(PhC(N*t*Bu)₂Al)₂(SiH₂)₄ Six-Membered Heterocycle: Comparable in Structure to Cyclohexane

Jiancheng Li, Mingdong Zhong, Helena Keil, Hongping Zhu,* Regine Herbst-Irmer, Dietmar Stalke,* Sriman De, Debasis Koley,* Herbert W. Roesky,*

Contents:

- S1. Experimental Section
- S2. X-Ray Crystallographic Analysis of Complexes 1-3
- S3. Computational Details
- S4. References

S1. Experimental Section

All manipulations were carried out under a dry argon or nitrogen atmosphere using Schlenk line and glovebox techniques. Solvents including THF, diethyl ether, toluene and n-hexane were dried by refluxing with sodium/potassium benzophenone under N₂ prior to use. The NMR (¹H, ¹³C, ²⁷Al, ²⁹Si) spectra were recorded on Bruker Avance 300 MHz and/or Bruker Avance 500 MHz spectrometer. Melting points of compounds were measured in a sealed glass tube using the Büchi-540 instrument. Elemental analysis were performed by the Analytisches Labor des Instituts für Anorganische Chemie der Universität Göttingen. IR spectra of solid samples were measured with a Cary 630 FTIR spectrometer with Dial Path Technology and analyzed by FTIR MicroLab software. Commercial reagents were purchased from Aldrich, Acros or Alfa-Aesar Chemical Co. and used as received. LSiMes¹ (L = PhC(N*t*Bu)₂, Mes = 2,4,6-Me₃C₆H₂), LSi-SiL² (L = PhC(N*t*Bu)₂) were prepared according to the literatures.

LAI(SiH₂SiH₂)₂AIL (1): To a solution of LSi-SiL (L=PhC(N*t*Bu)₂) (519 mg, 1 mmol) in toluene (40 mL) at -78 °C, a solution of AlH₃·NEtMe₂ (0.5 M in toluene, 3 mL, 1.5 mmol) was added dropwise under stirring. The mixture was kept at this temperature for one hour and then allowed to warm to -30 °C slowly. Then the solution was placed in a fridge at -26 °C for 2 days. The resulted colorless solution was filterred over a G4 frit. The volume of toluene was reduced to 5 mL and the solution was cooled to -26 °C. After one night, big crystals of L₂AlH were found and collected by filtration. The volatiles of the filtrate were removed under vacuum and the residues were extracted with n-hexane. The volume of n-hexane was reduced to 5 mL and the solution was cooled to -26 °C. After one day, several big colorless crystals of L₂AlH were found. The clear solution was transferred to another clean flask which then was placed in the fridge at -26 °C. After several days, small colorless crystals (1) were found. Yield: 18%. Mp: 210 °C. ¹H NMR (C₆D₆, 298K, 300 MHz, ppm): δ 7.10-6.85 (m, 10H, Ph-*H*), 3.63 (s, 8H, Si*H*₂), 1.11 (s, 36H, C(C*H*₃)₃). ¹³C {¹H} NMR (C₆D₆, 298K, 125 MHz, ppm): δ = 173.5 (PhC(NtBu)₂), 135.0, 130.1, 129.1, 128.9, 127.6, 127.1, 52.3 (NCMe₃), 32.3 (NCMe₃). ²⁹Si INEPT NMR (C₆D₆, 298 K, 99 MHz, ppm) δ = -128.9 (br, *Si*H₂). IR (solid, FTIR): *v* = 2074 cm⁻¹ (Si-H). Anal. Calcd (%) for C₃₀H₅₄N₄Al₂Si₄ (Mr = 636.31): C, 56.56; H, 8.54; N, 8.79. Found: C, 57.71; H, 8.03; N, 8.15. No signal was found for aluminum atom in the ²⁷Al NMR spectrum.

