Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Terminal Hydridozinc Cation

Raju Chambenahalli,^a Alex P. Andrews,^a Florian Ritter,^b Jun Okuda^b and Ajay Venugopal *^a

^a School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram,

Vithura, Thiruvananthapuram 695551, India.

^b Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.

Supporting Information

Contents:

- 1. Synthetic Methods, Procedures and Characterisation
- 2. Crystallographic Data

1. Synthetic Methods, Procedures and Characterisation

General Methods: All manipulations were performed under argon atmosphere using standard Schlenk and glove-box techniques.^[1] The starting materials, Me₆tren ^[3] and [Et₃NH][B{C₆H₃-3,5-(CF₃)₂}₄] ^[4] were prepared according to the literature procedures, Et₂Zn was procured from Sigma Aldrich and used as received. (C₆H₅)₂CO was procured from Sigma Aldrich and dried under vacuum (10⁻³ mbar) at room temperature for 24 h. *N*,*N*'-Diisopropylcarbodiimide (DIC) was procured from Sigma Aldrich, distilled under vacuum (10⁻³ mbar) at 60 °C and used after drying on molecular sieves (3 Å) for one day. The solvents used for the synthesis and NMR experiments were dried, distilled and degassed prior to use by standard methods.^[2] NMR measurements were performed on Bruker 500 MHz spectrometer. The chemical shifts (δ ppm) in ¹H and ¹³C NMR spectra were referenced to the residual proton signals of the deuterated solvents. ¹⁹F & ¹¹B NMR spectra were referenced to CFCl₃ and NaBH₄ in D₂O respectively. Analytically pure compounds for elemental analysis were obtained by repeated crystallisation of the products. Elemental analyses were performed on Elemental Vario Micro Cube.

Compound 1

[Et₃NH][B{C₆H₃-3,5-(CF₃)₂]₄] (0.375 mmol, 0.362 g) was added to a diethyl ether solution of Me₆tren (0.375 mmol, 0.100 mL). The reaction mixture was stirred for 2 min. 1 M solution of Et₂Zn in heptane (0.375 mmol, 0.375 mL) was slowly added to the reaction mixture using a syringe at room temperature then stirred for 1 min. All the volatiles were evaporated under vacuum (10⁻³ mbar) at room temperature to get a colourless powder of **1**, which was further purified by crystallisation using THF and *n*-pentane. Yield 0.410 g (93%); elemental analysis for C₄₆H₄₇BF₂₄N₄Zn: C, 46.50; H, 3.99; N, 4.72; Found: C, 46.48; H, 3.89; N, 4.60; ¹H NMR (CD₂Cl₂, 500 MHz): δ 0.22 (q, 2H, ³J_{H-H} = 10 Hz, *CH*₂Me₃), 1.28 (t, 3H, ³J_{H-H} = 10 Hz, *CCH*₃), 2.42 (s, 18H, N*CH*₃), 2.68 (t, 6H, ³J_{H-H} = 5 Hz, N*CH*₂), 2.89 (t, 6H, ³J_{H-H} = 5 Hz, N*CH*₂), 7.57 (s, 4H, *p*-C₆H₃) 7.79 (br, 8H, *o*-C₆H₃) (Figure S1); ¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): δ -1.7 (*CH*₂Me), 13.9 (*CCH*₃), 46.7 (*NCH*₃), 52.1 (*NCH*₂), 56.5 (*NCH*₂), 118.0 (t, *p*-C), 128.4 (q, CF₃) 129.3 (m, *m*-C), 135.4 (s, *o*-C), 162.5 (q, *i*-C) (Figure S2); ¹¹B NMR (CD₂Cl₂, 471 MHz): δ -62.80 (Figure S4).

Figure S1. ¹H NMR spectrum of 1 recorded in CD₂Cl₂.

Figure S2. ¹³C NMR spectrum of 1 recorded in CD₂Cl₂.

Figure S3. ¹¹B NMR spectrum of 1 recorded in CD₂Cl₂.

Figure S4. ¹⁹F NMR spectrum of 1 recorded in CD_2CI_2 .

