Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Modulating the expression of chirality in a mechanically chiral rotaxane

Charles E. Gell, Timur A. Mcardle-Ismaguilov and Nicholas H. Evans*

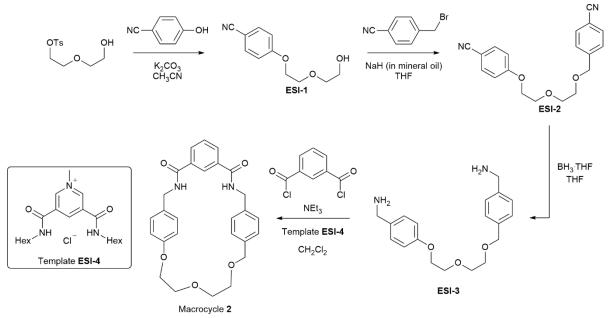
Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK E-mail: <u>n.h.evans@lancaster.ac.uk</u>

Contents

Experimental	S2
General Information	S2
Experimental Procedures	S3
Characterisation Data	S10
Titrations	S28
Protocols	S28
Data	S30
Computational Modelling	S44
References	

Experimental

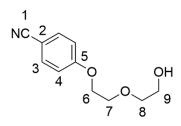
General Information


Commercially available solvents and chemicals were used without further purification unless stated. Dry solvents, NEt₃ and DIPEA were purchased dry and stored under an inert atmosphere. Cu(CH₃CN)₄BF₄ was stored in a desiccator over P₄O₁₀. Deionised water was used in all cases. Azide **3**,¹ alkyne **4**,² 2-(2-hydroxyethoxy)ethyl 4-methylbenzenesulfonate³ and methyl pyridinium template **ESI-4**⁴ were prepared according to previously reported procedures.

Silica gel with a 60 Å particle size was used as the stationary phase for column chromatography. Analytical TLC was used to monitor the progress of column chromatography and analytical TLC plates were typically examined under short wavelength (lambda = 254 nm) UV light. If required, ceric ammonium molybdate or potassium permanganate stains were used to develop the analytical TLC plates.

IR spectra were recorded on an Agilent Technologies Cary 630 FTIR spectrometer. NMR spectra were recorded on a Bruker Ultrashield 400 Plus Spectrometer at 298 K. Mass spectra were recorded on a Shimadzu LCMS IT ToF instrument. Melting points were recorded on a Gallenkamp capillary melting point apparatus and are uncorrected. HPLC was performed on a Shimdazu NexeraX2 UHPLC system.

Experimental Procedures

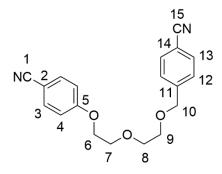

Multi-step synthesis of Macrocycle 2

Preparation of rotationally asymmetric macrocycle 2.

*The monotosylate of diethylene glycol was prepared by following an adapted literature procedure.*³

Mono-nitrile ESI-1

4-Hydroxybenzonitrile (2.29 g, 19.2 mmol) and K₂CO₃ (3.98 g, 28.8 mmol) were added to a solution of diethylene glycol monotosylate (3.33 g, 12.8 mmol) in dry CH₃CN (50 mL). The resulting mixture was heated under reflux for 5 days, under an Ar (g) atmosphere. After cooling to RT, the suspension was filtered under suction and the solvent removed *in vacuo*. The resulting oil was re-dissolved in CH₂Cl₂ (50 mL) then washed with 1 M NaOH (aq) (25 mL) and H₂O (25 mL). The organic layer was dried (MgSO₄), and the solvent removed *in vacuo* to yield the product as a colourless oil (2.00 g, 82%).


IR (neat) v_{max}: 3500 (O–H), 2900 (C–H), 2230 (CN), 1600, 1510, 1460, 1300, 1260, 1180, 1130, 1090, 1050.

¹H NMR (400 MHz, CDCl₃) δ: 7.57-7.61 (2H, m, C³H), 6.96-7.00 (2H, m, C⁴H), 4.18-4.20 (2H, m, C⁶H), 3.88-3.91 (2H, m, C⁷H), 3.77-3.79 (2H, m, C⁹H), 3.67-3.69 (2H, m, C⁸H).

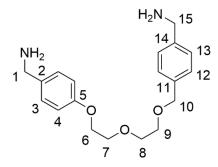
¹³C NMR (100 MHz, CDCl₃) δ: 162.0 (C⁵), 134.0 (C³), 119.1 (C¹), 115.3 (C⁴), 104.3 (C²), 72.6 (C⁸), 69.3 (C⁷), 67.7 (C⁶), 61.7 (C⁹).

HRMS (ES -ve) *m/z*: 242.0618 ([M + Cl]⁻, C₁₁ClH₁₃NO₃ requires 242.0589).

Bis-nitrile ESI-2

NaH (60% in mineral oil, 0.49 g, 12 mmol) was added to **ESI-1** (2.00 g, 10.2 mmol) in dry THF (30 mL). 4-(Bromomethyl)benzonitrile (2.20 g, 11.2 mmol) was then added and the reaction mixture stirred for 1 h at RT under an Ar (g) atmosphere. The reaction mixture was then quenched with H₂O (20 mL) and then extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were dried (MgSO₄) and the solvent removed *in vacuo*. The crude material was was purified by silica gel column chromatography (petrol 40-60/EtOAc 4:1 to 3:1), to yield the product as a white solid (2.47 g, 75%).

Mt Pt 70-72 °C


IR (neat) v_{max}: 2940, 2920, 2870 (multiple C–H), 2220 (CN), 1610, 1510, 1480, 1300, 1260, 1180, 1130, 1030.

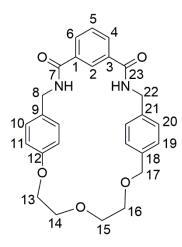
¹**H** NMR (400 MHz, CDCl₃) δ : 7.61-7.64 (2H, m, C¹³H), 7.56-7.60 (2H, m, C³H), 7.45 (2H, d, ³*J* = 8.6 Hz, C¹²H), 6.95-6.98 (2H, m, C⁴H), 4.63 (2H, s, C¹⁰H), 4.18-4.20 (2H, m, C⁶H), 3.88-3.91 (2H, m, C⁷H), 3.75-3.78 (2H, m, C⁸H), 3.69-3.72 (m, 2H, C⁹H).

¹³C NMR (100 MHz, CDCl₃) δ: 162.0 (C⁵), 143.8 (C¹¹), 134.0 (C³), 132.2 (C¹³), 127.7 (C¹²), 119.1 (C¹), 118.8 (C¹⁵), 115.3 (C⁴), 111.3 (C¹⁴), 104.2 (C²), 72.3 (C¹⁰), 70.9 (C⁸), 70.0 (C⁹), 69.5 (C⁷), 67.7 (C⁶).

HRMS (ES +ve) m/z: 345.1201 ([M + Na]⁺, C₁₉H₁₈N₂NaO₃ requires 345.1210).

Bis-amine ESI-3

BH₃·THF (1 M, 20.0 mL, 20.0 mmol) was added dropwise to a solution of **ESI-2** (1.26 g, 3.91 mmol) in dry THF (20 mL) under Ar (g) atmosphere. The reaction mixture was heated under reflux for 3 h maintaining the inert atmosphere. Excess reducing agent was then quenched with CH₃OH, then conc. HCl (5 mL) was added and the mixture was allowed to stir for a further 10 minutes at RT. All solvent was then removed *in vacuo*. The resulting solid was re-dissolved in H₂O (30 mL) and washed with CH₂Cl₂ (30 mL). The aqueous layer was basified with 10% NaOH (aq), and then extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were dried (MgSO₄) and the solvent removed *in vacuo*. The crude material was purified by silica gel column chromatography (CH₂Cl₂/CH₃OH/NEt₃ 93:4:2) to give the product as a waxy white solid (0.80 g, 62%).


IR (neat) υ_{max} : 3360, 3020, 2860 (multiple C–H & very broad N–H), 1610, 1510, 1450, 1350, 1300, 1240, 1180, 1090.

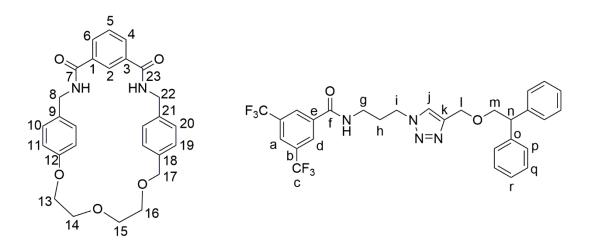
¹**H NMR (400 MHz, CDCl₃)** δ : 7.27-7.34 (4H, m, C¹²H & C¹³H), 7.22 (2H, d, ³*J* = 8.7 Hz, C³H), 6.89 (2H, dt, ³*J* = 8.7 Hz, C⁴H), 4.57 (2H, s, C¹⁰H), 4.12-4.15 (2H, m, C⁶H), 3.85-3.88 (4H, m, C⁷H & C¹⁵H), 3.80 (2H, s, C¹H), 3.74-3.77 (2H, m, C⁸H), 3.65-3.67 (2H, m, C⁹H).

¹³C NMR (100 MHz, CDCl₃) δ: 157.7 (C⁵), 142.8 (C¹⁴), 136.8 (C¹¹), 135.8 (C²), 128.2 (C³), 128.1 (C¹²), 127.1 (C¹³), 114.7 (C⁴), 73.1 (C¹⁰), 70.9 (C⁸), 69.8 (C⁷), 69.4 (C⁹), 67.5 (C⁶), 46.3 (C¹⁵), 45.9 (C¹).

HRMS (ES +ve) m/z: 331.2008 ([M + H]⁺, C₁₉H₂₇N₂O₃ requires 331.2016).