LSi(AIMe₃)-Si(AIMe₃)L(**2**) To a solution of LSi-SiL (L=PhC(N*t*Bu)₂) (519 mg, 1 mmol) in toluene (40 mL) at -78 °C, a solution of AIMe₃ (1 M in hexane, 2 mL, 2 mmol) was added dropwise under stirring. The mixture was kept at this temperature for one hour and then warmed to room temperature. The solution was stirred overnight. After filtration, the solution was concentrated to afford colorless crystalline solid of **3**. Yield: 82%. Mp: 174°C. ¹H NMR (C₆D₆, 298K, 300 MHz, ppm): δ 7.52 (br), 7.07-6.86 (m, 10H, Ph-*H*), 1.21 (s, 36H, C*M*e₃), -0.02 (s, 18H, AI*M*e₃). ¹³C{¹H} NMR (C₆D₆, 298K, 125 MHz, ppm): δ = 162.5 (PhC(N*t*Bu)₂), 132.1, 130.7, 129.9, 128.9, 128.5, 128.3, 128.2, 128.0, 127.8, 54.0 (NCMe₃), 31.3 (NC*M*e₃), -5.8 (AI*M*e₃). ²⁹Si{¹H} NMR (C₆D₆, 298 K, 99 MHz, ppm) δ = +56.9 ppm(br, *Si*AIMe₃). Anal. Calcd (%) for C₃₆H₆₄N₄Al₂Si₂ (M_r = 662.43): C, 65.21; H, 9.73; N, 8.45. Found: C, 65.62; H, 9.68; N, 8.31. No signal was found for aluminum atom in the ²⁷Al NMR spectrum.

[LAIHSiH₂Mes]₂ (**3**): To a solution of LSiMes (L = PhC(N*t*Bu)₂, Mes = 2,4,6-Me₃C₆H₂) (378 mg, 1 mmol) in toluene (40 mL) at -78 °C, a solution of AlH₃·NEtMe₂ (0.5 M in toluene, 2 mL, 1 mmol) was added dropwise under stirring. The mixture was warmed to room temperature slowly and stirred overnight. The resulted colorless solution was filtered over a G4 frit. Then the solvent was removed under vacuum and the remaining was washed with n-hexane (5 mL) to get a white solid. X-ray quality crystals were grown from a solution in toluene at -26 °C. Yield: 76%. Mp: 146 °C. ¹H NMR (C₆D₆, 298K, 300 MHz, ppm): δ 7.15-6.75 (m, 10H, Ph-*H*), 6.88 (s, 10H, C₆H₂) 5.14 (br, 2H, AlH), 4.53 (s, 4H, SiH₂), 2.69 (s, 12H, o-CH₃), 2.17 (s, 6H, p-CH₃), 0.92 (s, 36H, C(CH₃)₃). ¹³C{¹H}

NMR (C₆D₆, 298K, 125 MHz, ppm): δ = 175.0(PhC(N*t*Bu)₂), 144.0, 138.4, 134.9, 130.6, 129.4, 129.0, 128.7, 128.5, 128.3, 128.1, 127.9, 127.5, 51.8 (NCMe₃), 31.8 (NCMe₃), 25.0(*o*-M*e*), 21.2 (*p*-M*e*). ²⁹Si{¹H} NMR (C₆D₆, 298 K, 99 MHz, ppm) δ = -91.7 (m, S*i*H₂Mes). IR (solid, FTIR): *v* = 2095 cm⁻¹ (Si-H), 1645 cm⁻¹ (Al-H). Anal. Calcd (%) for C₄₈H₇₄N₄Al₂Si₂ (Mr = 816.51): C, 70.54; H, 9.13; N, 6.86. Found: C, 70.22; H, 9.27; N, 6.75. No signal was found for aluminum atom in the ²⁷Al NMR spectrum.

-56.88

S2. X-Ray Crystallographic Analysis

The data were collected from shock-cooled crystals at 100(2) K, on a BRUKER D8 three circle diffractometer equipped with an INCOATEC Mo Microsource and Ag Microsource with mirror optics (MoK_a radiation, λ = 0.71073 Å, AgK_a radiation, λ = 0.56086 Å) The data were integrated with SAINT.³ A multi-scan absorption correction was applied using SADABS.⁴ The structures were solved by SHELXT⁵ and refined on *F*² using SHELXL⁶ in the graphical user interface SHELXLE.⁷