$[(Me_6tren)ZnOSiPh_3][B\{C_6H_3(CF_3)_2\}_4]$

Compound **1** in 2 mL of diethylether (0.084 mmol, 0.100 g) was added to a solution of Ph₃SiOH in 2 mL diethylether (0.084 mmol, 0.023 g,). The reaction mixture was allowed to stir at room temperature for 24 h. All the volatiles were evaporated under vacuum (10^{-3} mbar) at room temperature to get a colourless powder of $[(Me_6\text{tren})\text{ZnOSiPh}_3][B\{C_6H_3(CF_3)_2\}_4]$. Compound was further purified by crystalising at -30 °C in diethylether upon *n*-hexane layering. Yield: 0.110 g (91%); elemental analysis for C₆₂H₅₇BF₂₄N₄OSiZn: C, 51.92; H, 4.01; N, 3.91; found: C, 51.34; H, 3.98; N, 3.87; ¹H NMR (CD₂Cl₂, 500 MHz): δ 2.38 (s, 18H, NCH₃), 2.56 (t, 6H, ³J_{H-H} = 5 Hz, NCH₂), 2.72 (t, 6H, ³J_{H-H} = 5 Hz, NCH₂), 7.35 (m, 9H, *p*-, *m*-C₆H₅), 7.55 (s, 4H, *p*-C₆H₃), 7.57 (d, 6H, ³J_{H-H} = 5 Hz, o-C₆H₅), 7.72 (br, 8H, o-C₆H₃) (Figure S5); ¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): δ 47.1 (NCH₃), 49.9 (NCH₂), 56.4 (NCH₂), 117.9 (t, *p*-C), 126.1 (q, CF₃), 129.3 (m, *m*-C), 135.2 (s, o-C), 162.2 (q, *i*-C), 128.0 (s, *p*-SiPh), 129.5 (s, *m*-SiPh), 135.5 (s, o-SiPh), 141.4 (s, *i*-SiPh) (Figure S6); ¹¹B NMR (CD₂Cl₂, 128 MHz): δ -6.56 (Figure S7); ¹⁹F NMR (CD₂Cl₂, 471 MHz): δ -62.80 (Figure S8).

Figure S5. ¹H NMR spectrum of [(Me₆tren)ZnOSiPh₃][B{C₆H₃(CF₃)₂}₄] recorded in CD₂Cl₂.

Figure S6. ¹³ C NMR spectrum of [(Me₆tren)ZnOSiPh₃][B{C₆H₃(CF₃)₂}₄] recorded in CD₂Cl₂.

Figure S7. ¹¹ B NMR spectrum of $[(Me_6 tren)ZnOSiPh_3][B{C_6H_3(CF_3)_2}_4]$ recorded in CD_2Cl_2 .

Figure S8. ¹⁹ F NMR spectrum of [(Me₆tren)ZnOSiPh₃][B{C₆H₃(CF₃)₂}₄] recorded in CD₂Cl₂.

Compound 2

Method A: $[(Me_6tren)ZnOSiPh_3][B\{C_6H_3(CF_3)_2\}_4]$ (0.069 mmol, 0.100 g) was dissolved in THF (2 mL). PhSiH_3 (0.140 mmol, 0.017 mL) was added to this solution. The reaction mixture was heated at 50 °C and stirred under argon for 6 h. A small amount of black precipitate was formed at the end of reaction which was filtered. The volatiles were dried under vacuum (10⁻³ mbar). The obtained residue was washed twice with *n*-hexane and dried to get a colourless powder of **2**. The compound was crystallised in THF upon layering with *n*-hexane. Yield: 0.075 g (93%); elemental analysis for C₄₄H₄₃BF₂₄N₄Zn: C, 45.56; H, 3.74; N, 4.83; found: C, 45.3; H, 3.73 N, 4.81; ¹H NMR (THF-D8, 500 MHz): δ 2.36 (s, 18H, NCH₃), 2.71 (t, 6H, ³J_{H-H} = 5 Hz, NCH₂), 2.84 (t, 6H, ³J_{H-H} = 5 Hz, NCH₂), 3.47 (s, 1H, ZnH), 7.58 (s, 4H, *p*-C₆H₃), 7.79 (br, 8H, *o*-C₆H₃) (Figure S9); ¹³C{¹H} NMR (THF-D8, 126 MHz): δ 45.9 (NCH₃), 51.4 (NCH₂), 55.5 (NCH₂), 118.2 (t, *p*-C), 128.7 (q, CF₃), 120.2 (m, *m*-C), 135.6 (s, *o*-C), 162.3 (q, *i*-C) (Figure S10); ¹¹B NMR (THF-D8, 128 MHz): δ -6.47 (Figure S11); ¹⁹F NMR (THF-D8, 471 MHz): δ -63.39 (Figure S12).