Macrocycle 2

ESI-3 (800 mg, 2.42 mmol) and methyl pyridinium chloride template **ESI-4** (997 mg, 2.42 mmol) dissolved in dry CH₂Cl₂ (100 mL) and isophthaloyl chloride (590 mg, 2.90 mmol) dissolved in dry CH₂Cl₂ (100 mL), were simultaneously added dropwise to NEt₃ (0.24 g, 0.33 mL, 2.4 mmol) dissolved in CH₂Cl₂ (100 mL) at RT under an Ar (g) atmosphere. The reaction was then stirred for 1 h maintaining the inert atmosphere. The mixture was concentrated *in vacuo* and then washed with 1 M HCl (aq) (2×25 mL) and H₂O (2×25 mL). The organic layer was dried (MgSO₄) and the solvent removed *in vacuo*. The crude material was purified by silica gel column chromatography (EtOAc/CH₂Cl₂ 4:1), with the pure product being isolated, following trituration with EtOAc (3×2 mL), as a white solid (286 mg, 26 %).


Mt Pt 220-221 °C

IR (neat) v_{max}: 3260 (N–H), 3070, 2930, 2900, 2860 (multiple C–H), 1640 (C=O), 1500, 1510, 1300, 1250, 1100, 1090, 1080.

¹**H** NMR (400 MHz, 1:1 CDCl₃/CD₃OD) δ : 8.00-8.04 (2H, m, C⁴H & C⁶H), 7.95 (1H, app t, C²H), 7.56-7.60 (1H, m, C⁵H), 7.30 (4H, s, C¹⁹H & C²⁰H), 7.25 (2H, d, ³*J* = 8.7 Hz, C¹⁰H), 6.89 (2H, d, ³*J* = 8.7 Hz, C¹¹H), 4.53 (2H, s, C²²H), 4.52 (2H, s, C¹⁷H), 4.47 (2H, s, C⁸H), 4.16-4.18 (2H, m, C¹³H), 3.81-3.84 (2H, m, C¹⁴H), 3.72-3.75 (2H, m, C¹⁵H), 3.59-3.62 (2H, m, C¹⁶H).

¹³C NMR (100 MHz, 1:1 CDCl₃/CD₃OD) δ: 167.9 (C²³), 167.8 (C⁷), 158.5 (C¹²), 137.4 (C¹⁸), 137.1 (C²¹), 134.5, 134.3 (C¹ & C³), 131.0, 130.9 (C⁴ & C⁶), 130.0 (C⁹), 129.6 (C¹⁰), 129.2 (C⁵), 128.6 (C¹⁹), 128.1 (C²⁰), 124.6 (C²), 114.9 (C¹¹), 73.0 (C¹⁷), 70.7 (C¹⁵), 69.5 (C¹⁴), 69.3 (C¹⁶), 67.8 (C¹³), 43.9 (C²²), 43.7 (C⁸).

HRMS (ES +ve) *m/z*: 483.1881 ([M + Na]⁺, C₂₇H₂₈N₂O₅ requires 483.1900).

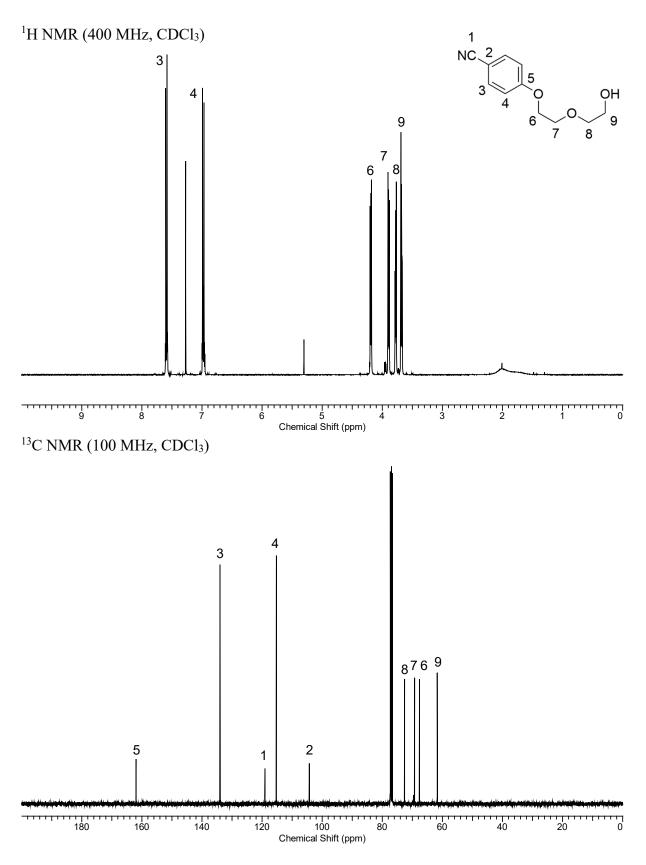
Macrocycle **2** (100 mg, 0.22 mmol) and azide **3** (111 mg, 0.33 mmol) were dissolved in dry CH_2Cl_2 (6 mL) under an Ar (g) atmosphere. Then, alkyne **4** (77 mg, 0.33 mmol), DIPEA (60 µL, 46 mg, 0.36 mmol), $Cu(CH_3CN)_4BF_4$ (10 mg, 0.033 mmol) and TBTA (17 mg, 0.033 mmol) were added. The reaction was stirred at RT for 16 h under an Ar (g) atmosphere. Then, the reaction was diluted with CH_2Cl_2 (15 mL), washed with 0.02 M EDTA in 1 M NH₃ (aq) solution (10 mL) and H₂O (2 × 10 mL). The organic layer was dried (MgSO₄), filtered and the solvent removed *in vacuo*. The crude material was purified by careful silica gel column chromatography (CHCl₃/CH₃OH 99:1 to 98:2), to yield the product as a white solid (100 mg, 44 %).

Mt Pt 79-80 °C

IR (neat) v_{max}: 3340 (multiple N–H), 3060, 2920, 2870 (multiple C–H), 1650 (multiple C=O), 1510, 1470, 1450, 1360, 1280, 1180, 1130, 1080, 1030.

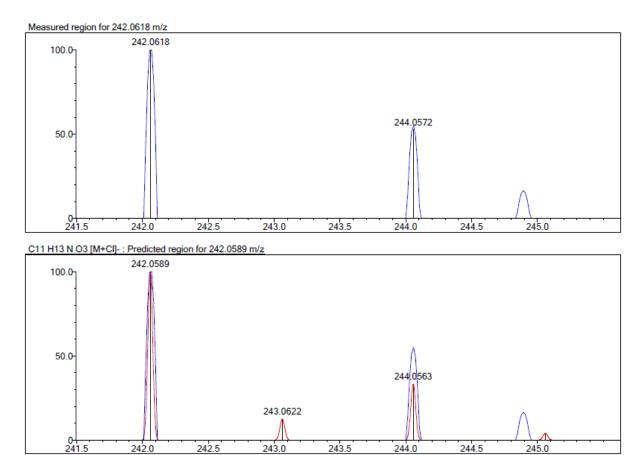
¹**H** NMR (400 MHz, CDCl₃) δ : 8.54 (1H, s, C²H), 8.30-8.33 (2H, m, C⁴H & C⁶H), 8.07 (2H, s, C^dH), 8.04 (1H, s, C^aH), 7.63 (1H, app t, C⁵H), 7.17-7.29 (11H, m, C^jH, C^pH, C^qH & C^rH), 7.14 (1H, t, ${}^{3}J$ = 3.8 Hz, C⁸H₂N*H*), 7.07 (1H, t, ${}^{3}J$ = 4.2 Hz, C²²H₂N*H*), 6.75 (4H, app d, C¹⁰H & C²⁰H), 6.63 (2H, d, ${}^{3}J$ = 7.8 Hz, C¹⁹H), 6.56 (1H, t, ${}^{3}J$ = 4.2 Hz, axle NH), 6.11 (2H, d, ${}^{3}J$ = 8.5 Hz, C¹¹H), 4.68 (2H, s, C¹H), 4.40-4.48 (3H, m, C⁸H & C²²H), 4.20-4.35 (5H, m, C⁸H & C¹⁷H, CⁿH, CⁱH), 4.17 (1H, d, ${}^{2}J$ = 9.3 Hz, C¹⁷H), 4.12 (2H, d, ${}^{3}J$ = 7.3 Hz, C^mH), 3.70-4.01 (8H, m, C¹³H, C¹⁴H, C¹⁵H & C¹⁶H), 2.54-2.63 (1H, m, C^gH), 2.40-2.48 (1H, m, C^g'H), 1.94-2.08 (2H, m, C^hH).

¹³C NMR (100 MHz, CDCl₃) δ : 166.0 (C²³), 165.8 (C⁷), 163.7 (C^f), 157.5 (C¹²), 145.3 (C^k), 141.9 (C^o), 137.4 (C²¹), 135.6 (C¹⁸), 135.1 (C^e), 133.7 (C¹ or C³), 133.5 (C¹ or C³), 132.0 (C⁴ & C⁶), 131.4 (quar, ²*J* = 34 Hz, C^b), 130.0 (C¹⁰ or C²⁰), 129.6 (C¹⁹), 129.3 (C⁵), 129.0 (C⁹), 128.8 (C¹⁰ or C²⁰), 128.4 (1 of C^p/C^q/C^r), 128.3 (br, C^d), 128.2 (1 of C^p/C^q/C^r), 126.5 (1 of C^p/C^q/C^r), 124.5 (br, C^a), 123.1 (quar, ¹*J* = 271 Hz, C^c), 122.9 (C^j), 122.7 (C²), 113.5 (C¹¹),

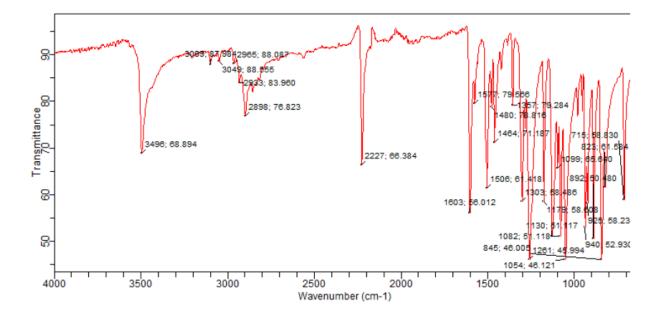

74.3 (C¹⁷), 73.9 (C^m), 70.5 (1 of C¹⁴/C¹⁵/C¹⁶), 70.3 (1 of C¹⁴/C¹⁵/C¹⁶), 70.2 (1 of C¹⁴/C¹⁵/C¹⁶), 66.5 (C¹³), 64.7 (C^l), 50.9 (Cⁿ), 48.1 (Cⁱ), 44.8 (C⁸ or C²²), 44.8 (sic, C⁸ or C²²), 38.2 (C^g), 28.0 (C^h).