Identification code	1	2	3
CCDC number	1875009	1875010	1875008
Empirical formula	$C_{30}H_{54}AI_2N_4Si_4$	C _{39.50} H ₆₈ Al ₂ N ₄ Si ₂	$C_{48}H_{74}Al_2N_4Si_2$
Formula weight	637.09	709.11	817.25
Temperature	100(2) K	100(2) K	100(2) K
Wavelength	0.71073 Å	0.71073 Å	0.56086 Å
Crystal system	Monoclinic	monoclinic	triclinic
Space group	P2₁/c	P2₁/c	P-1
Unit cell dimensions Å/°	a = 13.559(2)	a = 18.949(2)	a = 10.039(2)
	b = 8.253(2)	b = 11.775(2)	b = 10.144(2)
	c = 17.689(3)	c = 20.216(3)	c = 13.835(3)
	□= 90	□= 90	□= 103.40(2)
	□= 103.31(2)	□= 102.27(2)	□= 97.39(2)
	□ = 90	□ = 90	□ = 114.85(3)
Volume Å ³	1926.3(7)	4407.6(11)	1202.2(5)
Z	2	4	1
Density (calculated) Mg/m ³	1.098	1.069	1.129
Absorption coefficient mm ⁻¹	0.224	0.150	0.083
F(000)	688	1548	444
Crystal size mm	0.210 x 0.150 x 0.150	0.260 x 0.170 x 0.100	0.195 x 0.150 x 0.144
Theta range for data collection	1.543 to 26.403°.	1.100 to 26.454°.	1.825 to 20.548°.
Reflections collected	32188	86568	46064
Independent reflections	3950	9064	4929
R _{int}	0.0532	0.0665	0.0469
Data / restraints / parameters	3950 / 335 / 258	9064 / 447 / 544	4929 / 181 / 305
Goodness-of-fit on F ²	1.052	1.017	1.041
R1 [I>2sigma(I)]	0.0410	0.0368	0.0370
wR2(all data)	0.1143	0.0922	0.0955
Largest diff. peak and hole	0.425/-0.266 e.Å ⁻³	0.276/-0.211 e.Å ⁻³	0.313/ -0.335 e.Å ⁻³

Figure S2.1. The asymmetric unit of **1** with anisotropic displacement parameters at 50% probability level. The hydrogen atoms are omitted for clarity. The disordered phenyl ring was refined on two positions. The occupancy of the main positions refined to 0.680(18). For the refinement distance restraints and restraints for the anisotropic displacement parameters were used.⁸

Table S2.1. Bond lengths [Å] and angles [°] for 1.

Si(1)-H(1Y)	1.440(17)	C(1)-C(2A)	1.507(10)
Si(1)-H(1X)	1.445(17)	C(2)-C(3)	1.390(6)
Si(1)-Si(2)	2.3413(9)	C(2)-C(7)	1.391(6)
Si(1)-Al(1)	2.4473(9)	C(3)-C(4)	1.380(6)
Si(2)-H(2X)	1.439(18)	C(4)-C(5)	1.379(6)
Si(2)-H(2Y)	1.448(18)	C(5)-C(6)	1.377(6)
Si(2)-Al(1)#1	2.4545(9)	C(6)-C(7)	1.386(6)
Al(1)-N(1)	1.9100(16)	C(2A)-C(7A)	1.388(11)
Al(1)-N(2)	1.9236(17)	C(2A)-C(3A)	1.393(11)
Al(1)-C(1)	2.3451(19)	C(3A)-C(4A)	1.393(11)
C(15)-C(12)	1.530(3)	C(4A)-C(5A)	1.367(11)
N(1)-C(1)	1.340(2)	C(5A)-C(6A)	1.370(10)
N(1)-C(8)	1.472(2)	C(6A)-C(7A)	1.370(10)
N(2)-C(1)	1.336(2)	C(8)-C(10)	1.526(3)
N(2)-C(12)	1.482(2)	C(8)-C(11)	1.526(3)
C(1)-C(2)	1.493(5)	C(8)-C(9)	1.527(3)

