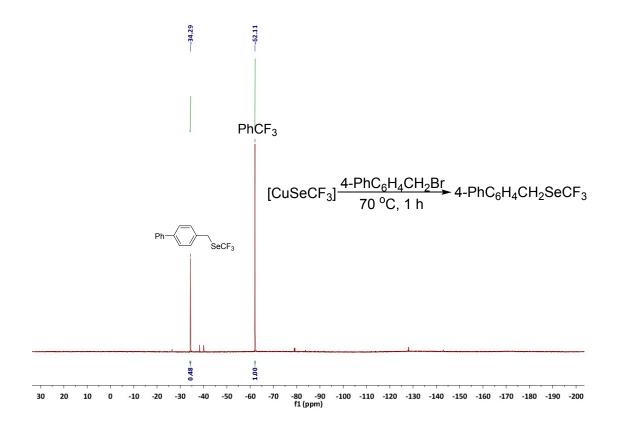
2n

cinnamyl(trifluoromethyl)selane³; The yield determined by ¹⁹F NMR spectroscopy was 12%; ¹⁹F NMR (376 MHz, CDCl₃) δ -33.86 (s, 3F).


20

phenethyl(trifluoromethyl)selane^{1, 2}; The yield determined by 19 F NMR spectroscopy was 20%; 19 F NMR (376 MHz, CDCl₃) δ -34.03 (s, 3F).

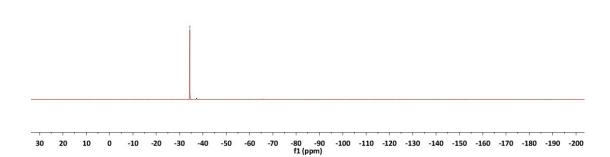
3. The observation of [CuSeCF₃] intermediate


Cul, Ag₂CO₃
Ph₃P⁺CF₂CO₂⁻ + Se + CsF
$$\frac{2,2'$$
-bpy, n Bu₄Cl \rightarrow [CuSeCF₃] $\frac{4\text{-PhC}_{6}\text{H}_{4}\text{CH}_{2}\text{Br}}{70\,^{\circ}\text{C}$, 1 h $\frac{20,489}{400}$

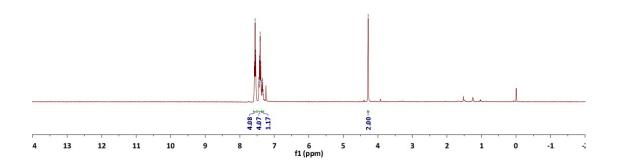
Into a 10 mL sealed tube were added $Ph_3P^+CF_2CO_2^-$ (0.4 mmol, 142.4 mg), Se (1.2 mmol, 94.8 mg), CsF (0.6 mmol, 91.2 mg), CuI (0.6 mmol, 114.3 mg), 2,2'-bpy (0.4 mmol, 62.4 mg), nBu_4NCI (0.4 mmol, 111 mg), Ag_2CO_3 (0.04 mmol, 11.1 mg) and DMA (3 mL) under a N_2 atmosphere. The tube was sealed and the mixture was stirred at 70 oC for 0.5 h. ^{19}F NMR analysis showed that [CuSeCF₃] complex was generated (0.2 mmol of PhCF₃ was used as an internal standard). The ^{19}F NMR spectrum is shown as follows. The ^{19}F NMR yield was quite low (10% based on $Ph_3P^+CF_2CO_2^-$), because the complex decomposed during the process of collecting ^{19}F NMR spectrum due to its instability. CuSeCF₃: ^{19}F NMR (376 MHz, CDCl₃) δ -26.37 (s, 3F)¹.

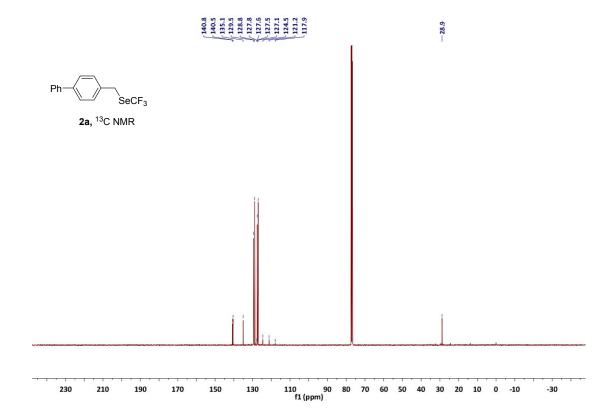
In order to prove that CuSeCF₃ is the key intermediate, substrate **1a** was added after the complex was generated. The procedure is shown as follows.

