Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supplementary Information For:

Heating Activated Isomeric All-hydrocarbon Molecular Receptors for Fullerene Separation

Yu-Dong Yang, Han-Yuan Gong*.

College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian District, Beijing 100875, P. R. China

Author e-mail address: hanyuangong@bnu.edu.cn

Table of Contents

Section S1: General considerations

Section S2: Synthesis, characterization, and theoretical calculation

Section S3: Fullerene (C_{60} or C_{70}) receptor property studies of C_s -CDMB-8 or D_{4d} -CDMB-8

both in solution and solid state

Section S4: Fullerene (C60 and/or C70) purification from mixed C60/C70 or carbon soot via

D_{4d}-CDMB-8 complexation

Section S1: General considerations

Deuterated solvents were purchased from Cambridge Isotope Laboratory (Andover, MA). All other solvents and reagents were purchased commercially (Aldrich, Acros, or Fisher) and used without further purification.

NMR spectra, including ¹H, ¹³C, tempreture-dependent ¹H, high temperature (373 K) ¹³C, heteronuclear singular quantum correlation (HSQC), heteronuclear multiple quantum correlation (HMBC), or nuclear Överhauser effect (NOESY) NMR spectroscopies were recorded on Bruker AVANCE III 500WB or AVANCE 600 spectrometer. The ¹H and ¹³C NMR chemical shifts are referenced to residual solvent signals (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.16$ ppm; tetrachloroethane-*d*₂ (TCE-*d*₂): $\delta_{\rm H} = 5.95$ ppm, $\delta_{\rm C} = \delta$ 74.10 ppm; *o*-dichlorobenzene-*d*₂ (*o*-DCB-*d*₂): $\delta_{\rm C} = 131.68$ ppm, 129.30 ppm and 126.44 ppm).

High resolution mass spectra (HMRS) were detected on Bruker autoflex speed MALDI-TOF or AB SCIX TripleTOF 5600. High-performance liquid chromatography (HPLC) analysis was performed using an Agilent 1260. UV-vis spectra were collected on a Shimadzu UV-2450. X-ray photoelectron spectroscopy (XPS) data were characterized on a Thermofisher ESCALAB 250Xi.

Unless otherwise noted, single crystals used to obtain the X-ray diffraction structures reported in the text grew as colourless prisms, blocks, or red-brown prisms. The .cif documents, available as the separate supporting information files, provide details regarding the specific crystals used for the analysis, along with the structures in question. The data crystals used for single crystal analyses were cut from clusters of the corresponding crystals and had the approximate dimensions given in the .cif documents. The data were collected on a Saturn724+ (2x2 bin mode) or SuperNova, Dual, Cu at home/near, AtlasS2. Data reduction was performed using CrystalClear (Rigaku Inc., 2007), CrysAlisPro 1.171.39.6a (Rigaku OD, 2015) or CrysAlisPro 1.171.39.32a (Rigaku OD, 2017). The structures were refined by full-matrix least-squares on F² with anisotropic displacement parameters for the non-H atoms using SHELXL-97 or SHELXL-2014¹⁻³. The hydrogen atoms were calculated in idealized positions with isotropic displacement parameters set to 1.2 x Ueq of the attached atom (1.5 x Ueq for methyl hydrogen atoms). Definitions used for calculating R(F), Rw(F2) and the goodness of fit, S, are given below and in the .cif documents⁴. Neutral atom scattering factors and values used to calculate the linear absorption coefficient are from the International Tables for X-ray Crystallography (1992)⁵. All ellipsoid figures were generated using SHELXTL/PC⁶. Tables of positional and thermal parameters, bond lengths and angles, torsion angles, figures and lists of observed and calculated structure factors are located in the .cif documents available from the Cambridge Crystallographic Centre and may be obtained by quoting ref. numbers 1820645, 1820646, 1820647, 1820648, 1820649, 1820651, 1820652, and 1859997. The documents also contain details of the crystal data, data collection, and structure refinement for each structure.

DFT calculations were performed using the Gaussian 09 program⁷. The geometry optimizations of minima and the intermediates were carried out in the gas phase with the Becke three-parameter hybrid density functional (B3LYP)⁸ with the D3 empirical dispersion correction by Grimme⁹ *et al.* and the 6-31G(d) basis set^{10,11} for C, H and P atoms and the LanL2DZ basis set^{12,13} was used for transition metals Pd and Fe. Frequency analyses were carried out at the same level to verify all of the stationary points as minima (zero imaginary frequencies) or transition states (one imaginary frequency) and to evaluate the zero-point vibrational energy and thermal corrections at 298 K. The detail information of optimized geometries are shown in .mol documents.

Section S2: Synthesis, characterization, and theoretical calculation

Synthesis of 1,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,4-dimethylbenzene 2

1,5-dibromo-2,4-dimethylbenzene 1 (5.6 g, 21 mmol), bis(pinacolato)diboron (12 g, 47 mmol), Pd(dppf)₂Cl₂·CH₂Cl₂ (0.87 g, 1.1 mmol), AcOK (14 g, 0.14 mol), and 40 mL of 1,4-dioxane were added in 100 mL flask. The reaction mixture was degassed with argon for 30 min and then heated to 80 °C under argon for 24 hours. The reaction mixture was filtered and the filter residue was washed with 50 mL CH₂Cl₂, the filtrate was dried *via* rotary evaporation, and the obtained residue was dissolved in 100 mL CH₂Cl₂, then washed with water (3 × 50 mL) and brine (3 × 50 mL). The extract was dried over sodium sulfate, filtered, and concentrated. The residue was purified by a silica gel column with *n*-hexanes/CH₂Cl₂ (60:1, *v*/*v*) as the eluent, which give out

product **2** as white solid (7.2 g, 95%). ¹H NMR (600 MHz, CDCl₃, 298 K) δ (ppm): 8.14 (s, 1H), 6.99 (s, 1H), 2.52 (s, 6H), 1.35 (s, 24H); ¹³C NMR (150 MHz, CDCl₃, 298 K) δ (ppm): 147.9, 143.9, 131.7, 83.3, 25.0, 22.5; ESI HRMS (*m*/*z*): [M+H]⁺⁺ calcd. for C₂₀H₃₃B₂O₄, 359.2567; found, 359.2564.

Figure S1. ¹H NMR spectrum of **2** (2.00×10^{-2} M) in CDCl₃ at 298 K (600 MHz) (red " \star " represents residual CHCl₃; blue " \star " represents H₂O).

Figure S2. ¹³C NMR spectrum of **2** (2.00×10^{-2} M) in CDCl₃ at 298 K (150 MHz) (red " \star " represents residual CHCl₃).

Figure S3. Positive ESI HRMS spectrum of 2.

Synthesis of trimer 3 and pentamer 4 (i.e., compound 2 in main text).