C(12)-C(14)	1.526(3)	N(2)-C(1)-C(2A)	124.5(12)
C(12)-C(13)	1.529(3)	N(1)-C(1)-C(2A)	125.6(13)
		N(2)-C(1)-AI(1)	55.11(9)
H(1Y)-Si(1)-H(1X)	101.3(14)	N(1)-C(1)-AI(1)	54.53(9)
H(1Y)-Si(1)-Si(2)	107.7(10)	C(2)-C(1)-AI(1)	171.5(3)
H(1X)-Si(1)-Si(2)	112.8(10)	C(2A)-C(1)-AI(1)	177.7(6)
H(1Y)-Si(1)-AI(1)	110.5(10)	C(3)-C(2)-C(7)	119.4(4)
H(1X)-Si(1)-AI(1)	116.6(10)	C(3)-C(2)-C(1)	120.5(5)
Si(2)-Si(1)-Al(1)	107.57(3)	C(7)-C(2)-C(1)	120.1(5)
H(2X)-Si(2)-H(2Y)	105.6(16)	C(4)-C(3)-C(2)	119.6(4)
H(2X)-Si(2)-Si(1)	105.4(11)	C(5)-C(4)-C(3)	120.6(4)
H(2Y)-Si(2)-Si(1)	111.3(11)	C(6)-C(5)-C(4)	120.4(4)
H(2X)-Si(2)-AI(1)#1	110.5(11)	C(5)-C(6)-C(7)	119.3(4)
H(2Y)-Si(2)-AI(1)#1	110.7(11)	C(6)-C(7)-C(2)	120.6(5)
Si(1)-Si(2)-Al(1)#1	112.90(3)	C(7A)-C(2A)-C(3A)	119.8(9)
N(1)-Al(1)-N(2)	69.47(7)	C(7A)-C(2A)-C(1)	121.1(9)
N(1)-Al(1)-C(1)	34.86(6)	C(3A)-C(2A)-C(1)	119.0(9)
N(2)-Al(1)-C(1)	34.73(7)	C(4A)-C(3A)-C(2A)	120.0(9)
N(1)-Al(1)-Si(1)	120.62(6)	C(5A)-C(4A)-C(3A)	118.3(8)
N(2)-Al(1)-Si(1)	119.55(6)	C(4A)-C(5A)-C(6A)	122.3(8)
C(1)-Al(1)-Si(1)	129.74(5)	C(7A)-C(6A)-C(5A)	119.6(9)
N(1)-Al(1)-Si(2)#1	112.85(6)	C(6A)-C(7A)-C(2A)	119.7(9)
N(2)-Al(1)-Si(2)#1	111.82(6)	N(1)-C(8)-C(10)	111.30(17)
C(1)-Al(1)-Si(2)#1	115.39(5)	N(1)-C(8)-C(11)	105.49(15)
Si(1)-Al(1)-Si(2)#1	114.84(3)	C(10)-C(8)-C(11)	108.24(19)
C(1)-N(1)-C(8)	130.52(16)	N(1)-C(8)-C(9)	110.69(18)
C(1)-N(1)-AI(1)	90.62(12)	C(10)-C(8)-C(9)	111.7(2)
C(8)-N(1)-AI(1)	138.86(12)	C(11)-C(8)-C(9)	109.13(18)
C(1)-N(2)-C(12)	129.16(16)	N(2)-C(12)-C(14)	112.79(17)
C(1)-N(2)-AI(1)	90.16(11)	N(2)-C(12)-C(13)	109.97(18)
C(12)-N(2)-Al(1)	137.79(12)	C(14)-C(12)-C(13)	111.1(2)
N(2)-C(1)-N(1)	109.40(16)	N(2)-C(12)-C(15)	104.87(16)
N(2)-C(1)-C(2)	125.3(6)	C(14)-C(12)-C(15)	108.44(19)
N(1)-C(1)-C(2)	125.1(6)	C(13)-C(12)-C(15)	109.42(19)

Figure S2.2. The asymmetric unit of **2** with anisotropic displacement parameters at 50% probability level. The hydrogen atoms are omitted for clarity. The disordered toluene on an inversion centre was refined on four positions (two generated by the inversion centre). The occupancy of the main positions refined to 0.381(8). For the disordered group distance restraints and restraints for the anisotropic displacement parameters were used.⁸

Table S2.2. Bond lengths [Å] and angles [°] for 2.