Into a 10 mL sealed tube were added $Ph_3P^+CF_2CO_2^-$ (0.4 mmol, 142.4 mg), Se (1.2 mmol, 94.8 mg), CsF (0.6 mmol, 91.2 mg), CuI (0.6 mmol, 114.3 mg), 2,2'-bpy (0.4 mmol, 62.4 mg), nBu_4NCI (0.4 mmol, 111 mg), Ag_2CO_3 (0.04 mmol, 11.1 mg) and DMA (3 mL) under a N_2 atmosphere. The tube was sealed and the mixture was stirred at 70 °C for 0.5 h. Substrate **1a** (0.2 mmol, 49.4 mg) was added and the resulting mixture was stirred at 70 °C for 1 h. The ^{19}F NMR analysis revealed that the desired product was obtained in 48% yield (0.2 mmol of PhCF₃ was used as an internal standard). The ^{19}F NMR spectrum is shown as follows.

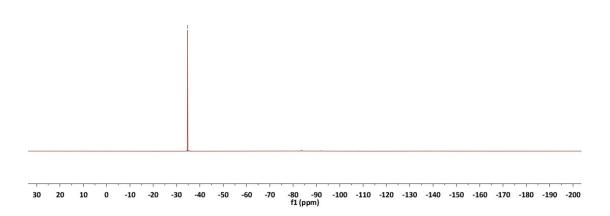


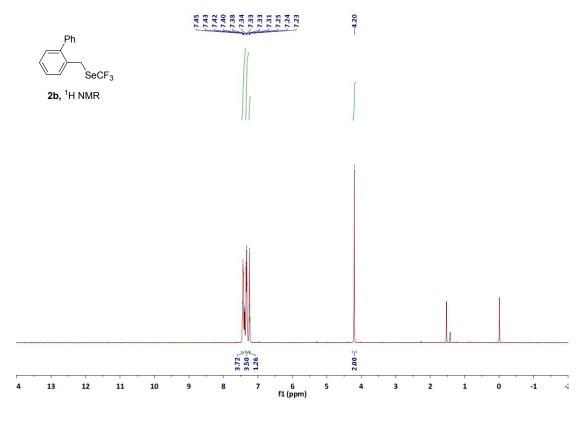
4. References

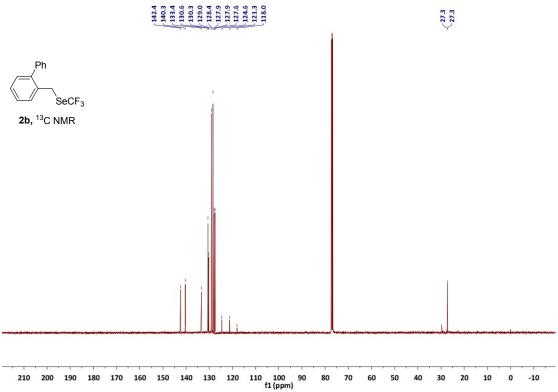

- (1) C. Chen, L. Ouyang, Q. Lin, Y. Liu, C. Hou, Y. Yuan and Z. Weng, *Chem. Eur. J.*, 2014, **20**, 657-661.
- (2) C. Chen, C. Hou, Y. Wang, T. S. A. Hor and Z. Weng, *Org. Lett.*, 2014, 16, 524-527.
- (3) M. Rong, R. Huang, Y. You and Z. Weng, *Tetrahedron*, 2014, **70**, 8872-8878.