Under the protection of argon, a mixture of 1 (18 g, 68 mmol), Pd(dppf)₂Cl₂·CH₂Cl₂ (0.29 g, 0.35 mmol), K₂CO₃ (5.0 g, 46 mmol) and 15 mL deaerated water were added in 100 mL three-necked round-bottomed flask. After the mixture was heated to 80 °C, a solution of 2 (2.5 g, 7.0 mmol) in deaerated THF (30 mL) was slowly added dropwise to the mixture over a period of 8 h. The reaction mixture was heated under 80 °C for 16 h. After cooling to room temperature, the solvent was removed via rotary evaporation, the resulting residue was dissolved in 200 mL CH₂Cl₂, then washed with water (3×100 mL) and brine (3×100 mL). The residue solution was dried over sodium sulfate and purified by a silica gel column with n-hexane as the eluent to recycle 1 (14 g, 53 mmol) and obtain pure trimer 3 (1.7 g, 51%) and pentamer 4 (0.62 g, 26%). Trimer **3**: ¹H NMR (500 MHz, TCE-*d*₂, 373 K) δ (ppm): 7.32 (s, 2H), 7.15 (s, 1H), 7.12 (s, 2H), 6.80 (s, 1H), 2.41 (s, 6H), 2.09 (s, 6H), 2.02 (s, 6H); 13 C NMR (125 MHz, TCE-d₂, 373 K) δ (ppm): 140.9, 137.6, 136.3, 135.4, 135.0, 133.1, 132.3, 131.7, 130.4, 121.5, 22.3, 19.4, 19.2; MALDI-TOF HRMS (*m*/*z*): [M-H]^{+•} calcd. for C₂₄H₂₃Br₂, 471.0146; found, 471.0319. Pentamer 4: ¹H NMR (500 MHz, TCE-*d*₂, 373 K) δ (ppm): 7.32 (s, 2H), 7.13 (s, 3H), 7.11 (s, 2H), 6.91 (s, 1H), 6.86 (s, 2H), 2.41 (s, 6H), 2.11 (s, 12H), 2.08 (s, 6H), 2.02 (s, 6H); ¹³C NMR (125 MHz, TCE-*d*₂, 373 K) δ (ppm): 141.2, 139.1, 138.6, 137.4, 136.2, 135.5, 135.1, 134.5, 134.3, 133.2, 132.3, 131.5, 131.4, 130.6, 121.5, 22.3, 19.50, 19.47, 19.38, 19.2; MALDI-TOF HRMS (*m/z*): [M-H]^{+•} calcd. for C₄₀H₃₉Br₂, 679.1398; found, 679.1567.

Figure S4. ¹H NMR spectrum of trimer **3** (2.00×10^{-2} M) in TCE-*d*₂ at 373 K (500 MHz) (red " \star " represents residual TCE; blue " \star " represents H₂O).

Figure S5. Expanded view (top) and full view (bottom) of the ¹³C NMR spectrum of trimer **3** (2.00×10^{-2} M) in TCE-*d*₂ at 373 K (125 MHz) (red " \star " represents residual TCE).

Figure S6. Full view (left) and expanded view (right) of the NOESY spectrum of trimer **3** (2.00 \times 10⁻² M) in TCE-*d*₂ at 373 K (500 MHz) (red " \star " represents residual TCE; blue " \star " represents H₂O).

Figure S7. Positive MALDI-TOF HRMS spectrum of trimer 3.

Figure S8. Expanded view (top) and full view (bottom) of the ¹H NMR spectrum of pentamer 4 (2.00×10^{-2} M) in TCE-*d*₂ at 373 K (500 MHz) (red " \star " represents residual TCE; blue " \star " represents H₂O).

Figure S9. Expanded view (top) and full view (bottom) of the ¹³C NMR spectrum of pentamer 4 (2.00×10^{-2} M) in TCE-*d*₂ at 373 K (125 MHz) (red " \star " represents residual TCE).

Figure S10. Full view (left) and expanded view (right) of the NOESY spectrum of pentamer 4 $(2.00 \times 10^{-2} \text{ M})$ in TCE-*d*₂ at 373 K (500 MHz) (red " \star " represents residual TCE; blue " \star " represents H₂O).

Figure S11. Positive MALDI-TOF HRMS spectrum of pentamer 4.

Synthesis of boronylated trimer 5 (i.e., compound 1 in main text).

Under the protection of argon, **3** (1.0 g, 2.1 mmol), bis(pinacolato)diboron (1.1 g, 4.3 mmol), Pd(dppf)₂Cl₂·CH₂Cl₂ (0.09 g, 0.11 mmol), AcOK (1.5 g, 15 mmol) and 20 mL of THF were added into 50 mL flask for refluxing under argon. After 24 hours, the reaction mixture was cooled and filtered. The filter residue was washed with 50 mL CH₂Cl₂. The solvent of filtrate was removed *via* rotary evaporation, and the obtained residue was dissolved in 100 mL CH₂Cl₂, then washed with water (3 × 100 mL) and brine (3 × 100 mL). The extract was dried over sodium sulfate and purified by a silica gel column with mixed solvent (*n*-hexane: CH₂Cl₂: ethyl acetate = 80:6:1) as the eluent. The product was recrystallized from ethyl acetate to obtain product **5** as white solid (0.90 g, 75%). Boronylated trimer **5**: ¹H NMR (500 MHz, TCE-*d*₂, 373 K) δ (ppm): 7.51 (s, 2H), 7.15 (s, 1H), 7.05 (s, 2H), 6.86 (s, 1H), 2.54 (s, 6H), 2.10 (s, 12H), 1.34 (s, 24H); ¹³C NMR (125 MHz, TCE-*d*₂, 373 K) δ (ppm): 143.3, 138.8, 138.7, 138.0, 137.2, 134.6, 131.4, 131.2, 83.4, 25.0, 21.8, 19.9, 19.6; ESI HRMS (*m*/*z*): [M+H]⁺⁺ calcd. for C₃₆H₄₉B₂O₄, 567.3824; found, 567.3829.

Figure S12. ¹H NMR spectrum of **5** (2.00×10^{-2} M) in TCE-*d*₂ at 373 K (500 MHz) (red " \star " represents residual TCE).

Figure S13. Expanded view (top) and full view (bottom) of the ¹³C NMR spectrum of **5** (2.00 × 10^{-2} M) in TCE-*d*₂ at 373 K (125 MHz) (red "★" represents residual TCE).

Figure S14. Full view (left) and expanded view (right) of the NOESY spectrum of **5** (2.00×10^{-2} M) in TCE- d_2 at 373K (500 MHz) (red " \star " represents residual TCE).

Figure S15. Positive ESI HRMS spectrum of 5.

Temperature dependent ¹H NMR spectroscopic studies of compound 3, 4, 5, C_s-CDMB-8 or

D_{4d}-CDMB-8 in tetrachloroethane-d₂

The ¹H NMR spectra of **3**, **4** or **5** in TCE- d_2 at 393 K showed a set of high resolution signals. Their ¹H NMR spectra become complex with decreasing temperature. This finding suggest us to speculate a variety of conformations of compounds **3**, **4** or **5** are interchangeable. All the three compounds contain a trimer fragment as show in Figure S16. For the compounds **3** and **5**, four possible conformations "*C*", "*W*", "*S*₁" and "*S*₂" probably exist in the solution state, and more complicated conformations will exist in the solution state of **4**.

Figure S16. Four possible conformations "C", "W", " S_1 " and " S_2 " for the trimer fragment in 3, 4 and 5. Note that conformers " S_1 " and " S_2 " are symmetry related.

Figure S17. Expansion of the temperature dependent ¹H NMR spectra of trimer 3 (2.00×10^{-2} M) in TCE- d_2 (500 MHz).