C(1)-N(1)	1.341(2)	AI(2)-C(36)	1.9855(19)
C(1)-N(2)	1.3450(19)	AI(2)-C(35)	1.9858(19)
C(1)-C(2)	1.484(2)	AI(2)-C(34)	1.9932(19)
C(1)-Si(1)	2.3080(16)	AI(2)-Si(2)	2.5799(8)
Al(1)-C(18)	1.984(2)	N(2)-C(8)	1.483(2)
Al(1)-C(17)	1.9898(18)	Si(2)-N(3)	1.8379(14)
Al(1)-C(16)	1.9921(18)	Si(2)-N(4)	1.8407(13)
Al(1)-Si(1)	2.5921(7)	Si(2)-C(19)	2.3085(16)
N(1)-C(12)	1.4857(19)	C(3)-C(4)	1.387(2)
N(1)-Si(1)	1.8451(13)	N(3)-C(19)	1.344(2)
Si(1)-N(2)	1.8401(14)	N(3)-C(30)	1.484(2)
Si(1)-Si(2)	2.3937(7)	C(4)-C(5)	1.381(3)
C(2)-C(7)	1.389(2)	N(4)-C(19)	1.341(2)
C(2)-C(3)	1.392(2)	N(4)-C(26)	1.4858(19)

C(5)-C(6)	1.385(3)	N(2)-C(1)-C(2)	126.52(14)
C(6)-C(7)	1.388(2)	N(1)-C(1)-Si(1)	53.05(8)
C(8)-C(11)	1.526(2)	N(2)-C(1)-Si(1)	52.84(8)
C(8)-C(9)	1.527(2)	C(2)-C(1)-Si(1)	172.50(12)
C(8)-C(10)	1.528(2)	C(18)-Al(1)-C(17)	112.53(8)
C(12)-C(14)	1.525(2)	C(18)-Al(1)-C(16)	115.05(9)
C(12)-C(15)	1.525(2)	C(17)-Al(1)-C(16)	110.93(9)
C(12)-C(13)	1.526(2)	C(18)-Al(1)-Si(1)	107.15(6)
C(19)-C(20)	1.488(2)	C(17)-Al(1)-Si(1)	106.58(6)
C(20)-C(25)	1.389(2)	C(16)-Al(1)-Si(1)	103.78(6)
C(20)-C(21)	1.394(2)	C(1)-N(1)-C(12)	130.69(13)
C(21)-C(22)	1.388(2)	C(1)-N(1)-Si(1)	91.43(9)
C(22)-C(23)	1.378(3)	C(12)-N(1)-Si(1)	137.19(11)
C(23)-C(24)	1.381(3)	N(2)-Si(1)-N(1)	70.89(6)
C(24)-C(25)	1.391(2)	N(2)-Si(1)-C(1)	35.63(5)
C(26)-C(29)	1.519(2)	N(1)-Si(1)-C(1)	35.51(6)
C(26)-C(27)	1.526(2)	N(2)-Si(1)-Si(2)	112.10(5)
C(26)-C(28)	1.530(2)	N(1)-Si(1)-Si(2)	107.50(5)
C(30)-C(32)	1.524(2)	C(1)-Si(1)-Si(2)	117.75(4)
C(30)-C(31)	1.526(2)	N(2)-Si(1)-Al(1)	115.17(5)
C(30)-C(33)	1.528(2)	N(1)-Si(1)-Al(1)	113.89(5)
C(1T)-C(6T)	1.386(9)	C(1)-Si(1)-Al(1)	117.43(4)
C(1T)-C(2T)	1.398(9)	Si(2)-Si(1)-Al(1)	124.58(2)
C(1T)-C(7T)	1.507(8)	C(7)-C(2)-C(3)	119.72(15)
C(2T)-C(3T)	1.395(9)	C(7)-C(2)-C(1)	120.57(15)
C(3T)-C(4T)	1.374(9)	C(3)-C(2)-C(1)	119.68(15)
C(4T)-C(5T)	1.384(9)	C(36)-AI(2)-C(35)	114.30(9)
C(5T)-C(6T)	1.381(8)	C(36)-Al(2)-C(34)	114.31(9)
C(1A)-C(2A)	1.385(13)	C(35)-Al(2)-C(34)	113.03(9)
C(1A)-C(6A)	1.391(13)	C(36)-Al(2)-Si(2)	106.71(6)
C(1A)-C(7A)	1.499(16)	C(35)-Al(2)-Si(2)	106.32(6)
C(2A)-C(3A)	1.388(13)	C(34)-Al(2)-Si(2)	100.64(6)
C(3A)-C(4A)	1.393(14)	C(1)-N(2)-C(8)	130.41(13)
C(4A)-C(5A)	1.382(14)	C(1)-N(2)-Si(1)	91.53(10)
C(5A)-C(6A)	1.374(13)	C(8)-N(2)-Si(1)	134.47(11)
		N(3)-Si(2)-N(4)	70.89(6)
N(1)-C(1)-N(2)	105.43(13)	N(3)-Si(2)-C(19)	35.58(6)
N(1)-C(1)-C(2)	128.02(14)	N(4)-Si(2)-C(19)	35.50(6)

