Supporting Information

Bio-Inspired Heterogeneous Sensitization of Bimetal Oxides on SnO₂ Scaffold for Unparalleled Formaldehyde Detection

Yong Jin Jeong, Dong-Ha Kim, Ji-Soo Jang, Joon-Young Kang, Rheehyun Kim, and Il-Doo Kim*

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea

*Corresponding author e-mail: idkim@kaist.ac.kr

Table of Contents

- Experimental details
- Fig. S1 SEM images of control samples
- Fig. S2 EDS elemental mapping images of SnO₂ FITs
- Fig. S3 EDS elemental mapping images of SnO₂ FITs
- Fig. S4 XRD analysis of samples
- Fig. S5 XPS analysis of NiO/Fe₂O₃-SnO₂ FITs
- Fig. S6 Optimization of amount of catalysts and operating temperature
- Fig. S7 Selective sensing properties of SnO₂ FITs.
- Fig. S8 Response variation of SnO₂ NFs and SnO₂ FITs
- Fig. S9 0.05–1 ppm HCHO response (R_{air}/R_{gas}) of recently reported sensors and in this work.
- Table. S1 ICP-OES test results of NiO/Fe₂O₃-SnO₂ FITs
- Table. S2 Sensing properties of recently reported SMOs-based formaldehyde gas sensors

Experimental details

Materials. Polyvinylpyrrolidone (PVP, $M_{\rm w} \sim 1,300,000 \text{ g mol}^{-1}$), chitosan (medium molecular weight, (C₆H₁₁NO₄)_n), and sodium borohydride (NaBH₄, \geq 96%) were purchased from Aldrich. Nickel(II) chloride hexahydrate (NiCl₂·6H₂O, \geq 98%), tin(II) chloride dihydrate (SnCl₂·2H₂O, 98%), *N,N*-dimethylformamide (DMF, 99.8%), and iron(III) chloride hexahydrate (FeCl₃·6H₂O, 97%) were purchased from Sigma-Aldrich. Acetic acid (glacial, 99.8%) was purchased from SAMCHUN chemical. All materials were used without further purification.

Synthesis of SnO_2 *NFs and* SnO_2 *FITs.* We synthesized SnO₂ NFs and SnO₂ FITs as control samples. To synthesize SnO₂ NFs, we dissolved 0.35 g of PVP and 0.25 g of Sn precursor in 2 mL of DMF and stirred at 300 rpm for 5 h at room temperature. Then, we carried out electrospinning of the solution by using a feeding rate of 0.1 mL/min and a voltage of 15 kV. The distance from needle (23 gauge) to the collector was fixed at 20 cm. Subsequently, we conducted heat treatment of as-spun Sn precursor/PVP NFs at 600 °C for 1 h at a ramping rate of 5 °C/min to decompose PVP and formation of SnO₂ NFs. On the other hand, SnO₂ FITs was obtained by electrospinning the solution with a reduced amount of PVP (0.3 g) and 0.25 g of Sn precursor in 2 mL of DMF, followed by subsequent calcination at 600 °C for 1 h.

Synthesis of NiO–SnO₂ FITs. NiO-SnO₂ FITs were synthesized as a reference sample. First, we prepared 1 w/v chitosan (CS) solution by adding 20 mg of CS in 2 mL of DI water (1% of acetic acid) and stirring the solution at 300 rpm for 12 h to completely dissolve CS at room temperature. Then, we mixed 32.4 mg of NiCl₂·6H₂O in the CS solution by stirring at 300 rpm for 2 h to form CS-Ni ions dissolved solution. Subsequently, 0.2 mL of separately prepared S-2

aqueous NaBH₄ solution (0.1 M) was added to the CS-Ni ions dissolved solution to reduce the Ni ions to Ni nanoparticles, leading to CS-Ni⁰ complex solution. Then, we incorporated 10 μ L of the CS-Ni⁰ complex solution into the electrospinning solution, which had the same composition as that of pristine SnO₂ FITs. Finally, electrospinning and and subsequent heat treatment were conducted to obtain NiO-SnO₂ FITs at the same conditions as for the synthesis of pristine SnO₂ FITs.