Figure S18. Expansion of ¹H NMR spectra of trimer **3** (2.00×10^{-2} M), which is recorded at 293 K, heating to 373 K and cooling back to 293 K in TCE-*d*₂ (500 MHz).

Figure S19. Expansion of the temperature dependent ¹H NMR spectra of pentamer 4 (2.00×10^{-2} M) in TCE-*d*₂ (500 MHz).

Figure S20. Expansion of ¹H NMR spectra of pentamer 4 (2.00×10^{-2} M), which is recorded at 293 K, heating to 373 K and cooling back to 293 K in TCE-*d*₂ (500 MHz).

Figure S21. Expansion of the temperature dependent ¹H NMR spectra of 5 (2.00×10^{-2} M) in TCE-*d*₂ (500 MHz).

Figure S22. Expansion of ¹H NMR spectra of pentamer 5 (2.00×10^{-2} M) which is recorded at 293 K, heating to 373 K and cooling back to 293 K in TCE-*d*₂ (500 MHz).

	[2]	[3 • <i>n</i> -hexane]	$[4 \cdot CH_2Cl_2]$	[5]
CCDC No.	1820645	1820646	1820647	1820648
description	prism	prism	plate	prism
colour	colourless	colourless	colourless	colourless
from solution	CH ₂ Cl ₂ /CH ₃ CN	<i>n</i> -hexane/ CH ₂ Cl ₂ /DMF	CH ₂ Cl ₂ /CH ₃ CN	ethyl acetate
empirical formula	$C_{20}H_{32}B_2O_4$	$C_{30}H_{38}Br_2$	$C_{41}H_{42}Br_2Cl_2$	$C_{36}H_{48}B_2O_4$
Mr	358.07	558.42	765.46	566.36
crystal size (mm ³)	$0.08\times0.04\ \times0.02$	$0.12\times0.04\ \times 0.02$	$0.07~\times~0.03~\times~0.01$	$0.21 \times 0.03 \times 0.02$
crystal system	triclinic	triclinic	orthorhombic	triclinic
space group	P-1	P-1	Pnma	P-1
<i>a</i> [Å]	10.476(2)	9.1118(18)	16.531(3)	7.3128(3)
<i>b</i> [Å]	10.781(2)	10.930(2)	32.295(7)	15.1938(6)
<i>c</i> [Å]	11.171(2)	12.902(3)	7.0758(14)	16.3540(7)
α [deg]	69.04(3)	101.36(3)	90.00	109.425(4)
β [deg]	63.35(3)	97.45(3)	90.00	91.690(3)
γ [deg]	88.53(3)	96.46(3)	90.00	97.061(3)
$V/[Å^3]$	1039.2(5)	1236.5(5)	3777.6(13)	1695.84(13)
$d / [g/cm^3]$	1.144	1.500	1.542	1.358
Z	2	2	4	2
T[K]	173(2)	173(2)	100.00(10)	100.00(10)
R1, wR2 $I > 2\dot{o}(I)$	0.0798, 0.1679	0.0948, 0.1980	0.0995, 0.2649	0.0934, 0.3174
R1, wR2 (all data)	0.0861, 0.1722	0.1343, 0.2188	0.1338, 0.2957	0.1186, 0.3268
quality of fit	1.009	1.035	1.061	1.028

Table S1. X-ray crystallographic data comparison of [2], [3•*n*-hexane], [4• CH₂Cl₂], and [5].

Figure S23. Ellipsoid form showing 2 in the single crystal structure of [2]. Displacement ellipsoids are scaled to the 50% probability level. All the other atoms have been omitted for clarity.

Figure S24. Ellipsoid form showing **3** in the single crystal structure of [**3**•*n*-hexane]. Displacement ellipsoids are scaled to the 25% probability level. All the other molecules and atoms have been omitted for clarity.

Figure S25. Ellipsoid form showing 4 in the single crystal structure of $[4 \cdot CH_2Cl_2]$. Displacement ellipsoids are scaled to the 50% probability level. All the other molecules and atoms have been omitted for clarity.

Figure S26. Ellipsoid form showing 5 in the single crystal structure of [5]. Displacement ellipsoids are scaled to the 50% probability level. All the other atoms have been omitted for clarity.

Synthesis of cyclo[8](1,3-(4,6-dimethyl)benzene (Cs-CDMB-8)

Under the protection of argon, a mixture of **4** (0.30 g, 0.44 mmol), **5** (0.25 g, 0.44 mmol) $Pd(dppf)_2Cl_2\cdot CH_2Cl_2$ (74 mg, 0.09 mmol), Cs_2CO_3 (7.2 g, 22 mmol) and 250 mL deaerated acetonitrile were added in 500 mL three-necked round-bottomed flask. The reaction mixture was heated under reflux for 12 h. After cooling to room temperature, the solvent was removed *via* rotary evaporation, the resulting residue was dissolved in 50 mL CH₂Cl₂, then filter through a short neutral alumina column and washed with CH₂Cl₂ (50 mL). Remove CH₂Cl₂ from the

filtrate *via* rotary evaporation, the residue was dissolved in 50 mL cyclohexane and purified by a neutral alumina column with cyclohexane as the eluent to give pure *Cs*-CDMB-8 as a white solid (73 mg, 20%). *Cs*-CDMB-8: ¹H NMR (500 MHz, TCE-*d*₂, 278 K) δ (ppm): 7.08 (s, 2H), 7.04 (s, 2H), 7.02 (s, 2H), 7.01 (s, 1H), 6.96 (s, 1H), 6.91 (s, 1H), 6.89 (s, 2H), 6.86 (s, 2H), 6.83 (s, 2H), 6.81 (s, 2H), 2.16 (s, 6H), 2.12(s, 6H), 2.11 (s, 6H), 2.09 (s, 6H), 2.08 (s, 6H), 2.07 (s, 12H), 2.02 (s, 6H); ¹³C NMR (125 MHz, TCE-*d*₂, 278 K) δ (ppm): 139.2, 139.0, 138.7, 138.65, 138.63, 137.8, 134.5, 134.40, 134.36, 134.3, 133.8, 133.3, 133.1, 132.5, 131.5, 131.4, 131.2, 131.1, 130.5, 20.2, 20.0, 19.8, 19.7, 19.60, 19.57; MALDI-TOF HRMS (*m*/*z*): [M]⁺⁺ calcd. for C₆₄H₆₄, 832.5008; found, 832.5019.

Figure S27. Expanded view (top) and full view (bottom) of the ¹H NMR spectrum of C_s -CDMB-8 (5.00 × 10⁻³ M) in TCE- d_2 at 278 K (500 MHz) (red " \star " represents residual TCE; blue " \star " represents H₂O).

Figure S28. Expanded view (top) and full view (bottom) of the ¹³C NMR spectrum of C_s -CDMB-8 (5.00 × 10⁻³ M) in TCE- d_2 at 278 K (125 MHz) (red " \star " represents residual TCE).

Figure S29. Full view (a) and expanded views (b, c, d) of the NOESY spectrum of C_s -CDMB-8 (5.00 × 10⁻³ M) in TCE- d_2 at 278 K (500 MHz) (red " \star " represents residual TCE; blue " \star " represents H₂O).

Figure S30. Full view (a) and expanded view (b) of the HSQC spectrum of C_s -CDMB-8 (5.00 × 10⁻³ M) in TCE- d_2 at 278 K (500 MHz) (red " \star " represents residual TCE; blue " \star " represents H₂O).