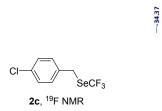

5. Copies of ¹⁹F NMR, ¹H NMR, and ¹³C NMR spectra

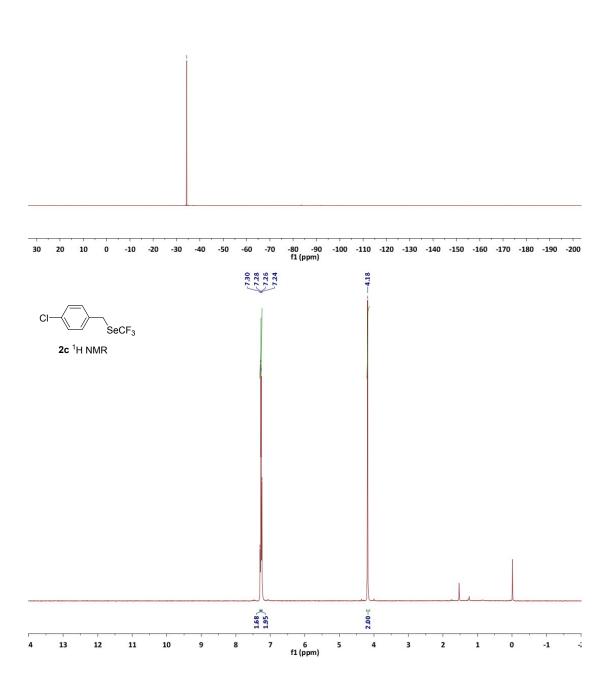
--34.41

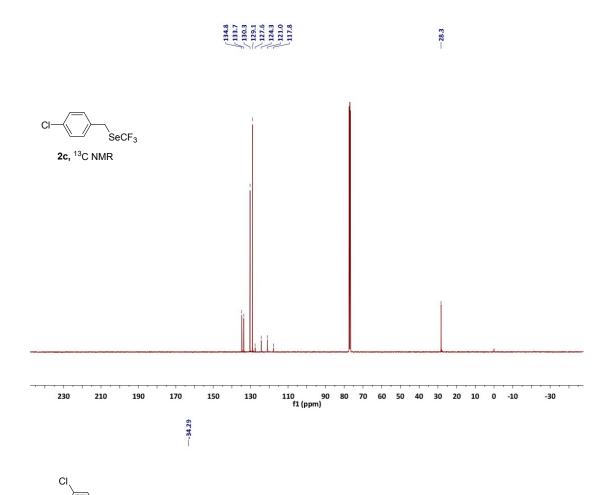


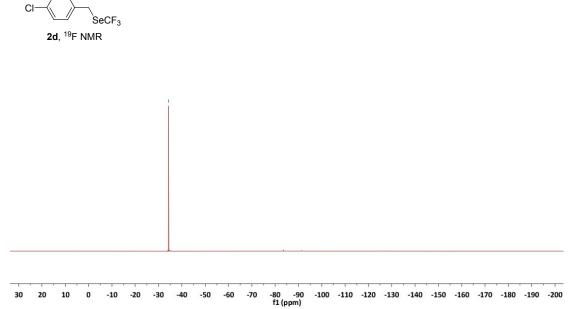


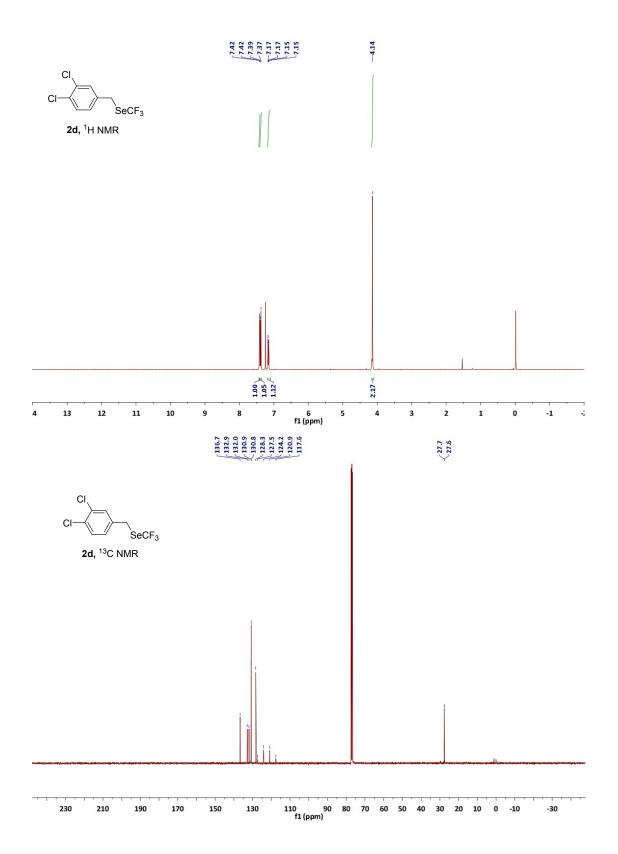


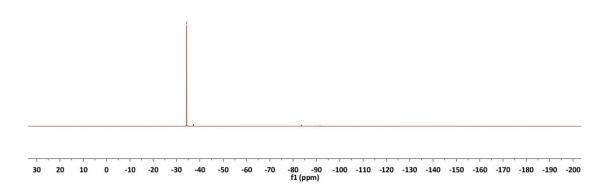


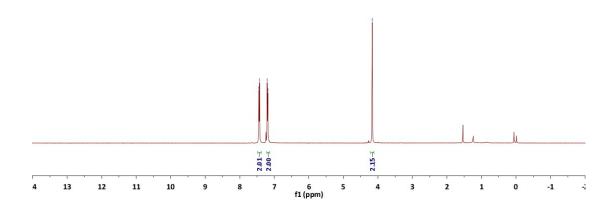


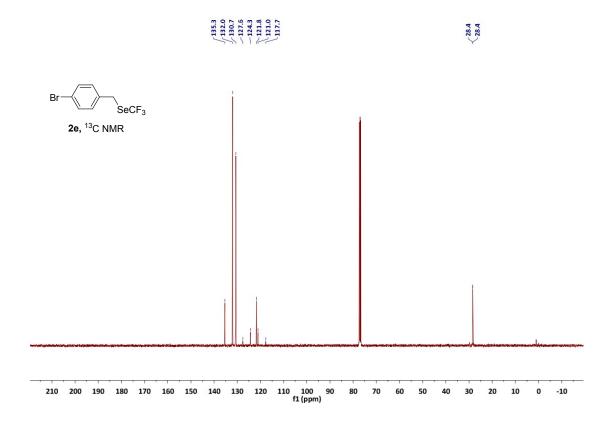


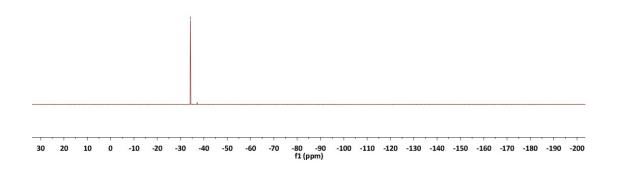


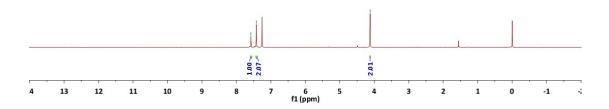