Synthesis of NiO/Fe₂O₃–SnO₂ FITs. The CS-Ni⁰Fe⁰ complex solution was prepared as a template for heterogeneous sensitization of NiO/Fe₂O₃ on SnO₂ FITs. First, 16.2 mg of NiCl₂·6H₂O and 19.36 mg of FeCl₃·6H₂O were dispersed in 2 mL of 1 w/v chitosan aqueous solution with 1% acetic acid. We then conducted room temperature stirring of the solution at 300 rpm for 2 h to form CS-NiFe ions solution. Subsequently, 0.2 mL of aqueous NaBH₄ solution (0.1 M) was added to the CS-NiFe ions solution to reduce the ions to metallic nanoparticles, resulting in the formation of CS-Ni⁰Fe⁰ complex solution. Then, 10, 20, 30, and 40 μ L of CS-Ni⁰Fe⁰ complex solution were directly dispersed in separate electrospinning solutions of the same composition as that used for the synthesis of pristine SnO₂ FITs. Finally, electrospinning and subsequent calcination were carried out at the same condition as for pristine SnO₂ FITs, leading to NiO/Fe₂O₃–SnO₂ FITs with Ni/Fe wt % of 0.024, 0.048, 0.072, and 0.096.

Sensor fabrication and sensing test. We prepared alumina substrates with an area and thickness of 2.5 mm \times 2.5 mm and 0.2 mm, respectively. Two parallel gold electrodes were patterned on the front side of the substrate to measure the resistance of sensing materials. In addition, the back side of the substrate was integrated with a platinum heater through which

the operating temperature was controlled. We dispersed 4 mg of each samples (SnO₂ NFs, SnO₂ FITs, NiO–SnO₂ FITs, and NiO/Fe₂O₃–SnO₂ FITs) in 0.2 mL of ethanol and then the obtained paste was drop-coated on the substrates. By using a homemade gas sensing measurement system, the sensing performance of the sensors was investigated. Prior to injection of specific gas molecules to the sensors, a fresh air (30% RH) was injected into the sensing chamber for 3 h to stabilize the base resistance of the sensors. Then, we injected the analyte gas in the concentration range of 0.2–5 ppm for 10 min, followed by a flow of fresh air for 10 min to recover the sensors to base resistances. The base resistances in air (R_{air}) and in analyte gas (R_{gas}) were converted into the response (R = R_{air}/R_{gas}) of the sensors. In addition, the response time was calculated as the time taken to decrease the base resistance of the sensor in air by 90% upon exposure to target gas.

Characterization. The morphologies and characteristics of the materials were confirmed by the field emission scanning electron microscopy (Nova230, FEI) and field emission transmission electron microscopy (Tecnai G2 F30 S-TWIN, FEI). To analyze the crystal structures of the samples, the high-resolution powder X-ray diffractometer (D/MAX-2500, Rigaku) with Cu K α 1 radiation (λ = 1.5418 Å) was used. The X-ray photoelectron spectroscopy (K-alpha, Thermo VG Scientific) was utilized to investigate the chemical binding states of the materials.

Fig. S1 SEM images of; (a) $SnO_2 NFs$, (b) $SnO_2 FITs$, and (c) $NiO-SnO_2 FITs$.

Fig. S2 HRTEM image of NiO/Fe₂O₃-SnO₂ FITs.

Fig. S3 EDS elemental mapping images of SnO₂ FITs

Fig. S4 XRD analysis of SnO₂ NFs, SnO₂ FITs, NiO-SnO₂ FITs, and NiO/Fe₂O₃-SnO₂ FITs.

All samples were polycrystalline rutile SnO_2 (JCPDS no. 41-1445). However, the characteristic peaks of NiO and Fe₂O₃ were not observed in the XRD analysis, and we suppose, it is due to small amounts of NiO and Fe₂O₃.

Fig. S5 XPS spectra of NiO/Fe₂O₃-SnO₂ FITs: (a) Sn 3d, (b) O 1s, (c) Ni 2p, and (d) Fe 2p.

For Sn 3d spectrum, we confirmed two obvious peaks of Sn $3d_{5/2}$ and $3d_{3/2}$, which were located at 486.2 and 494.7 eV, respectively (Fig. S5a).¹ In the case of the O 1s XPS spectrum, we identified chemisorbed oxygen (O⁻) and lattice oxygen species (O²⁻) located at 530.1 and 531.0 eV, respectively (Fig. S5b).² For Ni 2p XPS spectrum, two peaks were observed at 855.6 and 873.2 eV, which corresponded to Ni $2p_{3/2}$ and Ni $2p_{1/2}$ peaks of the Ni²⁺ state (Fig. S5c).³ The Fe 2p XPS spectrum showed two peaks at 708.2 and 712.4 eV, corresponding to Fe $2p_{3/2}$ of the Fe⁰ state and Fe $2p_{3/2}$ of the Fe³⁺ state, respectively (Fig. S5d), with Fe³⁺ existing as the dominant state.^{4, 5} These results confirmed that Ni and Fe nanoparticles oxidized to NiO and Fe₂O₃ during calcination in air.