Method B: Me₆tren (0.800 mmol, 0.200 g) in THF was added to a stirred suspension of freshly prepared ZnH₂ (1 mmol, 0.070 g) in THF and stirred at ambient temperature for 5 min. Subsequently a THF solution of $[Et_3NH][B\{C_6H_3-3,5-(CF_3)_2\}_4]$ (0.800 mmol, 0.772 g) was added dropwise. After evolution of gas ceased, the reaction mixture was filtered and the filtrate was dried under *vacuo* (10⁻³ mbar) to remove all the volatiles. The obtained residue was washed twice with *n*-pentane and dried to get a colourless powder of **2**. Yield: 0.826 g (89%).

Figure S9. ¹ H NMR spectrum of 2 recorded in THF (D8).

Figure S10. ¹³ C NMR spectrum of 2 recorded in THF (D8).

Figure S11. ¹¹ B NMR spectrum of 2 recorded in THF (D8).

Figure S12. ¹⁹ F NMR spectrum of 2 recorded in THF (D8).

Compound 3

2 (0.086 mmol, 0.100 g) was dissolved in THF (5 mL) and pressurised with CO₂ (1 bar). The reaction mixture was stirred for 5 minutes. The volatiles were removed under vacuum (10⁻² mbar) at room temperature, washed twice with *n*-hexane and dried to get a colourless powder of **3**. The compound was crystallised from diethylether/ *n*-hexane mixture. Yield: 0.098 g (93%); elemental analysis for C₄₆H₄₆BF₂₄N₄O₂Zn: C, 45.32; H, 3.80; N, 4.60; Found: C, 45.18; H, 3.75; N, 4.50; ¹H NMR (CD₂Cl₂, 500 MHz): δ 2.55 (s, 18H, NCH₃), 2.64 (t, 6H, ³J_{H-H} = 5 Hz, NCH₂), 2.89 (t, 6H, ³J_{H-H} = 5 Hz, NCH₂), 7.57 (s, 4H, *p*-C₆H₃), 7.79 (br, 8H, *o*-C₆H₃) (Figure S13); ¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): δ -1.7 (CH₂Me), 13.9 (CCH3), 46.7 (NCH₃), 52.1 (NCH₂), 56.5 (NCH2), 117.9 (t, *p*-C), 126.1 (q, CF₃), 129.2 (m, *m*-C), 135.2 (s, *o*-C), 162.0 (q, *i*-C) 167.7 (s, *OCHO*), (Figure S14); ¹¹B NMR (CD₂Cl₂, 128 MHz): δ -6.49 (Figure S15); ¹⁹F NMR (CD₂Cl₂, 471 MHz): δ -62.80 (Figure S16).

Figure S13. ¹H NMR spectrum of 3 recorded in CD₂Cl₂.

Figure S14. ¹³C NMR spectrum of 3 recorded in CD₂Cl₂.

Figure S15. ¹¹B NMR spectrum of 3 recorded in CD₂Cl₂.

Figure S16. ^{19}F NMR spectrum of 3 recorded in $\text{CD}_2\text{Cl}_2.$

Compound 4

2 (0.086 mmol, 0.100 g) was dissolved in THF (5 mL) and treated with N, N'-diisopropylcarbodiimide (0.086 mmol, 0.0134 mL). The reaction mixture was stirred at room temperature and the volatiles were subsequently evaporated under vacuum (10⁻³ mbar) leaving behind a colourless precipitate, which was washed twice with *n*-hexane and further dried to get a fine white powder of **4**. The compound was crystallised from a mixture of diethylether and *n*-hexane. Yield: 0.103 g (92%); elemental analysis for $C_{52}H_{60}BF_{24}N_6Zn$: C, 48.00; H, 4.65; N, 6.46; found: C, 47.71; H, 4.56; N, 6.45; ¹H NMR (CD₂Cl₂, 500 MHz): δ 1.10 (d, 12H, ³J_{H-H} = 5 Hz, CCH₃), 2.42 (s, 18H, NCH₃), 2.66 (t, 6H, ³J_{H-H} = 5 Hz, NCH₂), 2.98 (t, 6H, ³J_{H-H} = 5 Hz, NCH₂), 3.42 (m, 2H, ³J_{H-H} = 5 Hz, NCHMe₂), 7.57 (s, 4H, *p*-C₆H₃), 7.79 (br, 8H, *o*-C₆H₃), 7.82 (s, 1H, 7.82) (Figure S17); ¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): δ 15.5 (NCHMe₂), 26.5 (CH(CH₃)₂), 46.5 (NCH₃), 50.0 (NCH₂), 55.9 (NCH₂), 117.9 (t, *p*-C), 125.0 (q, CF₃), 129.2 (m, *m*-C), 135.2 (s, *o*-C), 162.4 (q, *i*-C) (Figure S18); ¹¹B NMR (CD₂Cl₂, 128 MHz): δ -6.64 (Figure S19); ¹⁹F NMR (CD₂Cl₂, 471 MHz): δ -62.80 (Figure S20).