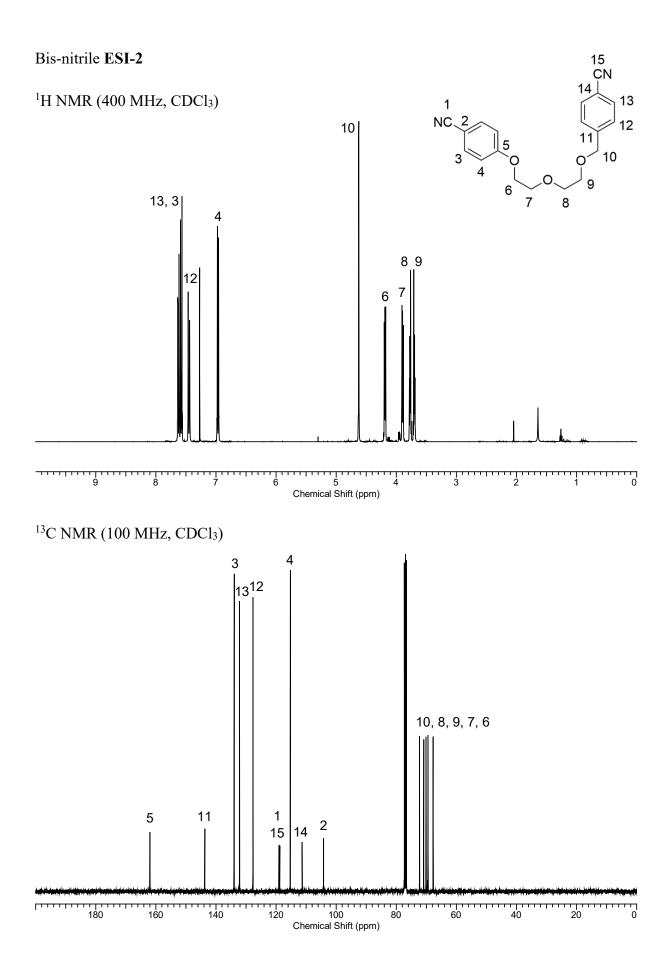
¹⁹F NMR (377 MHz, CDCl₃) δ: -62.6.

HRMS (ES +ve) m/z: 1037.3949 ([M + H]⁺, 1037.4031 requires C₅₆H₅₄N₆O₇F₆).

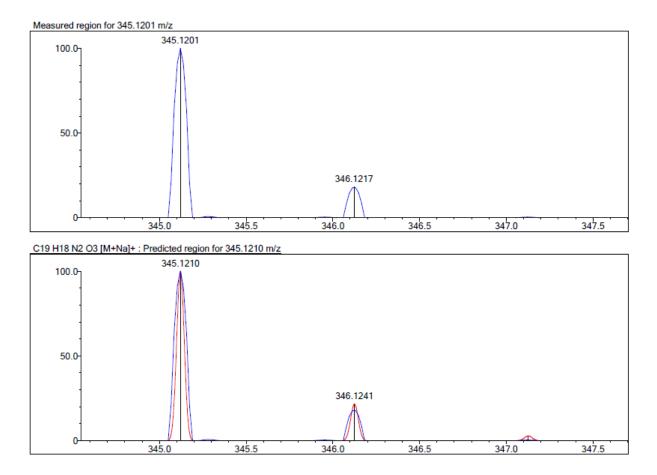

Characterisation Data

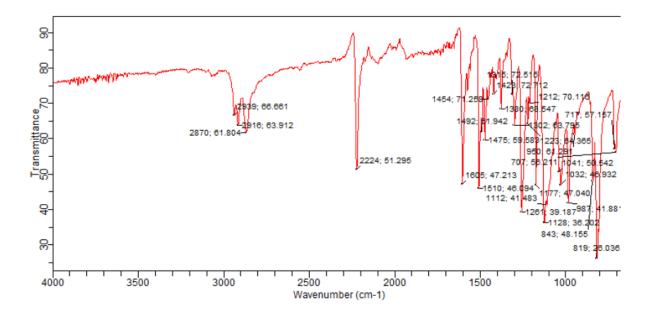
Mono-nitrile ESI-1

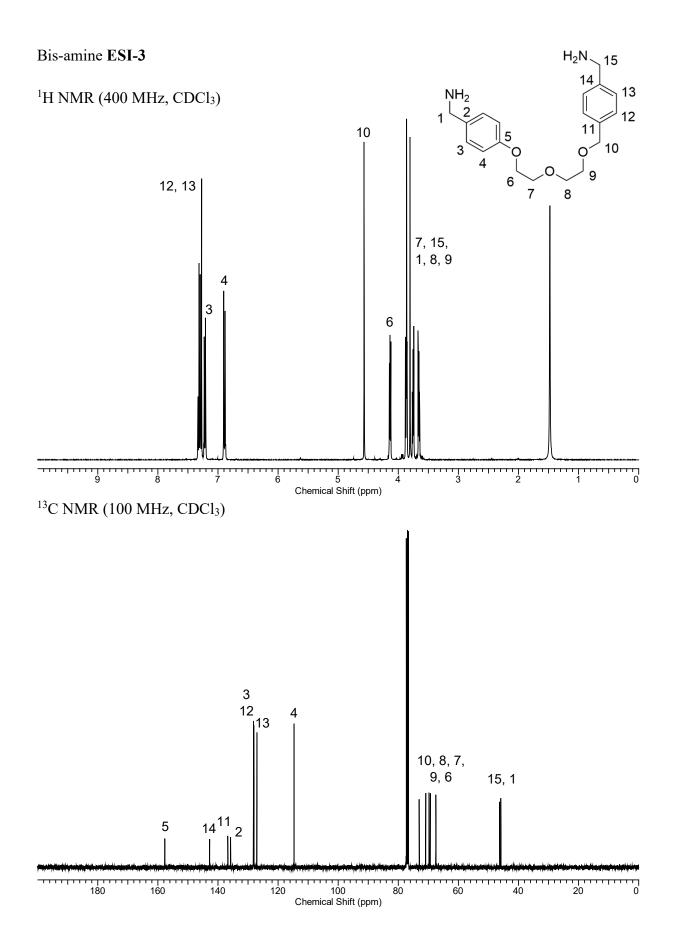



Mono-nitrile ESI-1

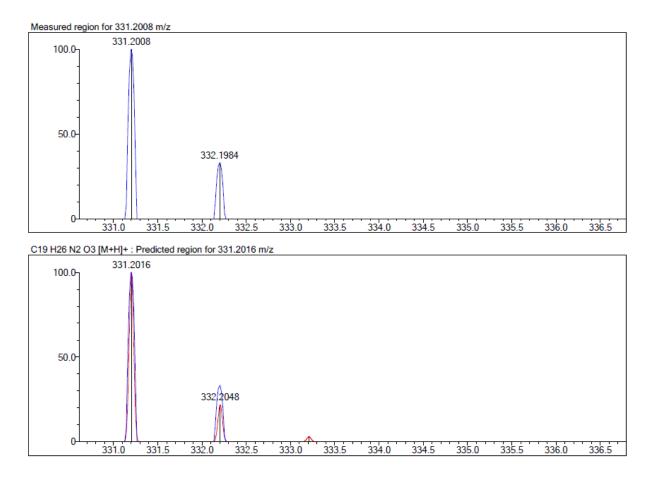
MS (ES -ve)

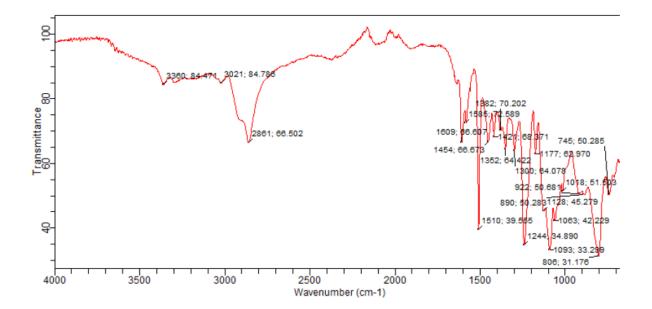

IR (neat)