Figure S31. Full view (a) and expanded views (b, c, d) of the HMBC spectrum of C_s -CDMB-8 (5.00 × 10⁻³ M) in TCE- d_2 at 278 K (500 MHz) (red " \star " represents residual TCE; blue " \star " represents H₂O).

Figure S32. Positive MALDI-TOF HRMS spectrum of C_s-CDMB-8.

In the temperature dependent ¹H NMR spectrum of C_s -CDMB-8 or D_{4d} -CDMB-8, only one set of high resolution signals was observed over the 233–398 K temperature range. Furthermore, the spectra were restored after heating to 398 K then cooling to 298 K. These findings are consistent with the fixed conformations of C_s -CDMB-8 and D_{4d} -CDMB-8.

Figure S33. Expansion of the temperature dependent ¹H NMR spectra of C_s -CDMB-8 (5.00 × 10⁻³ M) in TCE- d_2 (500 MHz).

S23

Figure S34. Expansion of ¹H NMR spectra of C_s -CDMB-8 (5.00 × 10⁻³ M) which is recorded at 298 K, heating to 398 K and cooling back to 298 K in TCE- d_2 (500 MHz).

Figure S35. Ellipsoid form (a) showing the C_s -CDMB-8 in the single crystal structure of $[C_s$ -CDMB-8•10.5H₂O]. Also shown as a top view (b) and side views (c, d) is the structure in stick form. Displacement ellipsoids are scaled to the 25% probability level. All the other molecules and atoms have been omitted for clarity.

Figure S36. The torsion angles between the neighboring *meso*-dimethyl benzene units range on C_s -CDMB-8 in the single crystal structure of [C_s -CDMB-8•10.5H₂O].

Section S5: Theoretical calculation

The optimized geometries of C_s -CDMB-8 and D_{4d} -CDMB-8 are listed in Figure S37. The calculation results suggested that the energy of C_s -CDMB-8 is 4.04 kcal·mol⁻¹ higher than D_{4d} -CDMB-8.

Figure S37. Optimized geometries of C_s -CDMB-8 (a, top view; c, side view) and D_{4d} -CDMB-8 (b, top view; c, side view) obtained by DFT (B3LYP-D3/6-31G(d)). All the hydrogen atoms have been omitted for clarity.

Synthesis of cyclo[8](1,3-(4,6-dimethyl)benzene (D4d-CDMB-8)

C_s-CDMB-8 (0.50 g, 0.60 mol) and 3.0 g celite or NaCl were fully grinded and mixed in 50 mL flask, the mixture was heated to 300 °C under argon for 1 hours. The reaction mixture was cooled to room temperature and washed with 50 mL CH₂Cl₂, the solvent was removed *via* rotary evaporation, and the obtained residue was recrystallized from CH₂Cl₂/CH₃CN (1:1, *v/v*) to obtain pure *D*_{4d}-CDMB-8, as a white solid in quantitative yield. *D*_{4d}-CDMB-8: ¹H NMR (500 MHz, TCE-*d*₂, 278 K) δ (ppm): 7.03 (s, 8H), 6.75 (s, 8H), 2.01 (s, 48H); ¹³C NMR (125 MHz, TCE-*d*₂, 278 K) δ (ppm): 138.6, 134.3, 130.9, 130.6, 19.8; MALDI-TOF HRMS (*m/z*): [M]⁺⁺ calcd. for C₆₄H₆₄, 832.5008; found, 832.5000.

Figure S38. Positive MALDI-TOF HRMS spectrum of *D*_{4d}-CDMB-8.

Figure S39. ¹H NMR spectrum of D_{4d} -CDMB-8 (5.00 × 10⁻³ M) in TCE- d_2 at 278 K (500 MHz) (red " \star " represents residual TCE; green " \star " represents residual THF; blue " \star " represents H₂O).

Figure S40. Expanded view (insert figure) and full view of the ¹³C NMR spectrum of D_{4d} -CDMB-8 (5.00 × 10⁻³ M) in TCE- d_2 at 278 K (125 MHz) (red " \star " represents residual TCE).

Figure S41. Full view (left) and expanded view (right) of the NOESY spectrum of D_{4d} -CDMB-8 (5.00 × 10⁻³ M) in TCE- d_2 at 278 K (500 MHz) (red " \star " represents residual TCE; blue " \star " represents H₂O).

Figure S42. Full view (left) and expanded view (right) of the HSQC spectrum of D_{4d} -CDMB-8 (5.00 × 10⁻³ M) in TCE- d_2 at 278 K (500 MHz) (red " \star " represents residual TCE; blue " \star " represents H₂O).

Figure S43. Full view (left) and expanded view (right) of the HMBC NMR spectrum of D_{4d} -CDMB-8 (5.00 × 10⁻³ M) in TCE- d_2 at 278 K (500 MHz) (red "★" represents residual TCE; blue "◆" represents H₂O).

Figure S44. Expansion of the temperature dependent ¹H NMR spectra of D_{4d} -CDMB-8 (5.00 × 10⁻³ M) in TCE- d_2 (500 MHz).

Figure S45. Expansion of ¹H NMR spectra of D_{4d} -CDMB-8 (5.00 × 10⁻³ M) which is recorded at 298 K, heating to 398 K and cooling back to 298 K in TCE- d_2 (500 MHz).

The possible reason of the selective construction of C_s -CDMB-8 as main product in original cyclization reaction came from the intermediate calculations. As shown below, the cyclization precursor C_s -CDMB-8-im, which induces C_s -CDMB-8 formation, has the lower energy ($\Delta E = 29.82 \text{ kcal} \cdot \text{mol}^{-1}$) than D_{4d} -CDMB-8-im, another cyclization intermediate gave out D_{4d} -CDMB-8 (Figure S46).

Figure S46. Reductive elimination step of C_s -CDMB-8-im to C_s -CDMB-8 (a) and D_{4d} -CDMB-8-im to D_{4d} -CDMB-8 (b). Their optimized geometries and relative energy are

obtained by DFT (B3LYP-D3/6-31G(d) basis set for C, H and P atoms, and LanL2DZ basis set for transition metals Pd and Fe). All the hydrogen atoms have been omitted for clarity.

Figure S47. Ellipsoid form (a) showing the D_{4d} -CDMB-8 \supset THF in the single crystal structure of [D_{4d} -CDMB-8 \supset THF \bullet THF]. Also shown as a top view (b) and side view (c) is the structure in stick form. Displacement ellipsoids are scaled to the 50% probability level. All the other molecules and atoms have been omitted for clarity. Possible CH- π interactions are inferred from the following selected distances [Å]: C(65)...C(49) 3.612(8), C(67)...C(9) 3.797(9), C(65)...C(41) 3.84(1), C(66)...C(41) 3.85(1).

Figure S48. The torsion angles between the neighboring *meso*-dimethyl benzene units range on D_{4d} -CDMB-8 in the single crystal structure of [D_{4d} -CDMB-8 \supset THF \bullet THF].