Figure S17. ¹H NMR spectrum of 4 recorded in CD₂Cl₂.

Figure S18. ¹³C NMR spectrum of 4 recorded in CD₂Cl₂.

Figure S19. ¹¹B NMR spectrum of 4 recorded in CD₂Cl₂.

Figure S20. ¹⁹F NMR spectrum of 4 recorded in CD₂Cl₂.

Compound 5

2 (0.172 mmol, 0.200 g) was dissolved in THF (5 mL) and treated with benzophenone (0.172 mmol, 0.032 g). The reaction mixture was heated at 45 °C for 6 h followed by the evaporation of volatiles under vacuum (10^{-3} mbar). A colourless precipitate was formed which was washed once with ether and twice with *n*-hexane and then dried to obtain a colourless powder of **5**. The compound was crystallised from a mixture of THF and *n*-hexane. Yield: 0.207 g (90%); elemental analysis for C₅₇H₅₃BF₂₄N₄OZn: C, 51.01; H, 3.98; N, 4.17; found: C, 50.76; H, 3.83; N, 4.02; ¹H NMR (CD₂Cl₂, 500 MHz): δ 2.44 (s, 18H, NCH₃), 2.55 (t, 6H, ³J_{H-H} = 5 Hz, NCH₂), 2.70 (t, 6H, ³J_{H-H} = 5 Hz, NCH₂), 5.94 (s, 1H, Ph₂CHO), 7.11 (t, 2H, ³J_{H-H} = 5 Hz, *p*-C₆H₅), 7.51 (d, 4H, ³J_{H-H} = 5 Hz, *o*-C₆H₃), 7.58 (s, 4H, *p*-C₆H₃), 7.58 (br, 8H, *o*-C₆H₃) (Figure S21); ¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): δ -1.7 (CH₂Me), 13.9 (CCH3), 46.6 (NCH₃), 52.1 (NCH₂), 56.5 (NCH2), 81.7 (s, Ph₂CHO), 117.9 (t, *p*-C), 126.1 (q, CF₃), 129.2 (m, *m*-C), 135.2 (s, *o*-C), 162.0 (q, *i*-C), 125.9 (s, *p*-C₆H₅), 126.5 (s, *m*-C₆H₅), 128.6 (s, *o*-C₆H₅) 152.2 (s, *i*-C₆H₅) (Figure S22); ¹¹B NMR (CD₂Cl₂, 128 MHz): δ -6.46 (Figure S23); ¹⁹F NMR (CD₂Cl₂, 471 MHz): δ -62.80 (Figure S24).

Figure S21. ¹H NMR spectrum of 5 recorded in CD₂Cl₂.

Figure S22. ¹³C NMR spectrum of 5 recorded in CD₂Cl₂.

Figure S23. ¹¹B NMR spectrum of 5 recorded in CD₂Cl₂.

Figure S24. ¹⁹F NMR spectrum of 5 recorded in CD₂Cl₂.