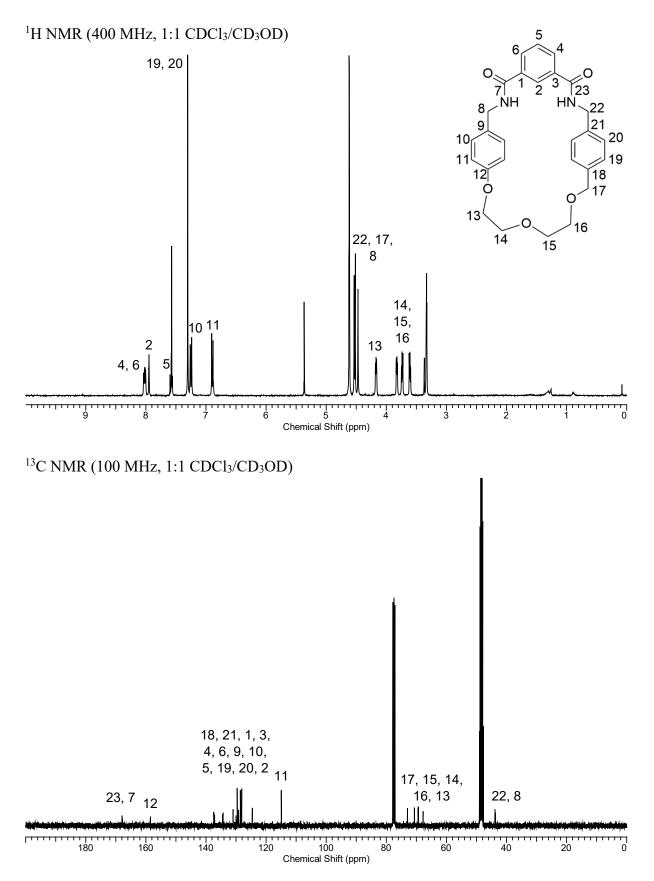

Bis-nitrile ESI-2

MS (ES +ve)

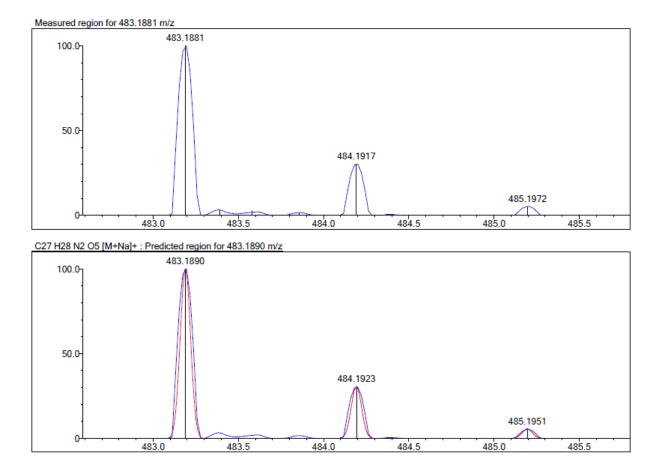

IR (neat)



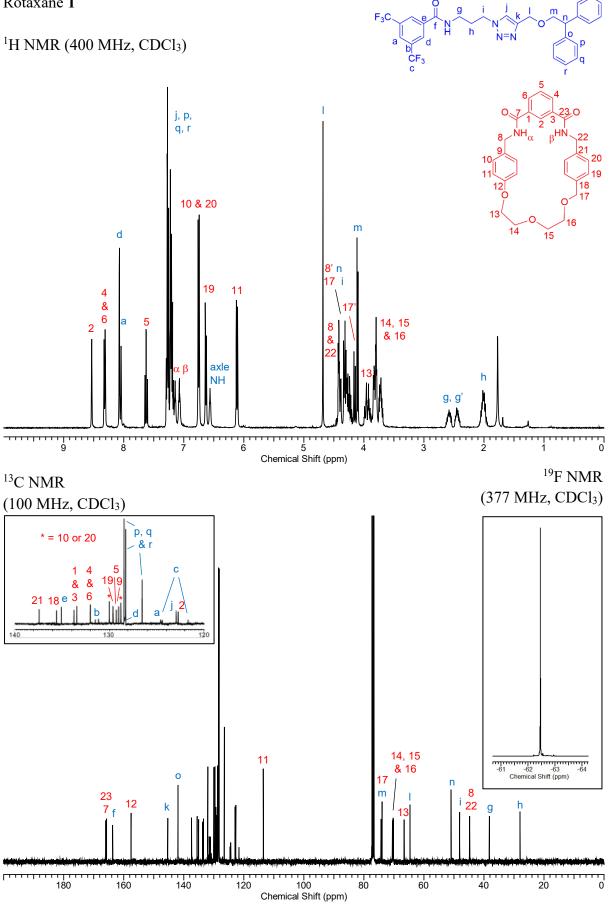
Bis-amine ESI-3

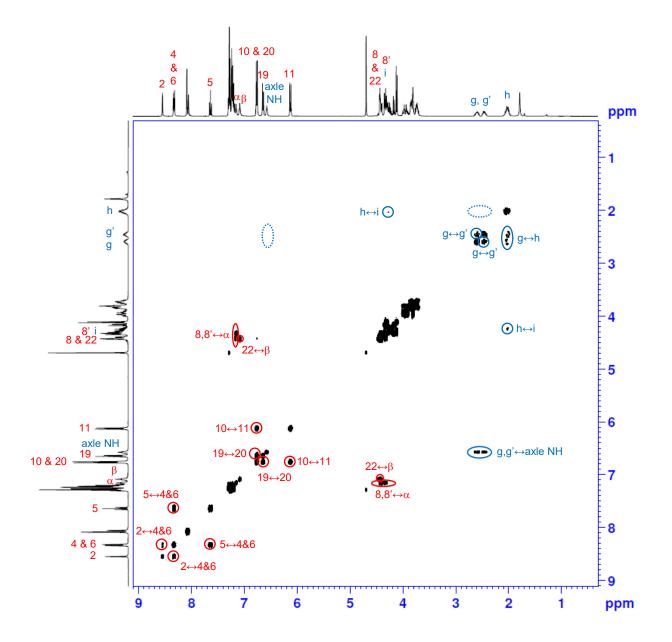

MS (ES +ve)

IR (neat)

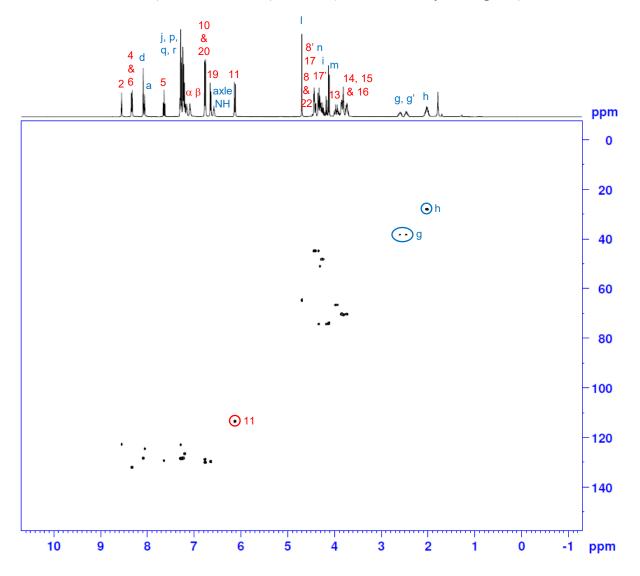


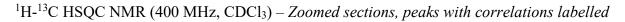
Macrocycle 2

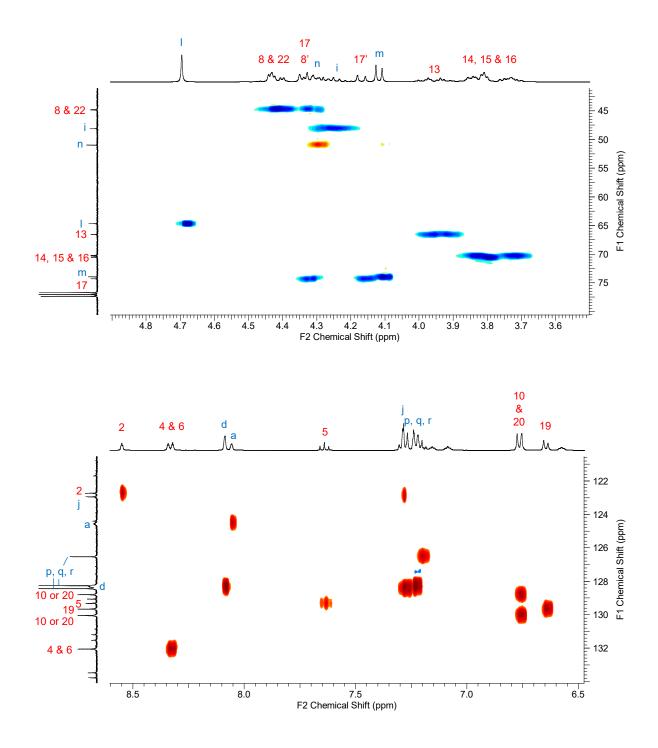

Macrocycle 2


MS (ES +ve)

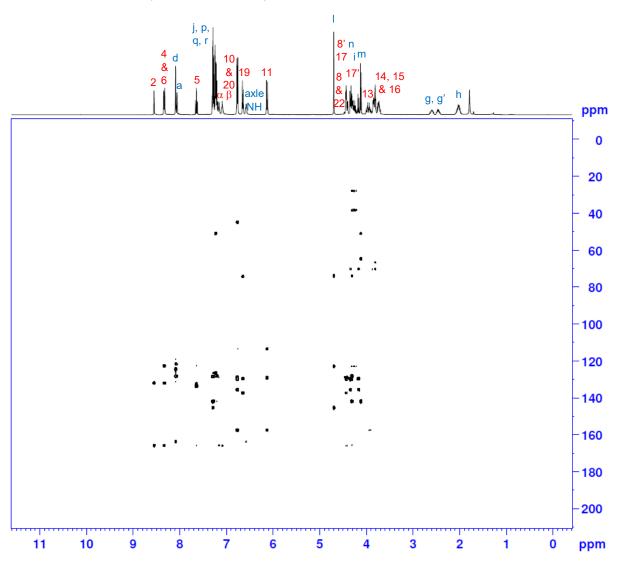
IR (neat)