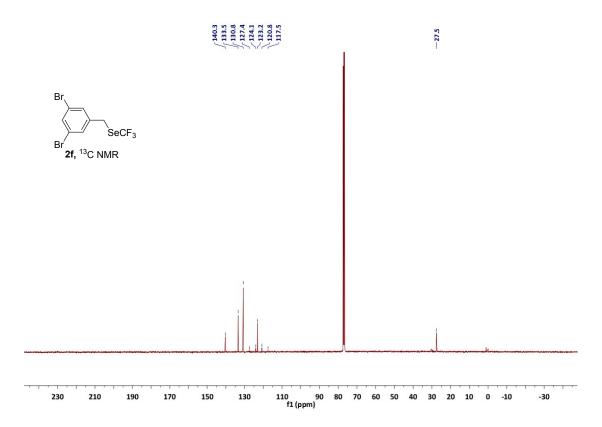


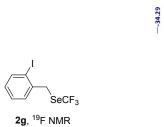


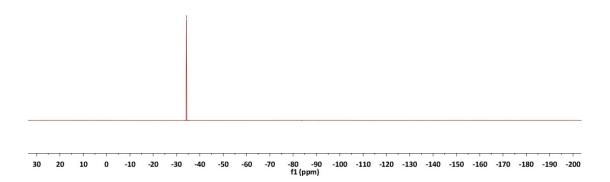


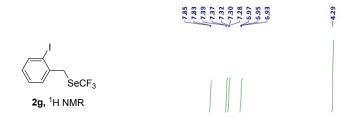


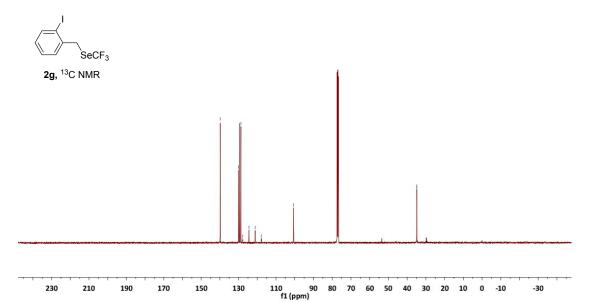


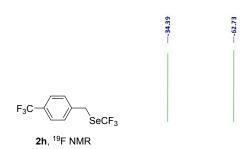


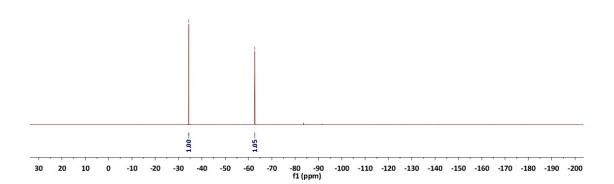


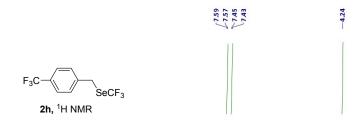


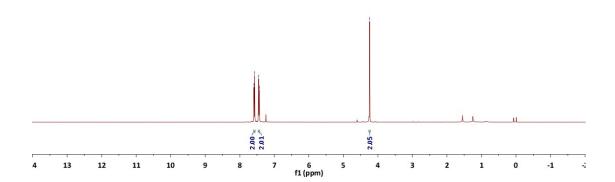


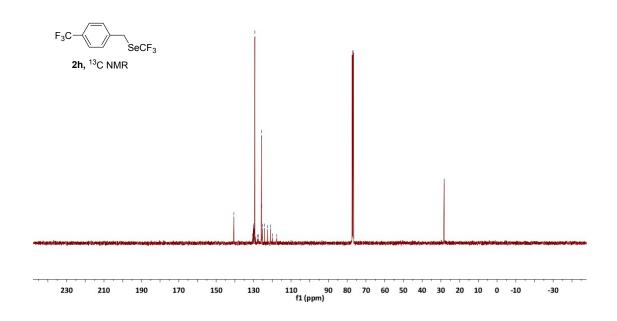