Catalytic hydrosilylation of CO₂

An NMR tube equipped with a Young valve was charged with 0.0165 mmol of **2** (0.0195 g), and 0.0165 mmol of BPh₃ (0.0039 g). Acetonitrile[D₃] (0.500 mL) was added to this mixture followed by 0.324 mmol of PhSiH₃ (0.040 mL). The reaction mixture was degassed thrice and a constant pressure of CO₂ (1.5 bar) was maintained at 50 °C. The progress of the reaction was monitored by ¹H NMR spectroscopy and the complete consumption of PhSiH₃ (98% in 2h) was observed. TOF 29.1 h⁻¹

Catalytic hydrosilylation of Ph₂CO

An NMR tube equipped with a Young valve was charged with 0.0044 mmol of **2** (0.005 g), and 0.088 mmol of Ph₂CO (0.016 g). Acetonitrile[D₃] (0.500 mL) was added to this mixture followed by 0.029 mmol of PhSiH₃ (0.0036 mL). The NMR tube was heated at 60 °C and the reaction was monitored by ¹H NMR Spectroscopy for complete consumption of PhSiH₃ to form PhSi(OCHPh₂)₃ (6 h).

Figure S25. ¹H NMR spectra (stacked) of catalytic reduction of Ph_2CO during the course of reaction in acetonitrile-D3. '(*)' denotes CD_3CN ; '(&)' denotes Me_6 tren; '(@)' denotes $PhSiH_3$; '(\$)' denotes $PhSiH_2OCHPh_2$; '(#)' denotes $PhSi(OCHPh_2)_3$.

2. Crystallographic Data

Single-crystal X-ray crystallography for structural analysis was performed with a Bruker Kappa Apex-II CCD diffractometer at 298 K and with Mo-K α irradiation (λ = 0.71073 Å). The structures were solved by direct methods with SIR-92, SHELXS-97 or SHELX-2013. Crystallographic data, details of data collection and structure refinement parameters for compounds **1-6** are presented below:

Table S1. Crystal data and structure refinement for (1).				
Identification code	Compound 1			
CCDC	1878262			
Empirical formula	C46 H47 B F24 N4 Zn			
Formula weight	1188.05			
Temperature	150(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21/c			
Unit cell dimensions	a = 12.6025(3) Å	α= 90° .		
	b = 17.6868(4) Å	$\beta = 93.6760(10)^{\circ}.$		
	c = 22.9841(5) Å	$\gamma = 90^{\circ}$.		
Volume	5112.6(2) Å ³			
Z	4			
Density (calculated)	1.543 Mg/m ³			
Absorption coefficient	0.606 mm ⁻¹			
F(000)	2408			
Crystal size	0.200 x 0.180 x 0.150 mm ³			
Theta range for data collection	1.454 to 24.999°.			
Index ranges	-14<=h<=14, -21<=k<=21, -27<=l<=26			
Reflections collected	38629			
Independent reflections	8977 [R(int) = 0.0378]			
Completeness to theta = 24.999°	99.8 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.915 and 0.888			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	8977 / 199 / 809			
Goodness-of-fit on F ²	1.024			
Final R indices [I>2sigma(I)]	R1 = 0.0609, wR2 = 0.1562			
R indices (all data)	R1 = 0.0796, wR2 = 0.1721			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.807 and -0.841 e.Å ⁻³			

Table S2. Crystal data and structure refinement for (2)

Identification code	compound 2	
CCDC	1878263	
Empirical formula	C44 H43 B F24 N4 Zn	
Formula weight	1160.00	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 12.1404(11) Å	$\alpha = 95.682(3)^{\circ}.$
	b = 12.1678(11) Å	$\beta = 103.794(3)^{\circ}$.
	c = 17.0313(16) Å	$\gamma = 95.983(3)^{\circ}.$
Volume	2410.0(4) Å ³	
Z	2	
Density (calculated)	1.599 Mg/m ³	
Absorption coefficient	0.640 mm ⁻¹	
F(000)	1172	
Crystal size	0.150 x 0.120 x 0.080 mm ³	
Theta range for data collection	2.266 to 24.999°.	
Index ranges	-14<=h<=14, -14<=k<=14, -20<=l<=20	
Reflections collected	54478	
Independent reflections	8492 [R(int) = 0.0516]	
Completeness to theta = 24.999°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.950 and 0.911	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	8492 / 6 / 677	
Goodness-of-fit on F ²	1.023	
Final R indices [I>2sigma(I)]	R1 = 0.0366, wR2 = 0.0833	
R indices (all data)	R1 = 0.0499, wR2 = 0.0905	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.615 and -0.448 e.Å ⁻³	