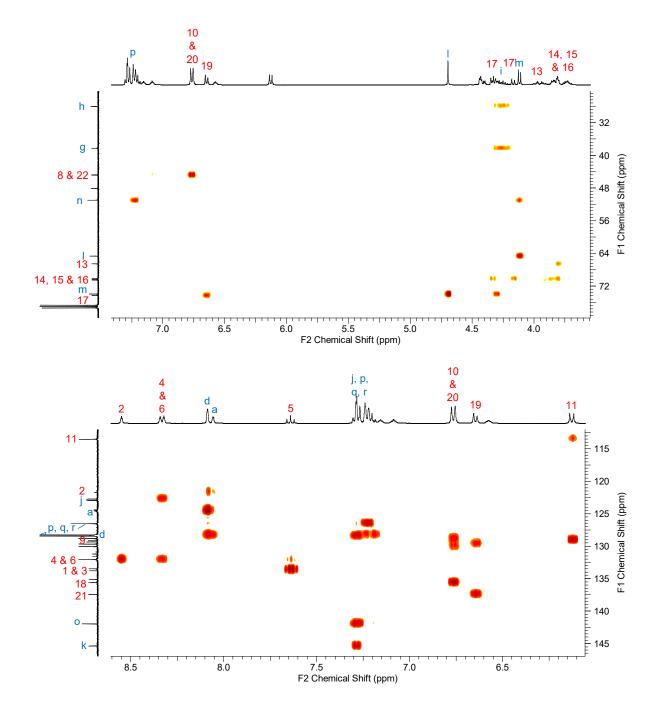


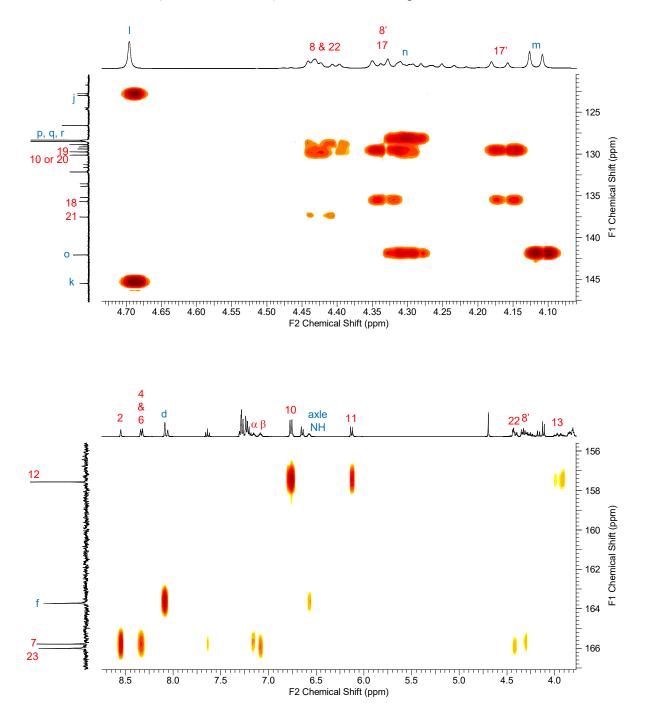




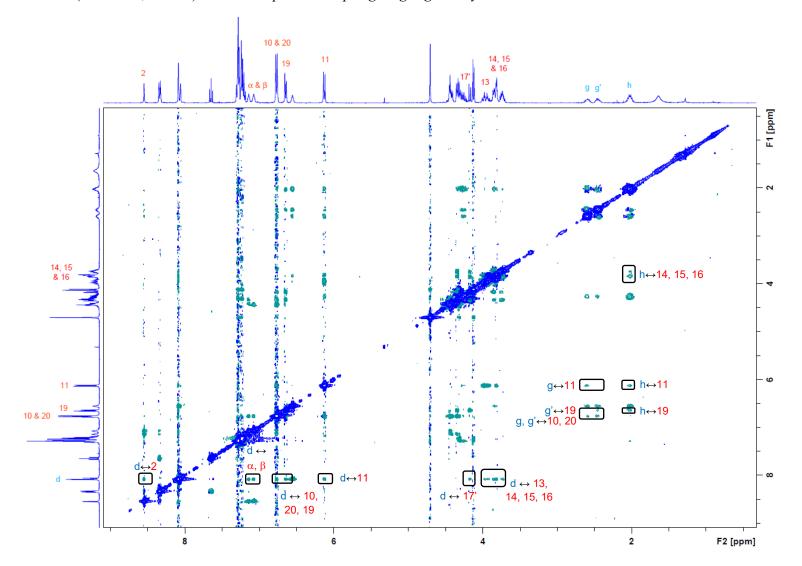
¹H-¹H COSY NMR (400 MHz, CDCl₃) – Key peaks & cross-peaks labelled


¹H-¹³C HSQC NMR (400 MHz, CDCl₃) – *Peaks (& correlations for 11, g & h) labelled*

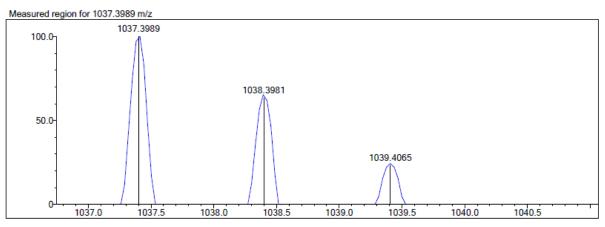




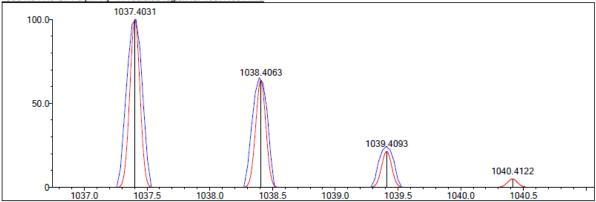
¹H-¹³C HMBC NMR (400 MHz, CDCl₃) – Peaks labelled

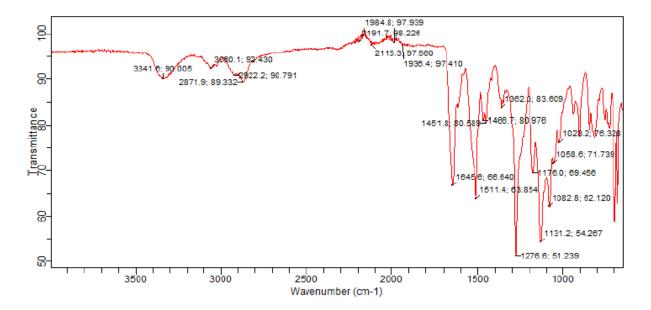


¹H-¹³C HMBC NMR (400 MHz, CDCl₃) – Zoomed sections, peaks with correlations labelled

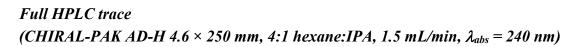


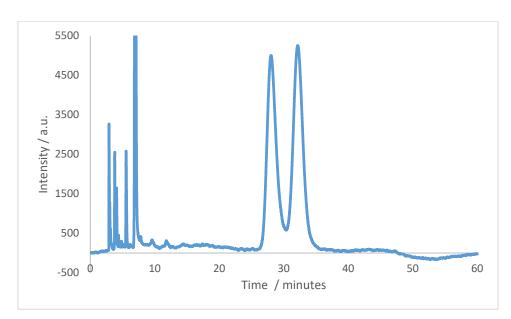
¹H-¹³C HMBC NMR (400 MHz, CDCl₃) – Zoomed sections, peaks with correlations labelled


¹H-¹H ROESY NMR (400 MHz, CDCl₃) - *Inter-component couplings highlighted by boxes.*


MS (ES +ve)

IR (neat)

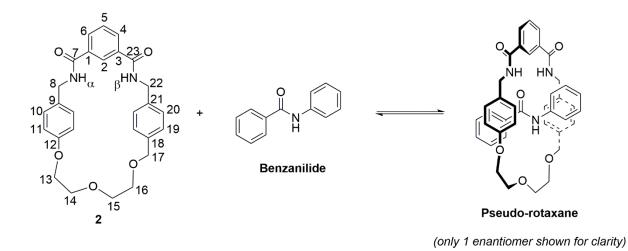

HPLC


Samples were analysed using a CHIRALPAK AD-H (4.6 mm × 250 mm) column. Sample concentration was ~ 1×10^{-4} mol cm⁻³ in 9:1 hexane:IPA, with an injection volume of 2 μ L. (Initial injections at lower concentrations failed to produce an unambiguous response

in the HPLC trace.)

The eluent used was 4:1 hexane: IPA at a flow rate of 1.5 mL min^{-1} .

Detection was by measuring absorption at a range of wavelengths (204-240 nm).



Titrations

Protocols

NMR spectra were recorded on a Bruker Ultrashield 400 Plus Spectrometer.

Pseudo-Rotaxane Study

A 0.05 M solution of benzanilide was added to 500 μ L of a 2.00 mM solution of macrocycle **2** at 298 K. *Low solubility of macrocycle* **2** *in CDCl*₃ *necessitated a very low concentration to be used.*

In CDCl₃ the volumes of benzanilide added were $10 \times 4 \mu L$, $2 \times 10 \mu L$, $2 \times 20 \mu L$, $2 \times 40 \mu L$, $1 \times 60 \mu L$ (i.e. in total 10 equivalents of benzanilide).

In D_6 -acetone and D_6 -DMSO, fewer spectra were recorded and only up to 5 equivalents of benzanilide was added, as no perturbation in macrocycle resonances was observed.

Acid/Base Titrations

A 0.25 M solution of TFA was added to 500 μ L of a 2.50 mM CDCl₃ solution of rotaxane 1 at 298 K. The volumes added were 5, 5, 15, 25, 50, 50, 50 & 50 μ L (i.e. in total 50 equivalents of TFA). Then 50 equivalents of base (dissolved in 125 μ L of CDCl₃) were added.

Cation Titrations

A 0.25 M solution of salt was added to 500 μL of a 2.50 mM CD₃CN solution of rotaxane 1 at 298 K.