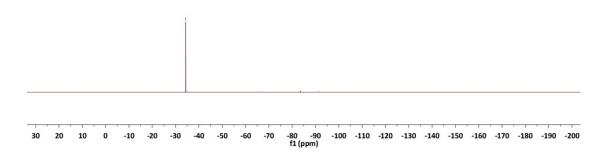


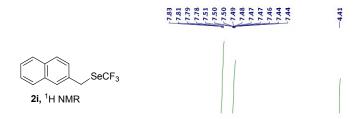


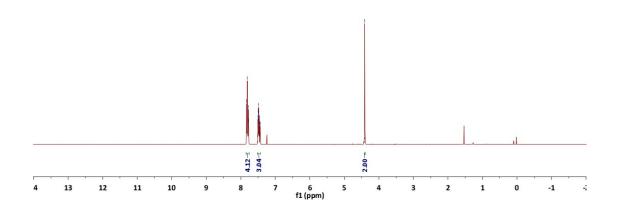


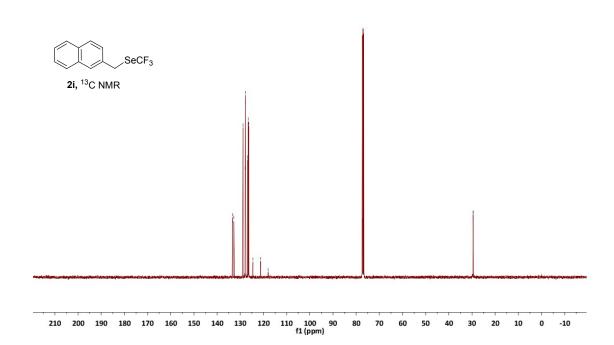


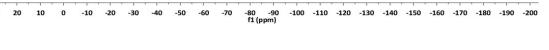


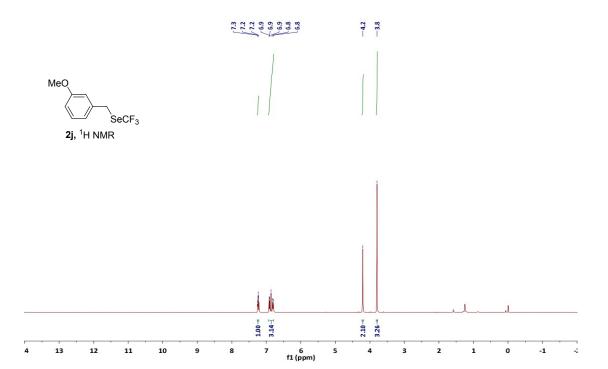


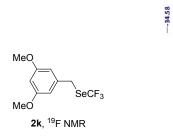


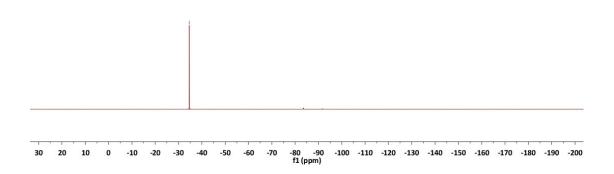


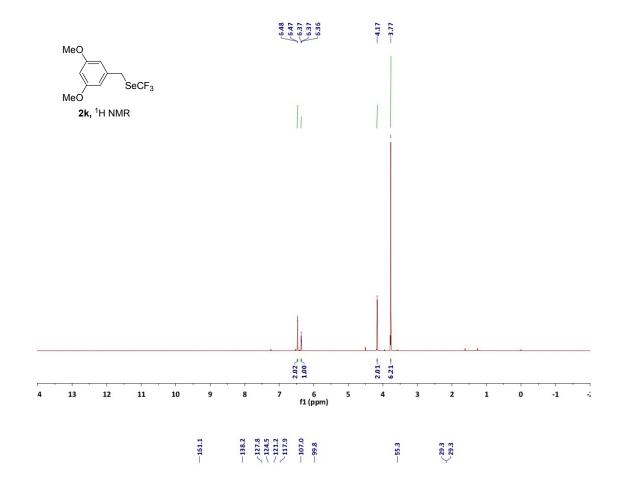


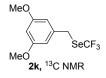


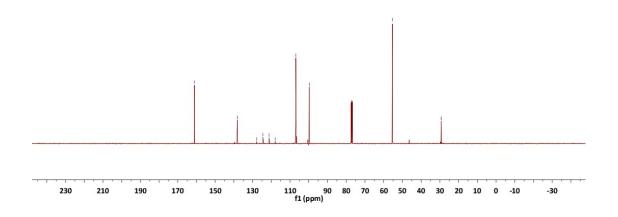