	[<i>C</i> _s -CDMB-8•10.5H ₂ O]	[<i>D</i> ₄ _d -CDMB-8⊃THF•THF]
CCDC No.	1820649	1859997
description	prism	block
colour	colourless	colourless
from solution	CH ₂ Cl ₂ /CH ₃ CH ₂ OH	THF/CH ₃ CN
empirical formula	$C_{64}H_{85}O_{10.5}$	$C_{72}H_{80}O_2$
Mr	1022.32	977.36
crystal size (mm ³)	$0.34 \times 0.12 \times 0.08$	$0.16 \times 0.13 \times 0.11$
crystal system	triclinic	monoclinic
space group	P-1	P 21/c
<i>a</i> [Å]	13.224(3)	15.5945(5)
1 5 8 3		

Table S2. X-ray crystallographic data comparison of [*C_s*-CDMB-8•10.5H₂O]

32.7430(11) *b* [Å] 14.975(3)11.5345(4) *c* [Å] 18.393(4) 68.87(3) 90.00 α [deg] 100.066(3) 72.80(3) β [deg] 90.00 γ [deg] 64.85(3) $\dot{V}/[Å^3]$ 5799.0(3) 3031.5(10) d / [g/cm³] 1.120 1.119 4 2 Ζ 100.00(10) T[K]173(2) R1, wR2 $I > 2\dot{o}(I)$ 0.0798, 0.1740 0.0960, 0.2126 R1, wR2 (all data) 0.1108, 0.1890 0.1107, 0.2223 1.002 1.020 quality of fit

and [*D*_{4d}-CDMB-8⊃THF•THF].

The UV-vis absorption spectra were recorded for C_s -CDMB-8 and D_{4d} -CDMB-8 as illustrated in Figure S49. Notably, Cs-CDMB-8 shows two peaks at 212 nm and 232 nm. In contrast, only a significant absorption maximum peak at 205 nm of *D*_{4d}-CDMB-8 was observed.

Figure S49. UV-vis spectra of C_s -CDMB-8 or D_{4d} -CDMB-8 (2.00 × 10⁻⁴ M, 1 mm optical path) in *n*-hexane.

Section S3: Fullerene (C₆₀ or C₇₀) receptor property studies of C_s-CDMB-8 or D_{4d}-CDMB-8

both in solution and solid states

No change in the ¹H NMR spectroscopic of C_s -CDMB-8 was seen upon adding 1 molar equiv. of C₆₀ or C₇₀ (Figure S50).

Figure S50. Expansion of the ¹H NMR spectra of C_s -CDMB-8 (1.00 × 10⁻³ M) recorded in the absence and presence of 1 molar equiv. of C₆₀ or C₇₀ in TCE- d_2 at 298 K (600 MHz).

Additional 1 molar equiv. of C₆₀ or C₇₀ leads to changes of the proton signals on D_{4d} -CDMB-8 in TCE- d_2 (Figure S51). Furthermore, ¹³C NMR spectra study showed the carbon signal chemical shift changes on both components after mixing D_{4d} -CDMB-8 and C₆₀ in TCE- d_2 (Figure S52). Because of the poor solubility, the ¹³C NMR detection for the mixture containing D_{4d} -CDMB-8 and C₇₀ was unsuccessful.

Figure S51. Expansion of the ¹H NMR spectra of D_{4d} -CDMB-8 (1.00 × 10⁻³ M) recorded in the absence and presence of 1 molar equiv. of C₆₀ or C₇₀ in TCE- d_2 at 298 K (600 MHz).

Figure S52. Expansion of the ¹³C NMR spectra of D_{4d} -CDMB-8 (1.00 × 10⁻³ M) recorded in the absence and presence of 1 molar equiv. of C₆₀ in TCE- d_2 at 298 K (600 MHz).

Figure S53. ¹H NMR spectroscopic titration of D_{4d} -CDMB-8 (host) with C₆₀ (guest) ([host] + [guest] = 1.00×10^{-3} M) in TCE- d_2 at 298 K (600 MHz) (a). ¹H NMR Job plot corresponding to the interaction between D_{4d} -CDMB-8 and C₆₀, as determined by monitoring the chemical shift change of H(β) on D_{4d} -CDMB-8. The maximum value of the plot falls at 0.5, a finding

consistent with the formation of a complex with 1:1 (host/guest) binding stoichiometry¹⁴ (b). ¹H NMR binding isotherms corresponding to the interaction between *D*_{4d}-**CDMB-8** and C₆₀. The chemical shift change of the H(β) was used to calculate the K_{a1} ((3.2 ± 0.3) × 10² M⁻¹) using the Hyperquad 2003 program^{15, 16}. The red lines show the non-linear curve fit of the experimental data to the appropriate equation (c).

Figure S54. ¹H NMR spectroscopic titration of D_{4d} -CDMB-8 (host) with C₇₀ (guest) ([host] + [guest] = 2.50×10^{-4} M) in TCE- d_2 at 298 K (600 MHz) (a). ¹H NMR Job plot corresponding to the interaction between D_{4d} -CDMB-8 and C₇₀, as determined by monitoring the chemical shift change of H(β) on D_{4d} -CDMB-8. The maximum value of the plot falls at 0.5, a finding consistent with the formation of a complex with 1:1 (host/guest) binding stoichiometry¹⁴ (b). ¹H NMR binding isotherms corresponding to the interaction between D_{4d} -CDMB-8 and C₇₀. The chemical shift change of the H(β) was used to calculate the K_{a2} ((2.0 ± 0.1) × 10³ M⁻¹) using the Hyperquad 2003 program^{15, 16}. The red lines show the non-linear curve fit of the experimental data to the appropriate equation (c).

In the UV-vis spectroscopic analyses, no change was seen upon adding 20 molar equiv. of C_s -CDMB-8 into C₆₀ or C₇₀ in TCE. In contrast, additional 20 molar equiv. of D_{4d} -CDMB-8 charge transfer (CT) band change in the TCE solution of C₆₀ or C₇₀ (Figure S55 and S56). Further association constant calculations between D_{4d} -CDMB-8 and C₆₀ or C₇₀ were carried from the UV-vis spectral titration experiment (Figure S57 and S58).

Figure S55. UV-vis spectra of D_{4d} -CDMB-8 (black curve, 2.00×10^{-3} M), C_s -CDMB-8 (red curve, 2.00×10^{-3} M), C_{60} (pink curve, 1.00×10^{-4} M), the mixture of C_{60} (1.00×10^{-4} M) and 20 molar equiv. of C_s -CDMB-8 (blue curve) and the mixture of C_{60} (1.00×10^{-4} M) and 20 molar equiv. of D_{4d} -CDMB-8 (green curve) in TCE (detected in 1 cm optical path).

Figure S56. UV-vis spectra of D_{4d} -CDMB-8 (black curve, 2.00×10^{-3} M), C_s -CDMB-8 (red curve, 2.00×10^{-3} M), C_{70} (pink curve, 1.00×10^{-4} M), the mixture of C_{70} (1.00×10^{-4} M) and 20 molar equiv. of C_s -CDMB-8 (blue curve) and the mixture of C_{70} (1.00×10^{-4} M) and 20 molar equiv. of D_{4d} -CDMB-8 (green curve) in TCE (detected in 0.5 cm optical path).

Figure S57. UV-vis spectroscopic titration of C₆₀ (1.00×10^{-4} M) with the *D***_{4d}-CDMB-8** in TCE (a) (detected in 1 cm optical path). UV-vis binding isotherms corresponding to the interaction between C₆₀ and the *D***_{4d}-CDMB-8** in TCE (b). The absorbance change at 420 nm was used to calculate the K_{a1} ((4.4 ± 0.4) × 10^2 M⁻¹) using the Hyperquad 2003 program^{15, 16}. The red line shows the non-linear curve fit of the experimental data to the appropriate equation.