N(3)-Si(2)-Si(1)	112.43(5)	C(25)-C(20)-C(21)	119.57(15)
N(4)-Si(2)-Si(1)	106.70(5)	C(25)-C(20)-C(19)	120.12(15)
C(19)-Si(2)-Si(1)	117.01(4)	C(21)-C(20)-C(19)	120.15(15)
N(3)-Si(2)-Al(2)	113.93(5)	C(22)-C(21)-C(20)	120.07(17)
N(4)-Si(2)-Al(2)	112.17(5)	C(23)-C(22)-C(21)	120.03(18)
C(19)-Si(2)-Al(2)	115.93(4)	C(22)-C(23)-C(24)	120.32(17)
Si(1)-Si(2)-AI(2)	126.65(2)	C(23)-C(24)-C(25)	120.11(17)
C(4)-C(3)-C(2)	119.89(16)	C(20)-C(25)-C(24)	119.88(17)
C(19)-N(3)-C(30)	131.03(13)	N(4)-C(26)-C(29)	104.79(12)
C(19)-N(3)-Si(2)	91.69(10)	N(4)-C(26)-C(27)	110.79(13)
C(30)-N(3)-Si(2)	135.52(11)	C(29)-C(26)-C(27)	110.08(14)
C(5)-C(4)-C(3)	120.39(17)	N(4)-C(26)-C(28)	112.09(13)
C(19)-N(4)-C(26)	131.48(13)	C(29)-C(26)-C(28)	109.29(15)
C(19)-N(4)-Si(2)	91.65(10)	C(27)-C(26)-C(28)	109.68(14)
C(26)-N(4)-Si(2)	136.31(11)	N(3)-C(30)-C(32)	110.50(14)
C(4)-C(5)-C(6)	119.81(16)	N(3)-C(30)-C(31)	105.45(13)
C(5)-C(6)-C(7)	120.30(17)	C(32)-C(30)-C(31)	109.15(14)
C(6)-C(7)-C(2)	119.88(16)	N(3)-C(30)-C(33)	110.60(13)
N(2)-C(8)-C(11)	109.94(13)	C(32)-C(30)-C(33)	111.14(14)
N(2)-C(8)-C(9)	104.56(13)	C(31)-C(30)-C(33)	109.84(15)
C(11)-C(8)-C(9)	109.39(15)	C(6T)-C(1T)-C(2T)	118.7(7)
N(2)-C(8)-C(10)	112.13(14)	C(6T)-C(1T)-C(7T)	121.7(8)
C(11)-C(8)-C(10)	110.77(14)	C(2T)-C(1T)-C(7T)	119.6(9)
C(9)-C(8)-C(10)	109.87(15)	C(3T)-C(2T)-C(1T)	120.3(8)
N(1)-C(12)-C(14)	111.31(14)	C(4T)-C(3T)-C(2T)	120.4(8)
N(1)-C(12)-C(15)	105.03(12)	C(3T)-C(4T)-C(5T)	119.1(8)
C(14)-C(12)-C(15)	109.81(15)	C(6T)-C(5T)-C(4T)	121.3(8)
N(1)-C(12)-C(13)	110.67(13)	C(5T)-C(6T)-C(1T)	120.2(8)
C(14)-C(12)-C(13)	110.50(15)	C(2A)-C(1A)-C(6A)	119.5(15)
C(15)-C(12)-C(13)	109.36(15)	C(2A)-C(1A)-C(7A)	122.9(17)
N(4)-C(19)-N(3)	105.23(13)	C(6A)-C(1A)-C(7A)	117.7(16)
N(4)-C(19)-C(20)	125.90(14)	C(1A)-C(2A)-C(3A)	119.4(16)
N(3)-C(19)-C(20)	128.84(14)	C(2A)-C(3A)-C(4A)	120.8(16)
N(4)-C(19)-Si(2)	52.85(8)	C(5A)-C(4A)-C(3A)	119.3(15)
N(3)-C(19)-Si(2)	52.73(8)	C(6A)-C(5A)-C(4A)	120.0(16)
C(20)-C(19)-Si(2)	173.29(12)	C(5A)-C(6A)-C(1A)	121.0(16)