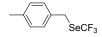

29.5

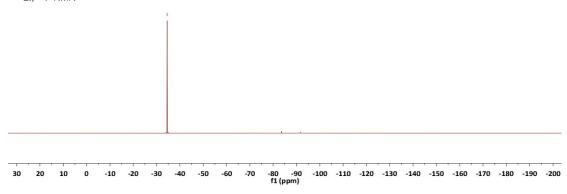


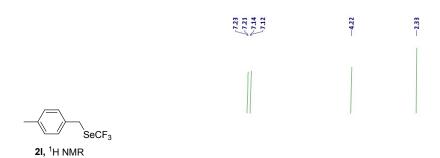

--34.53

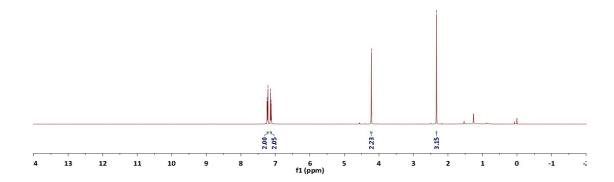


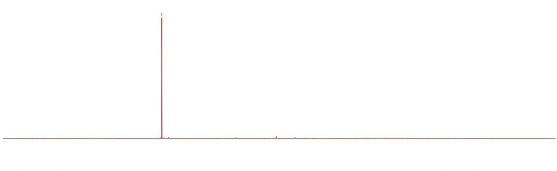


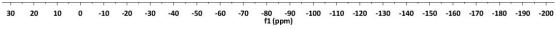


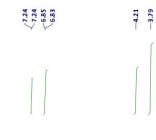


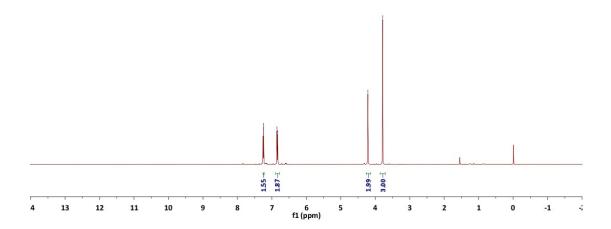


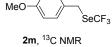


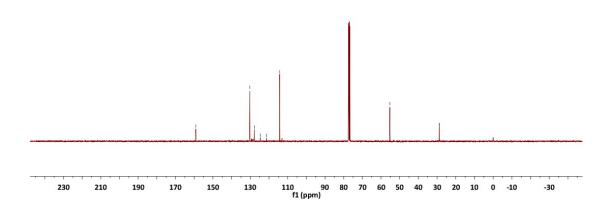

2I, ¹⁹F NMR










SeCF₃

2m, ¹H NMR