Fig. S6 (a) Dynamic formaldehyde sensing performance of NiO/Fe₂O₃-SnO₂ FITs with Ni/Fe in the range of 0.024–0.096 wt% at 350 °C. (b) Response of SnO₂ NFs, SnO₂ FITs, NiO-SnO₂ FITs, and NiO/Fe₂O₃-SnO₂ FITs toward 5 ppm of formaldehyde at different temperatures (300-450 °C).

Fig. S7 HCHO selective sensing property of SnO₂ FITs against CH₃COCH₃, C₂H₅OH, NO₂, C₆H₅CH₃, C₆H₄(CH₃)₂, and NH₃.

Fig. S8 Response variation of SnO_2 NFs and SnO_2 FITs in the concentration range of 0.2–1 ppm of formaldehyde gas.

Fig. S9 0.05–1 ppm formaldehyde gas response (R_{air}/R_{gas}) of recently reported SMOs based sensors and the sensor reported in this work.

Test subject Unit		Measurement results		
Fe	mg/kg	586		
Ni	mg/kg	268		
SnO ₂	%	> 99.8		

Table. S1 ICP-OES test results of NiO/Fe2O3-SnO2 FITs (0.096 wt% Ni/Fe)

Sensing material	Response (R _{air} /R _{gas})	Detection limit	Operating temperature	Response time	Ref.
LSCM@SnO ₂ FITs	26.5 at 5 ppm	80 ppb	400 °C	32 s at 1 ppm	6
Ag-loaded sunflower-like In ₂ O ₃	1.5 at 5 ppm	5 ppm	240 °C	0.9 s at 20 ppm	7
Ag@LaFeO3 nanofibers	4.80 at 5 ppm	5 ppm	230 °C	2 s at 20 ppm	8
CuO nanocubes	1.105 at 800 ppb	_	300 °C	45 s at 800 ppb	9
CuO@TiO2 nanofibers	15.5 at 50 ppm	5 ppm	200 °C	1.4 s at 10 ppm	10
Pd-SnO ₂ fibers	1.335 at 50 ppb	50 ppb	140 °C	53 s at 100 ppb	11
WO _x @In ₂ O ₃ nanosheets	25 at 100 ppm	0.1 ppm	170 °C	1 s at 100 ppm	12
In ₂ O ₃ nanoparticle- flowerlike ZnO	1.5 at 1 ppm	1 ppm	240 °C	1.5 s at 50 ppm	13
Hierarchical ZnO architectures	35 at 100 ppm	_	260 °C	1 s at 100 ppm	14
α-Fe ₂ O ₃ @NiO core-shell nanofibers	1.46 at 1 ppm	< 1 ppm	240 °C	2 s at 50 ppm	15
Ce@Sn ₃ O ₄ hierarchical microspheres	5.50 at 100 ppm	-	200 °C	4 s at 200 ppm	16
SnO ₂ microtubes	26.2 at 100 ppm	10 ppb	92 °C	4–200 s at 1-100 ppm	17
SnO ₂ microspheres	38.28 at 100 ppm	_	200 °C	17 s at 100 ppm	18
Co-rich ZnCo ₂ O ₄ hollow nanospheres	7.5 at 1 ppm	13 ppb	230 °C	149 s at 1 ppm	19
Single-crystalline Co ₃ O ₄ nanoparticles	1.05 at 50 ppb	50 ppb	220 °C	75 s at 3 ppm	20
Hierarchical flower-like CuO nanostructure	1.378 at 50 ppb	50 ppb	250 °C	_	21
NiO nanoroses	3.22 at 500 ppb	50 ppb	230 °C	58.5 s at 500 ppb	22
Hierarchical porous SnO ₂ micro-rods	3.86 at 1 ppm	50 ppb	330 °C	4.3 s at 1 ppm	23
NiO/Fe ₂ O ₃ -SnO ₂ FITs	7.44 at 200 ppb	< 5 ppb	350 °C	12 s at 200 ppb	this work

 Table. S2 Sensing properties of recently reported SMOs-based formaldehyde sensors.