Table S3. Crystal data and structure refinement for (3).			
Identification code	compound 3		
CCDC	1878264		
Empirical formula	C50 H55 B F24 N4 O2 Zn		
Formula weight	1276.16		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/n		
Unit cell dimensions	a = 16.61(7) Å	α = 90° .	
	b = 11.92(5) Å	$\beta = 90.62(3)^{\circ}.$	
	c = 28.25(13) Å	$\gamma = 90^{\circ}$.	
Volume	5596(42) Å ³		
Z	4		
Density (calculated)	1.515 Mg/m ³		
Absorption coefficient	0.561 mm ⁻¹		
F(000)	2600		
Crystal size	0.240 x 0.120 x 0.050 mm ³		
Theta range for data collection	0.721 to 24.999°.		
Index ranges	-19<=h<=19, -14<=k<=14, -33<=l<=33		
Reflections collected	39481		
Independent reflections	9851 [R(int) = 0.1291]		
Completeness to theta = 24.999°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.972 and 0.877		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	9851 / 6 / 740		
Goodness-of-fit on F ²	1.021		
Final R indices [I>2sigma(I)]	R1 = 0.0730, wR2 = 0.1647		
R indices (all data)	R1 = 0.1407, wR2 = 0.2035		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.676 and -0.648 e.Å ⁻³		

Table S4. Crystal data and structure refinement for (4)				
Identification code	compound 4			
CCDC	1878265			
Empirical formula	C54 H62 B F24 N6 Zn			
Formula weight	1327.27			
Temperature	150(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P -1			
Unit cell dimensions	a = 13.312(4) Å	$\alpha = 99.762(9)^{\circ}.$		
	b = 14.379(4) Å	$\beta = 108.306(9)^{\circ}.$		
	c = 17.415(5) Å	$\gamma = 102.538(9)^{\circ}.$		
Volume	2985.8(14) Å ³			
Z	2			
Density (calculated)	1.476 Mg/m ³			
Absorption coefficient	0.528 mm ⁻¹			
F(000)	1358			
Crystal size	0.240 x 0.150 x 0.150 mm ³			
Theta range for data collection	1.683 to 24.999°.			
Index ranges	-15<=h<=15, -17<=k<=17, -20<=l<=20			
Reflections collected	42361			
Independent reflections	10510 [R(int) = 0.0565]			
Completeness to theta = 24.999°	99.9 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.925 and 0.884			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	10510 / 148 / 893			
Goodness-of-fit on F ²	1.036			
Final R indices [I>2sigma(I)]	R1 = 0.0673, wR2 = 0.1685			
R indices (all data)	R1 = 0.0888, wR2 = 0.1880			
Extinction coefficient	n/a			
Largest diff. peak and hole	1.356 and -0.674 e.Å ⁻³			

Table S5. Crystal data and structure refinement for (5).

Identification code	compound 5	
CCDC	1878266	
Empirical formula	C58 H55 B Cl2 F24 N4 O Zn	
Formula weight	1427.14	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 12.54(3) Å	α = 90°.
	b = 19.77(5) Å	$\beta = 100.01(5)^{\circ}.$
	c = 26.08(6) Å	$\gamma = 90^{\circ}$.
Volume	6369(28) Å ³	
Z	4	
Density (calculated)	1.488 Mg/m ³	
Absorption coefficient	0.582 mm ⁻¹	
F(000)	2896	
Crystal size	0.150 x 0.150 x 0.080 mm ³	
Theta range for data collection	1.586 to 24.999°.	
Index ranges	-14<=h<=14, -23<=k<=23, -31<=l<=26	
Reflections collected	61247	
Independent reflections	11193 [R(int) = 0.0629]	
Completeness to theta = 24.999°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.955 and 0.918	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	11193 / 0 / 826	
Goodness-of-fit on F ²	1.033	
Final R indices [I>2sigma(I)]	R1 = 0.0555, wR2 = 0.1233	
R indices (all data)	R1 = 0.0878, wR2 = 0.1416	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.877 and -0.622 e.Å ⁻³	

References:

^[1] R. J. Errington, "Advanced practical inorganic and metal organic chemistry" 1997, Blackie academic & professional, London.

^[2] W. F. Armarego, C. L. L. Chai, "Purification of laboratory chemicals" 2013, *Elsevier*, UK

^[3] M. Ciampolini, N. Nardi, Inorg. Chem. 1966, 5, 41-44.

^[4] C. Zuccaccia, G. Bellachioma, G. Cardaci, A. Macchioni, J. Am. Chem. Soc. 2001, 123, 11020-11028.