Figure S58. UV-vis spectroscopic titration of C₇₀ (1.00×10^{-4} M) with the *D*_{4d}-CDMB-8 in TCE (a) (detected in 0.5 cm optical path). UV-vis binding isotherms corresponding to the interaction between C₇₀ and the *D*_{4d}-CDMB-8 in TCE (b). The absorbance change at 420 nm was used to calculate the K_{a1} ((1.9 ± 0.2) × 10^3 M⁻¹) using the Hyperquad 2003 program^{15, 16}. The red line shows the non-linear curve fit of the experimental data to the appropriate equation.

Single crystal X-ray structural studies of the complexes formed from D4d-CDMB-8 and C60

or C₇₀.

	[<i>D</i> _{4d} -CDMB-8•C ₆₀	[<i>D</i> _{4d} -CDMB-8•C ₇₀
	•TCE]	•(TCE)7]
CCDC No.	1820652	1820651
description	prism	prism
colour	red	red
from solution	$C_2H_2Cl_4$	C ₂ H ₂ Cl ₄
empirical formula	C126H66Cl4	$C_{148}H_{78}Cl_{28}$
Mr	1721.58	2848.70
crystal size (mm ³)	$0.80 \times 0.20 \times 0.10$	$0.30 \times 0.04 \times 0.03$
crystal system	orthorhombic	tetragonal
space group	Pca21	P4/nnc
<i>a</i> [Å]	44.4974(6)	23.643(5)
<i>b</i> [Å]	16.3918(2)	23.643(5)
<i>c</i> [Å]	22.3586(2)	12.250(2)
α [deg]	90.00	90.00(3)
β [deg]	90.00	90.00(3)
γ [deg]	90.00	90.00(3)
$V/[Å^3]$	16308.2(3)	6847(3)
d / [g/cm ³]	1.402	1.382
Ζ	8	2
<i>T</i> [K]	100(13)	100(2)
R1, wR2 $I > 2\dot{o}(I)$	0.1493, 0.3413	0.1343, 0.2753
R1, wR2 (all data)	0.1572, 0.3472	0.1851, 0.2881
quality of fit	1.022	1.146

Table S3. X-ray crystallographic data comparison of $[D_{4d}$ -CDMB-8 \supset C₆₀•TCE] and $[D_{4d}$ -CDMB-8 \supset C₇₀•(TCE)₇].

Figure S59. Single crystal X-ray structure of D_{4d} -CDMB-8 \supset C₆₀ which crystalize as [D_{4d} -CDMB-8 \circ C₆₀ \circ TCE]. All solvent molecules have been omitted for clarity. Top view (a) and side views (b, c) of the monomeric complex of D_{4d} -CDMB-8 \supset C₆₀. The extended 1D packing linear structure produced *via* self-assembly of monomeric complex of D_{4d} -CDMB-8 \supset C₆₀ (d).

Figure S60. Single crystal X-ray structure of D_{4d} -CDMB-8 \supset C₇₀ which crystalize as $[D_{4d}$ -CDMB-8 \circ C₇₀ (TCE)₇]. All solvent molecules have been omitted for clarity. Top view (a) and side views (b, c) of the monomeric complex of D_{4d} -CDMB-8 \supset C₇₀. The extended 1D packing linear structure produced *via* self-assembly of monomeric complex of D_{4d} -CDMB-8 \supset C₇₀ (d).

Section S4: Fullerene (C₆₀ and/or C₇₀) purification from mixed C₆₀/C₇₀ or carbon soot via adding *D*_{4d}-*CDMB-8*.

The purity of fullerene C₆₀ or C₇₀ was determined through HPLC analysis with Cosmosil-packed 5PBB analytical column (4.6×250 mm; mobile phase, toluene; UV detection, 329 nm; elution rate, 1 mL min⁻¹).

The molar radio between C₆₀ and C₇₀ $[n(C_{60})/n(C_{70})]$ could be calculated from the peak integral area radio between C₆₀ and C₇₀ $[I(C_{60})/I(C_{70})]$ of HPLC analysis by expression (*S*-1).

$$\frac{n(C_{60})}{n(C_{70})} = K \frac{I(C_{60})}{I(C_{70})} \quad ----S-I$$

Where I: peak integrated area radio from HPLC analysis, n: amount of substance, K is constant.

On the basic of the diagram (Scheme S1), L_I ($n(C_{60})/n(C_{70}) = 1:1$) was detected as standard for further fullerene mixture determination (Figure S57). K was calculated as 0.75 from the HPLC analysis of L_I .

The molar purity show in below was defined as expressions S-2 and S-3.

$$C_{60}\% = \frac{n(C_{60})}{n(C_{60}) + n(C_{70})} \times 100\% - S-2$$

$$C_{70}\% = \frac{n(C_{70})}{n(C_{60}) + n(C_{70})} \times 100\% - S-3$$

The separation of the mixture of C₆₀/C₇₀ (1:1 molar ratio) by D_{4d} -CDMB-8 was show in Scheme S1. D_{4d} -CDMB-8, C₆₀, and C₇₀ were dissolved in TCE to give a final solution that was 0.5 mM in each. The resulting mixture was allowed to sit on the bench for 48 h. This led to the formation of red-brown prismatic crystals. HPLC analysis of the crystals revealed a C₆₀/C₇₀ molar ratio of roughly 9:92 (12:88 area%, Figure S64). When this precipitate was recrystallized in *o*-dichlorobenzene (*o*-DCB)/*n*-hexane (1:5, *v*/*v*), a corresponding HPLC analysis revealed the purified product with a C₆₀/C₇₀ molar ratio of < 1:99 (Figure S65). Dissolving this purified complex, D_{4d} -CDMB-8⊃C₇₀, in a mixture of CS₂ and toluene containing excess S₈ yielded C₇₀ •2S₈¹⁷, which could be converted to pure C₇₀ (purity > 99%, molar yield = 43%) (Figure S66) *via* sublimation at 423 K for 3 hours under vacuum (2.0 kPa). Moreover, the solution remaining after the precipitation step, which is enriched in C₆₀, may be treated with additional D_{4d} -CDMB-8 to remove additional C₇₀. In this way, C₆₀ with a purity exceeding 99% (Figure S67) could be obtained in approximately 39% molar yield after removing the solvent and further purification in *o*-DCB/THF (1:5, *v*/*v*). The receptor itself was obtained in high purity following decomplexation, allowing it to be recycled and reused if so desired.

Scheme S1. Separation of C₆₀ and C₇₀ from their mixture ($n(C_{60})/n(C_{70}) = 1:1$) using macrocycle *D_{4d}*-CDMB-8. Procedure: I, C₆₀, C₇₀ (1.0 molar equiv.), *D_{4d}*-CDMB-8 (1.0 molar equiv.), TCE, rt, 48 h, solid-liquid separation; II, recrystallization from *o*-dichlorobenzene (*o*-DCB)/*n*-hexane (1:5, v/v); III, the decomposition of the complexes between *D_{4d}*-CDMB-8 and fullerene(s) (III₁, complexes (*D_{4d}*-CDMB-8⊃C₆₀ and/or *D_{4d}*-CDMB-8⊃C₇₀), CS₂, S₈ (excess); III₂, toluene, CS₂ removement, solid-liquid separation; III₃, sublimation; III₄, toluene removement, sublimation.); IV, *D_{4d}*-CDMB-8 (0.5 molar equiv.) was added in the supernatant after Step I, rt, 48 h, solid-liquid separation, remove TCE, and further purification in *o*-DCB/THF (1:5, *v*/*v*).