References

- 1 Y. Cui, G. Wang and D. Pan, CrystEngComm, 2013, 15, 10459–10463.
- 2 J. S. Jang, Y. W. Lim, D. H. Kim, D. Lee, W. T. Koo, H. Lee, B. S. Bae and I. D. Kim, *Small*, 2018, 1802260.
- 3 W. Lu, X. Qin, A. M. Asiri, A. O. Al-Youbi and X. Sun, Analyst, 2013, 138, 429–433.
- 4 H. Lv, H. Zhao, T. Cao, L. Qian, Y. Wang and G. Zhao, *J. Mol. Catal. A: Chem.*, 2015, 400, 81–89.
- 5 R. Liang, L. Shen, F. Jing, N. Qin and L. Wu, ACS Appl. Mater. Interfaces, 2015, 7, 9507–9515.
- 6 J.-Y. Kang, J.-S. Jang, W.-T. Koo, J. Seo, Y. Choi, M.-H. Kim, D.-H. Kim, H.-J. Cho, W. Jung and I.-D. Kim, *J. Mater. Chem. A*, 2018, **6**, 10543–10551.
- 7 S. Wang, B. Xiao, T. Yang, P. Wang, C. Xiao, Z. Li, R. Zhao and M. Zhang, J. Mater. Chem. A, 2014, 2, 6598–6604.
- 8 W. Wei, S. Guo, C. Chen, L. Sun, Y. Chen, W. Guo and S. Ruan, J. Alloys Compd., 2017, 695, 1122–1127.
- 9 H. J. Park, N.-J. Choi, H. Kang, M. Y. Jung, J. W. Park, K. H. Park and D.-S. Lee, *Sens. Actuators, B*, 2014, **203**, 282–288.
- 10 J. Deng, L. Wang, Z. Lou and T. Zhang, J. Mater. Chem. A, 2014, 2, 9030–9034.
- 11 S. Tian, X. Ding, D. Zeng, J. Wu, S. Zhang and C. Xie, *RSC Adv.*, 2013, **3**, 11823–11831.
- 12 Y. Cao, Y. He, X. Zou and G.-D. Li, Sens. Actuators, B, 2017, 252, 232–238.
- 13 S. Wang, Z. Li, P. Wang, C. Xiao, R. Zhao, B. Xiao, T. Yang and M. Zhang, *CrystEngComm*, 2014, 16, 5716–5723.
- 14 J. Cao, S. Wang and H. Zhang, *Mater. Lett.*, 2017, 202, 44–47.
- 15 J. Cao, Z. Wang, R. Wang, S. Liu, T. Fei, L. Wang and T. Zhang, J. Mater. Chem. A, 2015, 3, 5635–5641.
- 16 X. Ma, J. Shen, D. Hu, L. Sun, Y. Chen, M. Liu, C. Li and S. Ruan, J. Alloys Compd., 2017, 726, 1092–1100.
- W. Zhang, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao and L. Huo, *Sens. Actuators, B*, 2017, 247, 664–672.
- Y. Li, N. Chen, D. Deng, X. Xing, X. Xiao and Y. Wang, Sens. Actuators, B, 2017, 238, 264–273.
- 19 H. J. Park, J. Kim, N.-J. Choi, H. Song and D.-S. Lee, ACS Appl. Mater. Interfaces, 2016, 8, 3233–3240.

- 20 J. Y. Kim, N.-J. Choi, H. J. Park, J. Kim, D.-S. Lee and H. Song, J. Phys. Chem. C, 2014, 118, 25994–26002.
- 21 H. Deng, H.-r. Li, F. Wang, C.-x. Yuan, S. Liu, P. Wang, L.-z. Xie, Y.-z. Sun and F.-z. Chang, J. Mater. Sci.: Mater. Electron., 2016, 27, 6766–6772.
- 22 Y. Zhang, L.-Z. Xie, C.-X. Yuan, C.-L. Zhang, S. Liu, Y.-Q. Peng, H.-R. Li and M. Zhang, *Nano*, 2016, **11**, 1650009.
- 23 K. Xu, D. Zeng, S. Tian, S. Zhang and C. Xie, Sens. Actuators, B, 2014, 190, 585–592.