In the case of LiPF₆, the volumes added were 5, 5, 15, 25, 50 & 50 μ L (i.e. in total 30 equivalents of LiPF₆). Then 30 equivalents of 12-crown-4 (dissolved in 75 μ L of CD₃CN) were added.

In the case of LiClO₄, the volumes added were, 5, 5, 15, 25, 50, 50 & 100 μ L (i.e. in total 50 equivalents of LiClO₄). Then 50 equivalents of 12-crown-4 (dissolved in 125 μ L of CD₃CN) were added.

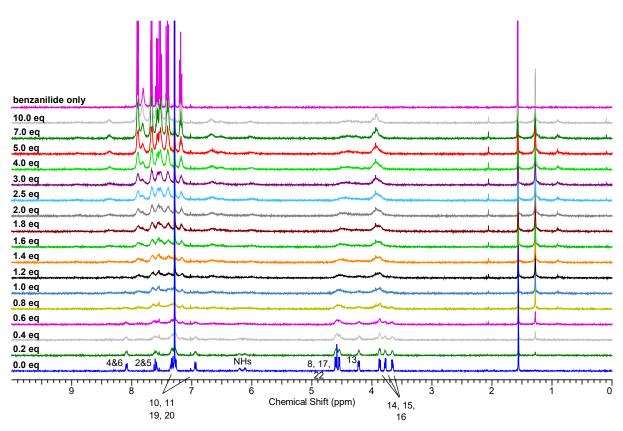
In the case of $Zn(ClO_4)_2$, the volumes added were, 2.5, 2.5, 5, 15 & 25 μ L (i.e. in total 10 equivalents of $Zn(ClO_4)_2$). Then 10 equivalents of 12-crown-4 (dissolved in 25 μ L of CD₃CN) were added.

ROESY Study (with TFA)

A 9.62 mM CDCl₃ solution of rotaxane 1 was prepared and a ${}^{1}H{}^{-1}H$ ROESY NMR spectrum recorded (number of scans = 4).

To this solution, 50 μ L of 165 mg of TFA in 300 μ L of CDCl₃ solution was added. By recording a ¹⁹F NMR spectrum with sufficient delay time to relax all F nuclei, it was possible to calculate ~ 40 equivalents of TFA had been added. A ¹H-¹H ROESY NMR spectrum was then recorded using the same settings as above.

Due to a poor signal-nose ratio, a second ¹H-¹H ROESY NMR spectrum was recorded, which is presented here, after adding sufficient TFA solution to restore ~ 40 equivalents of TFA (*losses due to evaporation*). In this case the number of scans were increased to 64.

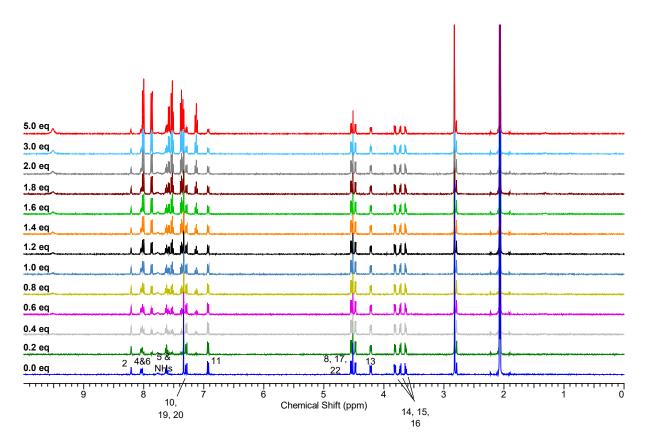

Data

Pseudo-rotaxane studies

Macrocycle 2 + Benzanilide

¹H NMR in CDCl₃

(Eq. of benzanilide added: 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0, 7.0, 10.0. Top spectrum benzanilide only for comparison).

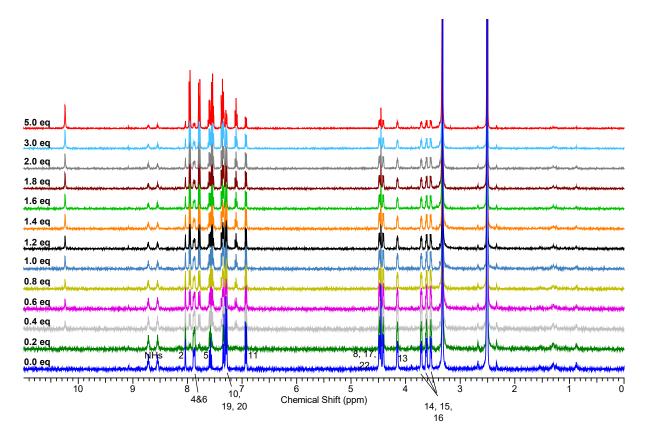


Broadening of (macrocycle) peaks indicates formation of pseudo-rotaxane is occurring but with intermediate exchange on the NMR timescale.

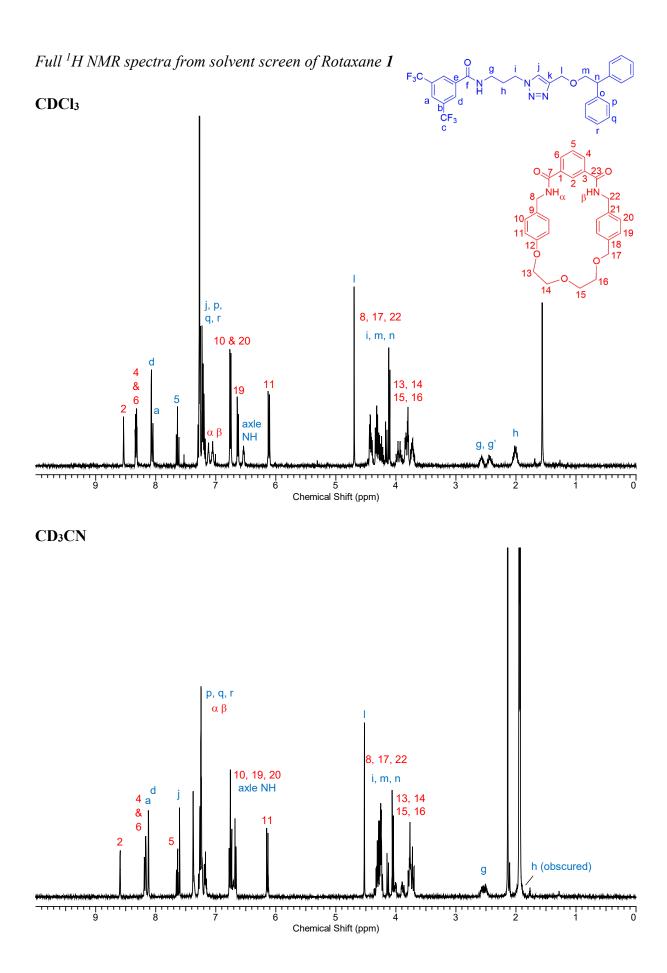
Macrocycle 2 + Benzanilide

¹H NMR in D₆-acetone

(Eq. of benzanilide added: 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 5.0)

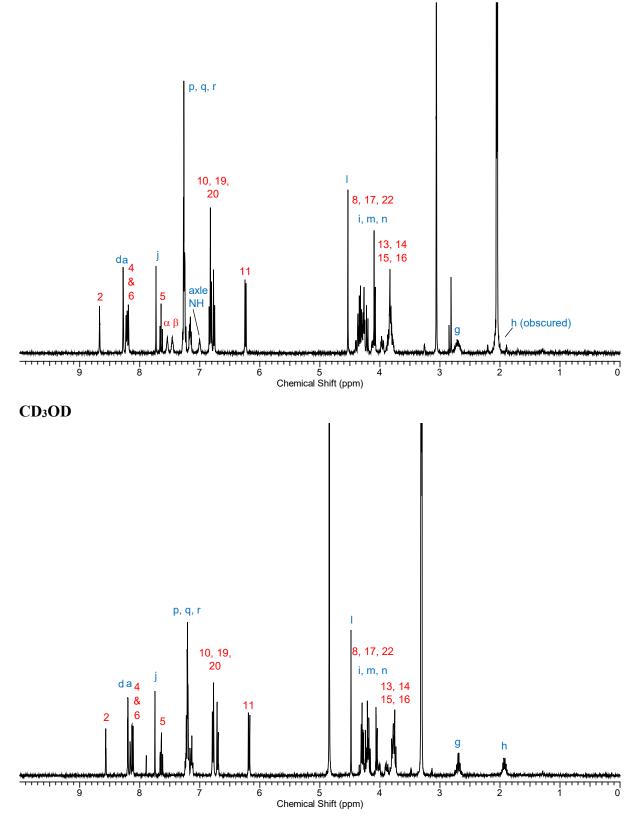


Lack of perturbation of macrocycle resonances indicative of no pseudo-rotaxane formation.