Figure S2.3. The asymmetric unit of **3** with anisotropic displacement parameters at 50% probability level. The hydrogen atoms are omitted for clarity. The disordered t-butyl group was refined on two positions. The occupancy of the main positions refined to 0.804(3). For the refinement distance restraints and restraints for the anisotropic displacement parameters were used.⁸

C(3)-C(2)	1.385(2)	Al(1)-C(1)	2.3716(17)
C(3)-C(4)	1.387(2)	AI(1)-AI(1)#1	2.7004(12)
C(4)-C(5)	1.377(3)	C(1)-N(2)	1.347(2)
C(7)-C(6)	1.381(2)	N(2)-C(12)	1.482(2)
C(7)-C(2)	1.392(2)	C(12)-C(15A)	1.453(8)
C(6)-C(5)	1.378(2)	C(12)-C(13)	1.508(3)
C(8)-N(1)	1.475(2)	C(12)-C(15)	1.522(3)
C(8)-C(9)	1.525(2)	C(12)-C(14A)	1.526(7)
C(8)-C(11)	1.527(2)	C(12)-C(14)	1.562(3)
C(8)-C(10)	1.529(2)	C(12)-C(13A)	1.617(7)
C(2)-C(1)	1.490(2)	C(17)-C(18)	1.386(2)
Si(1)-H(2Y)	1.414(16)	C(17)-C(16)	1.411(2)
Si(1)-H(2X)	1.425(16)	C(17)-C(23)	1.505(2)
Si(1)-C(16)	1.9025(18)	C(18)-C(19)	1.385(2)
Si(1)-Al(1)	2.4602(8)	C(19)-C(20)	1.391(3)
N(1)-C(1)	1.327(2)	C(19)-C(24)	1.501(2)
N(1)-Al(1)	1.9543(16)	C(20)-C(21)	1.394(3)
AI(1)-H(1)	1.653(16)	C(21)-C(16)	1.405(2)
AI(1)-H(1)#1	1.796(17)	C(21)-C(22)	1.512(3)
AI(1)-N(2)	1.9220(14)		

Table S2.3. Bond lengths [Å] and angles [°] for 3.