 L_I : C₆₀ (72 mg, 0.10 mmol) and C₇₀ (84 mg, 0.10 mmol) were dissolved in 200 mL TCE, with $I(C_{60})/I(C_{70}) = 57:43$ in HPLC analysis (Figure S57).

 $L_I \rightarrow (S_I \text{ and } L_2)$: D_{4d} -CDMB-8 (83 mg, 0.10 mmol) was added into solution L_I for standing at room temperature. After 48 h, red-brown prismatic crystals S_I were cultivated. Filter, the residue was washed with 5 mL THF to obtain S_I (154 mg), with $n(C_{60})/n(C_{70}) = 9:91$ ($I(C_{60})/I(C_{70}) = 12:88$, Figure S60). The filtrate L_2 with $n(C_{60})/n(C_{70}) = 76:24$ ($I(C_{60})/I(C_{70}) = 81:19$, Figure S58).

 $S_I \rightarrow S_2$: 154 mg S_I was dissolved in 30 mL *o*-DCB and pour into 150 ml *n*-hexane, red-brown prismatic crystals were obtained immediately. Filter, the residue was washed with 5 mL THF to obtain S_2 (72 mg), with $n(C_{60})/n(C_{70}) < 1:99$ ($I(C_{60})/I(C_{70}) = 1:99$, Figure S61). The filtrate containing C₆₀, C₇₀ and D_{4d} -CDMB-8 was collected together for further recycle of fullerenes and macrocycle.

 $S_2 \rightarrow S_3$: 72 mg S_2 was dissolved in 30 mL CS₂. Then 360 mg S₈ was added into the solution. Pour this mixture into 30 mL toluene to produce a red-brown solution. After remove CS₂ *via* rotary evaporation, bulk of red-brown crystals C₇₀•2S₈ were observed with the colour change of the solution (from red-brown to light yellow). Collected the solid, removed S₈ *via* sublimation at 423 K for 3 hours under vacuum (2.0 kPa) to obtain S_3 as a dark solid (C₇₀, 36 mg, 43%), with $n(C_{60})/n(C_{70}) < 1:99$ ($I(C_{60})/I(C_{70}) = 1:99$, Figure S62). ¹H NMR and X-ray photoelectron spectroscopy (XPS) analysis revealed that no D_{4d} -CDMB-8 and S₈ were detected in S_3 (Figure S79), ¹³C NMR revealed C₇₀ (S_3) with high purity (Figure S77). The filtrate was collected for further recycle of D_{4d} -CDMB-8 and S₈.

 $L_2 \rightarrow (S_4 \text{ and } S_5): D_{4d}$ -CDMB-8 (42 mg, 0.05 mmol) was added into L_2 and then standing at room temperature for 48 h, red-brown prismatic crystals S_5 were created. Filter, the solid was washed with 5 mL THF to give out S_5 (83 mg), with $n(C_{60})/n(C_{70}) = 46:54$ ($I(C_{60})/I(C_{70}) = 53:47$, Figure S64). The filtrate L_3 , with $n(C_{60})/n(C_{70}) = 96:4$ ($I(C_{60})/I(C_{70}) = 97:3$, Figure S59). Removed the solvent of L_3 via rotary evaporation, the resulting residue dissolved in 20 mL o-DCB and pour into 100 mL THF to obtain a red-brown solution. Stewing this solution at room temperature for 12 h, bulk of red-brown crystals were observed with the colour change of the solution (from red-brown to purple). Filter, and collected the solid for further recycle of C₆₀, C₇₀ and D_{4d} -CDMB-8. Removed the solution of the filtrate via rotary evaporation to obtain S_4 as a dark solid (28 mg, 39%), with $n(C_{60})/n(C_{70}) > 99:1$ ($I(C_{60})/I(C_{70}) > 99:1$, Figure S63). ¹H NMR and X-ray photoelectron spectroscopy (XPS) analysis revealed that no D_{4d} -CDMB-8 and S8 were detected in S_4 (Figure S80). ¹³C NMR revealed C₆₀ (S_4) with high purity (Figure S78).

The recycle of mix solid C₆₀ and C₇₀ (S₆): All the mix compounds between C₆₀, C₇₀ and D_{4d} -CDMB-8 were combined and then treated with same procedure of $S_2 \rightarrow S_3$. This afforded 81

mg S_6 , as a dark solid, with $n(C_{60})/n(C_{70}) = 52:48$ ($I(C_{60})/I(C_{70}) = 59:41$, Figure S65), recycle yield: $C_{60}(54\%)$, $C_{70}(50\%)$.

The recycle of D_{4d} -CDMB-8: Collecting all the mixture solution of D_{4d} -CDMB-8 and S₈, remove the solvent *via* rotary evaporation, and S₈ was separated *via* sublimation at 423 K for 3 hours under vacuum (2.0 kPa). The residue solid was recrystallization in CH₂Cl₂/CH₃CN (1:1, v/v) to afford pure D_{4d} -CDMB-8 (115 mg, recycle yield: 92%).

Further C₆₀ purification and higher fullerenes extraction from carbon soot were achieved *via* using D_{4d} -CDMB-8 (Scheme S2).

The peak intergrade area purity (area%) of C₆₀ show in below was defined as expression S-4.

I(C₆₀):*I*(C₇₀):*I*(C₇₀₊) = 12:84:4

Scheme S2. Separation of C_{60} and higher fullerenes extraction from carbon soot using macrocycle D_{4d} -CDMB-8. Procedure: I, Carbon soot extract (200 mg), D_{4d} -CDMB-8 (42 mg,

0.05 mmol), TCE, rt, 48 h, solid-liquid separation; II, recrystallization from *o*-DCB/*n*-hexane (1:5, v/v); III, the decomposition of the complexes between D_{4d} -CDMB-8 and fullerene(s) as step III in Scheme S1; IV, D_{4d} -CDMB-8 (42 mg, 0.05 mmol) was added in the supernatant (L_5) after Step I, rt, 48 h, solid-liquid separation; V, D_{4d} -CDMB-8 (62 mg, 0.07mmol) was added in the supernatant (L_6) after Step IV, remove half of TCE, rt, 48 h, solid-liquid separation.

The preparation of carbon soot extract: 5.0 g carbon soot was added in Soxhlet extractor, and 200 mL toluene was used for its extraction. After reflux for 12 hours, remove toluene to obtain carbon soot extract as a dark solid (0.65 g, 13 wt%).

*L*₄: 200 mg carbon soot extract was dissolved in 50 mL TCE, the purity revealed as I(CMSM): $I(C_{60}):I(C_{70}):I(C_{70+}) = 13:70:16:1$ (Figure S66).