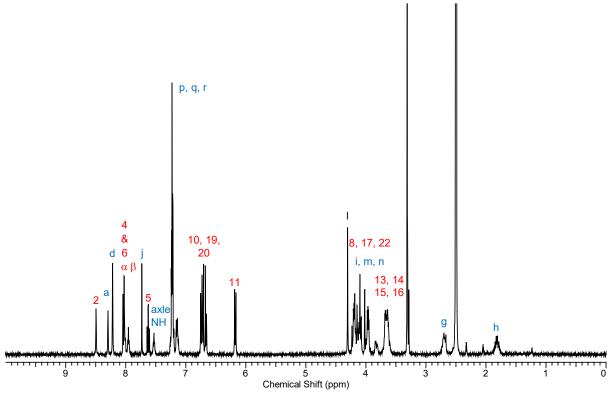

Macrocycle 2 + Benzanilide

¹H NMR in D₆-DMSO

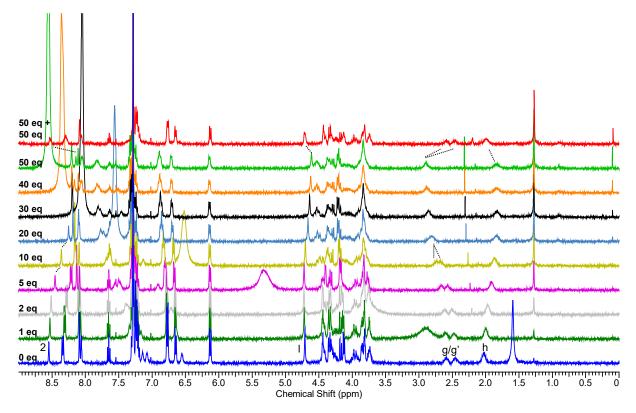
(Eq. of benzanilide added: 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 5.0)

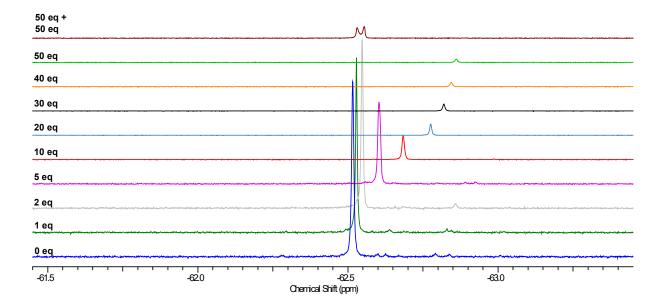


Lack of perturbation of macrocycle resonances indicative of no pseudo-rotaxane formation.



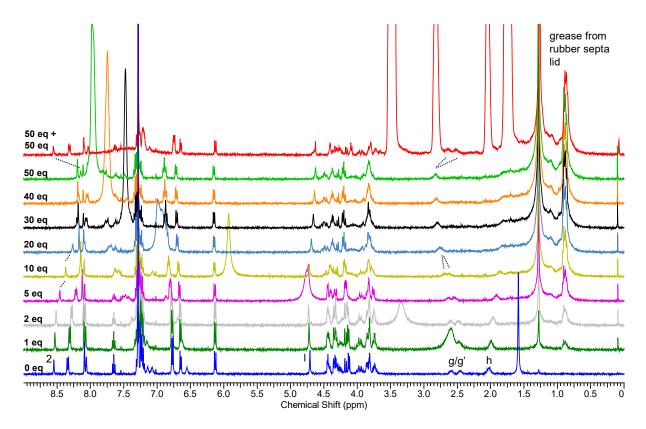
S33



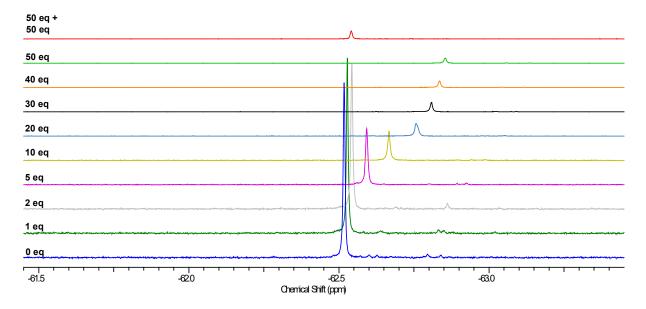

Acid/Base Titrations

Rotaxane 1 + TFA, then D₅-pyridine

¹H NMR (Equivalents of TFA added: 0, 1, 2, 5, 10, 20, 30, 40, 50, 50 + 50 of D₅-pyridine)



¹⁹F NMR (Equivalents of TFA added: 0, 1, 2, 5, 10, 20, 30, 40, 50, 50 + 50 of D₅-pyridine)

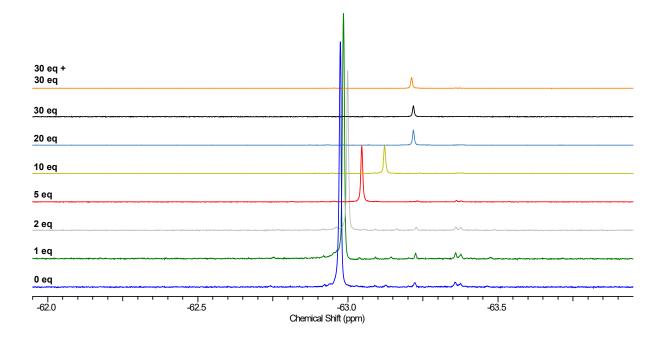


Rotaxane 1 + TFA, then DBU

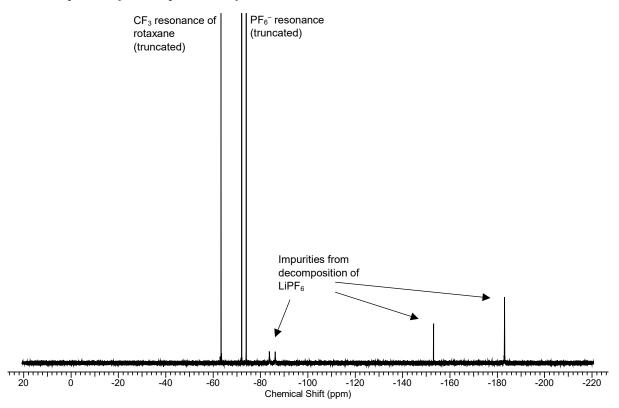
¹H NMR (Equivalents of TFA added: 0, 1, 2, 5, 10, 20, 30, 40, 50, 50 + 50 of DBU)

¹⁹F NMR (Equivalents of TFA added: 0, 1, 2, 5, 10, 20, 30, 40, 50, 50 + 50 of DBU)

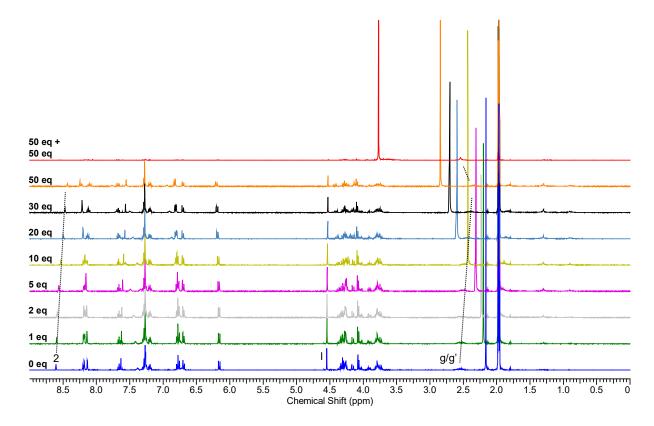
NB: Upfield shift of the CF_3 resonance in the ¹⁹F NMR spectrum was observed during the course of both titrations above. Addition of D_5 -pyridine resulted in a reversal of this shift but a broad peak shape implies an intermediate exchange process is occurring on the NMR timescale. Notably, addition of DBU (in an equivalent titration) results in no such intermediate exchange behaviour in the ¹⁹F NMR spectrum.


Cation Titrations

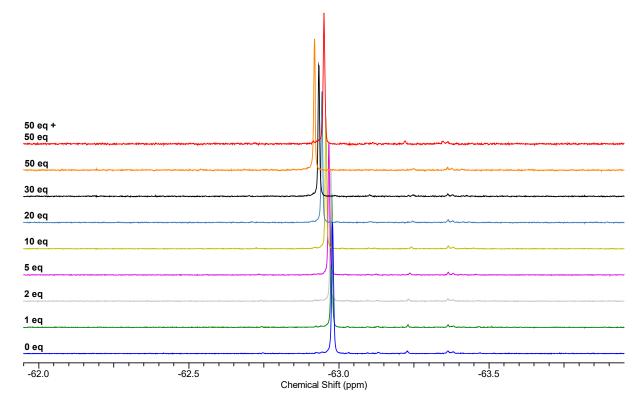
Rotaxane $1 + LiPF_6$


¹H NMR (Equivalents of LiPF₆ added: 0, 1, 2, 5, 10, 20, 30, 30 + 30 of 12-crown-4)

¹⁹F NMR (Equivalents of LiPF₆ added: 0, 1, 2, 5, 10, 20, 30, 30 + 30 of 12-crown-4)

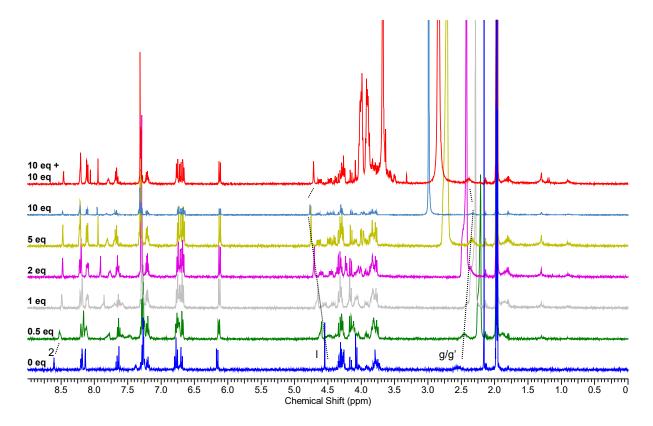


¹⁹F NMR spectrum for 30 equivalents of added LiPF₆:

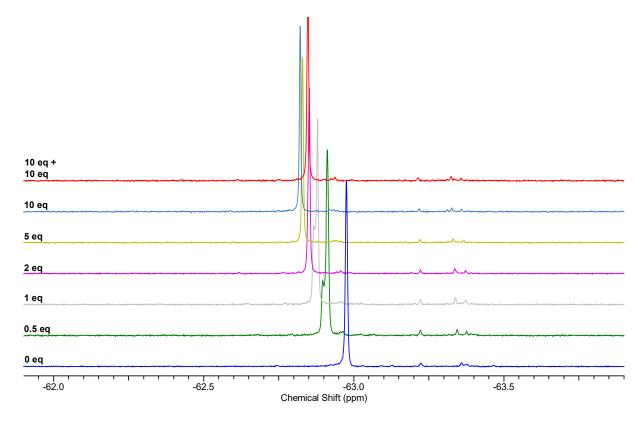


Rotaxane $1 + LiClO_4$

¹H NMR (Equivalents of LiClO₄ added: 0, 1, 2, 5, 10, 20, 30, 50, 50 + 50 of 12-crown-4)

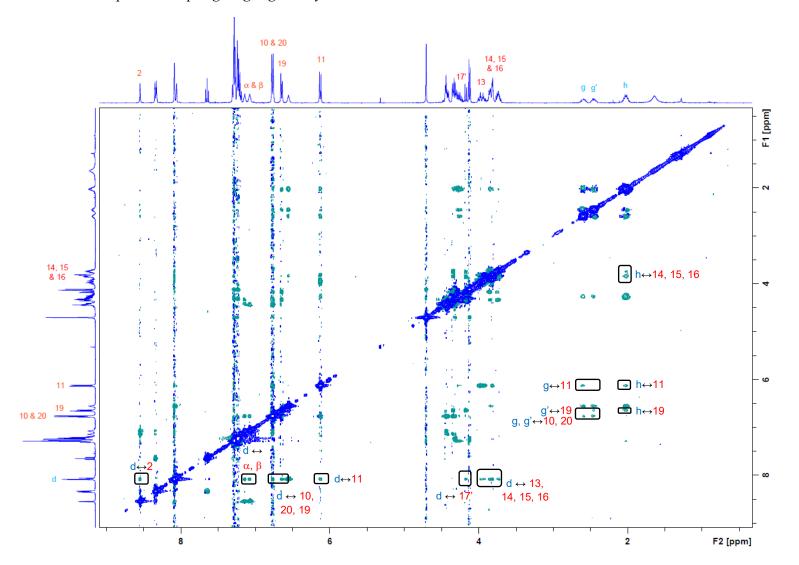


¹⁹F NMR (Equivalents of LiClO₄ added: 0, 1, 2, 5, 10, 20, 30, 50, 50 + 50 of 12-crown-4)

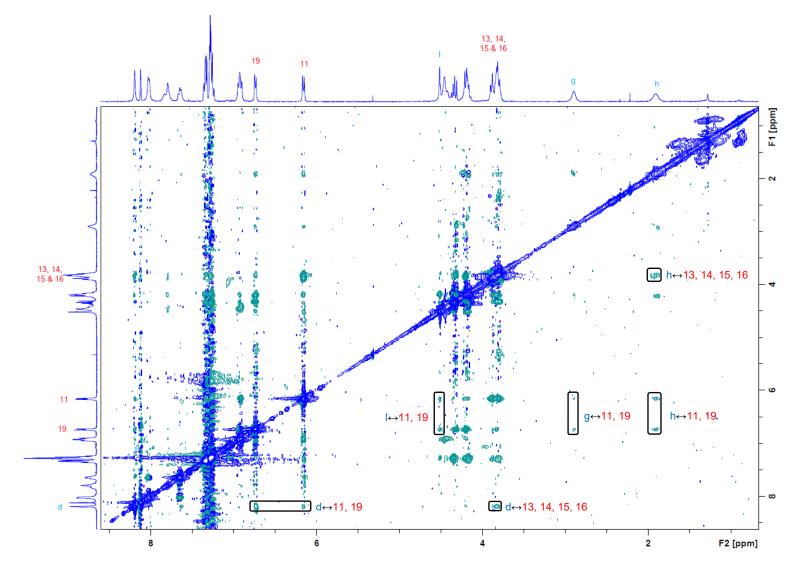


Rotaxane $1 + Zn(ClO_4)_2$

¹H NMR (Equivalents of Zn(ClO₄)₂ added: 0, 0.5, 1, 2, 5, 10, 10 + 10 of 12-crown-4)



¹⁹F NMR (Equivalents of Zn(ClO₄)₂ added: 0, 0.5, 1, 2, 5, 10, 10 + 10 of 12-crown-4)



ROESY Study

Pure Rotaxane **1***–Inter-component couplings highlighted by boxes.*

S42

Rotaxane $1 + \sim 40$ eq of TFA – Inter-component couplings highlighted by boxes.

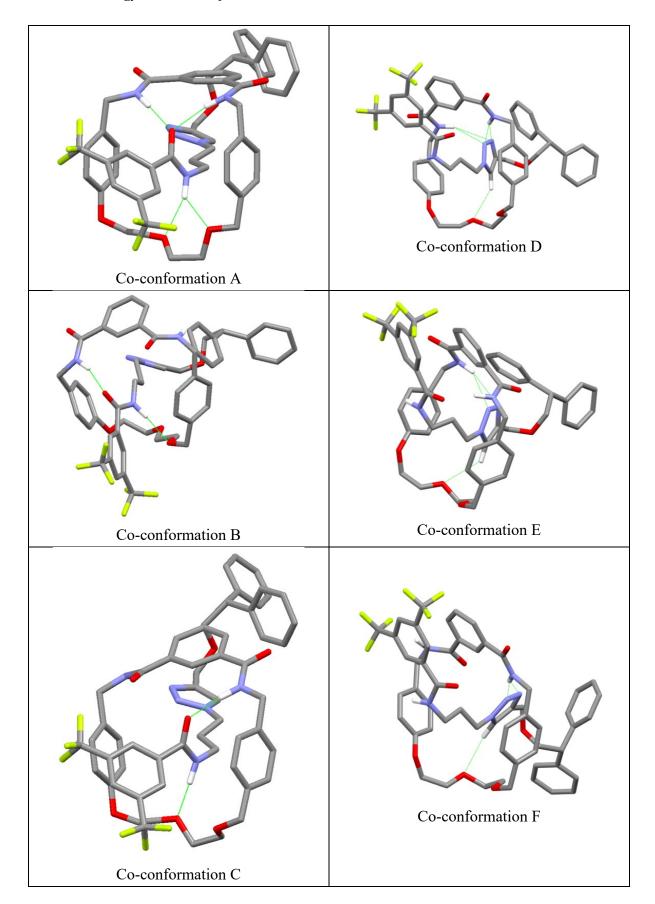
Computational Modelling

The Gaussian 09 program was used to conduct all density functional theory calculations.⁵

For geometry optimisations B3LYP/6-31G* was used,⁶⁻⁹ with solvent effects (chloroform) modelled using the default polarisable continuum model (and default solvent cavity parameters) as defined in Gaussian 09. Dispersion effects were approximated using the D3 approach of Grimme.¹⁰ To obtain reasonable starting structures, structures were pre-optimised using semi-empirical PM6 methods. Several "starting points" were considered for the optimisations, to minimise bias in the final structures.

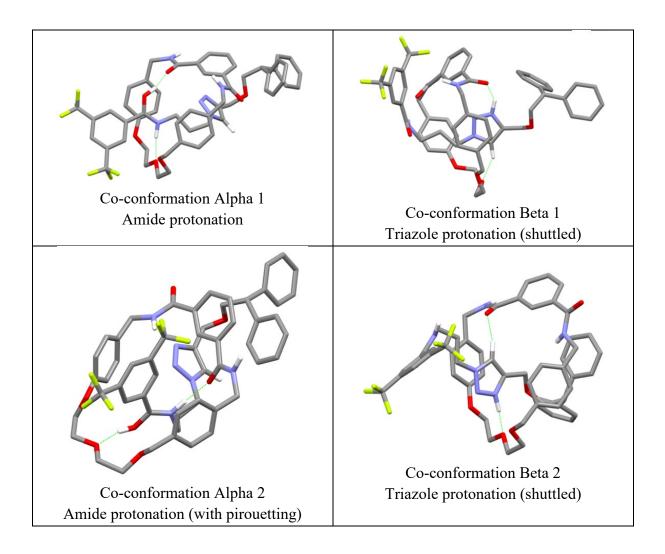
The log output files were converted to .xyz files using Avogadro software, before the figures presented belowed were generated using Mercury 4.00.

Neutral Rotaxane 1


The minimum energy structures for each co-conformation are presented on the next page.

Co-conformation	Station	Isophthalamide	Energy / a.u.
А	Amide	syn-syn	-3620.84475653
В	Amide	syn-anti	-3620.84234338
С	Amide	anti-syn	-3620.84136406
D	Triazole	syn-syn	-3620.83295368
E	Triazole	syn-anti	-3620.83234009
F	Triazole	anti-syn	-3620.83202009

Key conclusions:


* Macrocycle residing at axle amide "station" is energetically favoured over residence at triazole "station".

* For both stations, *syn-syn* conformation of isophthalamide most energetically favoured.

Protonated Rotaxane 1

Plausible Protonated Hydrogen Bond Templated Co-conformations of Rotaxane 1

Please note: These structures are from calculations assuming mono-protonation events. An excess of TFA was added in the experiments. This may lead to (a) to multiple protonation events and/or (b) significant variation in solvent properties.

References

B. E. Fletcher, M. J. G. Peach and N. H. Evans, Org. Biomol. Chem., 2017, 15, 2797-2803.
N. H. Evans, C. E. Gell and M. J. G. Peach, Org. Biomol. Chem., 2016, 14, 7972-7981.
C. Ligeour, L. Dupin, A. Marra, G. Vergoten, A. Meyer, A. Dondroni, E. Souteyrand, J.-J. Vasseur, Y. Chevolot and F. Morvan, Eur. J. Org. Chem., 2014, 7621-7630.
L. M. Hancock, DPhil Thesis, University of Oxford, 2011.

5) Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. 6) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652. 7) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623-11627. 8) A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377. 9) C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 1998, 37, 785-789. 10) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.