 $L_4 \rightarrow (S_7 \text{ and } L_5)$: D_{4d} -CDMB-8 (42 mg, 0.05 mmol) was added into L_3 to sit on the bench at room temperature. After 48 h, red-brown prismatic crystals S_7 were created. Filter, wash with 5 mL THF, S_7 (84 mg) was collected with $I(C_{60})$: $I(C_{70})$: $I(C_{70+}) = 39:56:5$ (Figure S70). The filtrate L_5 was characterized as I(CMSM): $I(C_{60})$: $I(C_{70+}) = 17:76:5:2$ (Figure S67).

 $S_7 \rightarrow S_8$: Similar with the procedure from $S_1 \rightarrow S_2$, 84 mg S_7 was recrystallization from *o*-DCB/*n*-hexane (1:5, v/v) to obtain S_8 as a red-brown prismatic crystals (40 mg), with $I(C_{60}):I(C_{70}):I(C_{70+}) = 12:84:4$ (Figure S71).

 $S_8 \rightarrow S_9$: Analogue procedure as $S_2 \rightarrow S_3$ was carried out. 40 mg S_2 was breakup by adding 200 mg S₈ to obtained S_9 as a dark solid (19 mg, 9.5 wt%) with $I(C_{60}):I(C_{70}):I(C_{70+}) = 12:84:4$ (Figure S72).

 $L_5 \rightarrow (S_{10} \text{ and } L_6)$: Dissolve D_{4d} -CDMB-8 (42 mg, 0.05 mmol) into L_5 , and then to sit on the bench at room temperature for 48 h. Red-brown prismatic crystals S_{10} (74 mg) were collected after filtered and washed with 5 mL THF, which components include $I(C_{60}):I(C_{70}):I(C_{70+}) = 68:30:2$ (Figure S73). The filtrate L_6 was analyzed with $I(CMSM):I(C_{60}):I(C_{70}) = 19:80:1$ (Figure S68)

 $L_6 \rightarrow (S_{11} \text{ and } L_7)$: D_{4d} -CDMB-8 (62 mg, 0.07 mmol) was added into L_6 . Remove half of TCE, and keep the solution standing at room temperature. After 48 h, red-brown prismatic crystals S_{11} (161 mg) were obtained after filtered and washed with 5 mL THF, with $I(C_{60}):I(C_{70}) > 99:1$ (Figure S74). The filtrate L_7 was detected with $I(CMSM):I(C_{60}) = 70:30$ (Figure S69).

 $S_{11} \rightarrow S_{12}$: As the procedure of $S_2 \rightarrow S_3$, 161 mg S_{11} was breakup by adding 800 mg S₈ to obtain S_{12} as a dark solid (70 mg, 35 wt%), with $I(C_{60}):I(C_{70}) > 99:1$ (Figure S75). ¹H NMR and X-ray photoelectron spectroscopy (XPS) analysis revealed that no D_{4d} -CDMB-8 and S₈ were detected in S_{12} (Figure S78). ¹³C NMR revealed C₆₀ (S_{12}) with high purity (Figure S81).

The recycle of fullerenes (S_{I3}): All the mix compounds containing fullerenes and D_{4d} -CDMB-8 were treated with same procedure of $S_2 \rightarrow S_3$. This afforded 50 mg S_{I3} as a dark solid, with $I(C_{60}):I(C_{70}):I(C_{70+}) = 77:21:2$ (Figure S76), recycle yield: 25 wt%.

The recycle of D_{4d} -CDMB-8: Collecting all the mixture solution of containing D_{4d} -CDMB-8 and S₈, remove the solvent *via* rotary evaporation, and pure S₈ could be recycled *via* sublimation at 423 K for 3 hours under vacuum (2.0 kPa). Meanwhile the residue solid was recrystallization in CH₂Cl₂/CH₃CN (1:1, *v/v*) to afford pure D_{4d} -CDMB-8 (136 mg, recycle yield: 93%).

Figure S62. HPLC analysis of *L*₂.

Figure S64. HPLC analysis of S₁.

Figure S65. HPLC analysis of S₂.

Figure S66. HPLC analysis of S₃.

Figure S67. HPLC analysis of S₄.

Figure S68. HPLC analysis of S₅.

Figure S70. HPLC analysis of L_4^{19-20} .

Figure S72. HPLC analysis of *L*₆.

Figure S74. HPLC analysis of S₇.

Figure S76. HPLC analysis of S₉.

Figure S77. HPLC analysis of S₁₀.

Figure S79. HPLC analysis of *S*₁₂.

Figure S81. Full view (a) and expanded view (b) 13 C NMR spectra of C₇₀ and S₄ (5.00 mg/mL) in *o*-DCB-*d*₂ at 298 K (150 MHz).

Figure S82. Full view (a) and expanded view (b) of ¹³C NMR spectra of C₆₀, S_4 and S_{12} (5.00 mg/mL) in *o*-DCB- d_2 at 298 K (150 MHz).

Figure S83. Full view (a) and expanded views (b, c) of XPS spectrum of S_3 .

Figure S84. Full view (a) and expanded views (b, c) of XPS spectrum of S_4 .

Figure S85. Full view (a) and expanded views (b, c) of XPS spectrum of S_{12} .

Reference

- (1) G. M. Sheldrick, *SHELXL97. Program for the Refinement of Crystal Structures*, University of Gottingen, Gottingen, 1994.
- (2) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea and J. A. K. Howard, J. Appl. Cryst., 2009, 42, 339-341.
- (3) G. M. Sheldrick, Acta Cryst. A., 2015, 71, 3-8.
- (4) $R_w(F^2) = \{w(|F_0|^2 |F_c|^2)^2/w(|F_0|)^4\}^{1/2}$ where w is the weight given each reflection. $R(F) = (|F_0| |F_c|)/|F_0|\}$ for reflections with $F_0 > 4((F_0))$. $S = [w(|F_0|^2 |F_c|^2)^2/(n p)]^{1/2}$, where n is the number of reflections and p is the number of refined parameters.
- (5) A. J. C. Wilson, *International Tables for X-ray Crystallography. Vol. C, Tables 4.2.6.8 and 6.1.1.4*. Kluwer Academic Press, 1992.

- (6) G. M. Sheldrick, SHELXTL/PC (Version 5.03). Siemens Analytical X-ray Instruments, Inc., Wisconsin, 1994.
- (7) M. J. Frisch, et al, Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford, Connecticut, 2009.
- (8) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- (9) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- (10) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
- (11) A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi and G. Frenking, et al, Chem. Phys. Lett., 1993, 208, 111-114.
- (12) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 284-298.
- (13) L. E. Roy and P. J. Hay, J. Chem. Theory Comput., 2008, 4, 1029-1031.
- (14) P. Job, Ann. Chim., 1928, 9, 113-203.
- (15) K. A. Connors, Binding Constants. John Wiley and Sons, New York, 1987.
- (16) P. Gans and A. Sabatini, A. Talanta, 1996, 43, 1739-1753.
- (17) H. Takahashi, E. Matsubara, R. V. Belosludov, S. Matsubara, N. Sato, A. Muramatsu, Y. Kawazoe, K. Tohji, *Materials Transactions*, 2002, 43, 1530–1532.
- (18) D. Canevet, E. M. Pérez, N. Martín, Angew. Chem. Int. Ed. 2011, 50, 9248-9259.
- (19) K. Tashiro, T. Aida, Chem. Soc. Rev. 2007, 36, 189-197.
- (20) M.-J. Li, C.-H. Huang, C.-C. Lai, S.-H. Chiu, Org. Lett. 2012, 14, 6146-6149.