C(2)-C(3)-C(4)	119.76(15)	H(1)-Al(1)-Al(1)#1	40.4(6)
C(5)-C(4)-C(3)	120.46(16)	H(1)#1-Al(1)-Al(1)#1	36.6(5)
C(6)-C(7)-C(2)	119.87(15)	N(2)-AI(1)-AI(1)#1	113.57(5)
C(5)-C(6)-C(7)	120.46(16)	N(1)-Al(1)-Al(1)#1	131.70(5)
C(4)-C(5)-C(6)	119.78(16)	C(1)-AI(1)-AI(1)#1	130.92(5)
N(1)-C(8)-C(9)	105.73(12)	Si(1)-Al(1)-Al(1)#1	112.72(3)
N(1)-C(8)-C(11)	112.66(13)	N(1)-C(1)-N(2)	109.58(13)
C(9)-C(8)-C(11)	108.26(13)	N(1)-C(1)-C(2)	126.14(14)
N(1)-C(8)-C(10)	110.38(13)	N(2)-C(1)-C(2)	124.17(14)
C(9)-C(8)-C(10)	109.16(14)	N(1)-C(1)-AI(1)	55.49(8)
C(11)-C(8)-C(10)	110.46(14)	N(2)-C(1)-AI(1)	54.12(8)
C(3)-C(2)-C(7)	119.63(14)	C(2)-C(1)-Al(1)	177.70(11)
C(3)-C(2)-C(1)	122.19(14)	C(1)-N(2)-C(12)	127.50(13)
C(7)-C(2)-C(1)	118.15(13)	C(1)-N(2)-AI(1)	91.29(10)
H(2Y)-Si(1)-H(2X)	102.7(11)	C(12)-N(2)-AI(1)	139.28(10)
H(2Y)-Si(1)-C(16)	107.9(8)	C(15A)-C(12)-N(2)	104.3(4)
H(2X)-Si(1)-C(16)	105.3(8)	N(2)-C(12)-C(13)	109.64(14)
H(2Y)-Si(1)-AI(1)	109.8(8)	N(2)-C(12)-C(15)	107.04(14)
H(2X)-Si(1)-AI(1)	108.4(8)	C(13)-C(12)-C(15)	110.06(16)
C(16)-Si(1)-Al(1)	121.16(5)	C(15A)-C(12)-C(14A)	116.7(5)
C(1)-N(1)-C(8)	129.46(13)	N(2)-C(12)-C(14A)	117.9(3)
C(1)-N(1)-AI(1)	90.49(10)	N(2)-C(12)-C(14)	113.66(14)
C(8)-N(1)-Al(1)	140.05(10)	C(13)-C(12)-C(14)	109.77(16)
H(1)-AI(1)-H(1)#1	77.0(9)	C(15)-C(12)-C(14)	106.57(15)
H(1)-AI(1)-N(2)	123.3(6)	C(15A)-C(12)-C(13A)	109.6(5)
H(1)#1-AI(1)-N(2)	95.5(5)	N(2)-C(12)-C(13A)	105.6(3)
H(1)-AI(1)-N(1)	95.7(6)	C(14A)-C(12)-C(13A)	102.1(5)
H(1)#1-Al(1)-N(1)	155.4(5)	C(18)-C(17)-C(16)	120.55(15)
N(2)-AI(1)-N(1)	68.60(6)	C(18)-C(17)-C(23)	118.62(15)
H(1)-AI(1)-C(1)	113.6(6)	C(16)-C(17)-C(23)	120.82(15)
H(1)#1-AI(1)-C(1)	128.0(5)	C(19)-C(18)-C(17)	122.40(16)
N(2)-AI(1)-C(1)	34.59(6)	C(18)-C(19)-C(20)	117.18(16)
N(1)-AI(1)-C(1)	34.02(5)	C(18)-C(19)-C(24)	120.71(17)
H(1)-AI(1)-Si(1)	118.0(6)	C(20)-C(19)-C(24)	122.11(17)
H(1)#1-AI(1)-Si(1)	98.5(5)	C(19)-C(20)-C(21)	121.90(16)
N(2)-Al(1)-Si(1)	118.66(5)	C(20)-C(21)-C(16)	120.64(16)
N(1)-Al(1)-Si(1)	105.58(5)	C(20)-C(21)-C(22)	117.74(16)
C(1)-Al(1)-Si(1)	116.15(4)	C(16)-C(21)-C(22)	121.59(16)

C(21)-C(16)-C(17)	117.31(15)	C(17)-C(16)-Si(1)	119.54(13)
C(21)-C(16)-Si(1)	123.13(12)		

S3. Computational Details:

All computational calculations were carried out employing a method of density functional theory (DFT) implemented in the Gaussian 09 program package.9 Geometries of all the intermediates and transition states without any symmetry constraints were optimized with the generalized gradient approximation (GGA) by means of Becke exchange functional¹⁰ in addition with the Perdew correlation functional¹¹ (BP86). For basis sets Ahlrich's split valence plus polarization (def2-SVP)¹² had been used for the treatment of all the atoms. Harmonic force constants were computed at the optimized geometries to characterize the stationary points as minima or saddle points. All transition states were located from a linear transit scan in which the reaction coordinate was kept fixed at different distances while all other degrees of freedom were optimized. After the linear transit search the transition states were optimized using Berny algorithm implemented in the Gaussian 09 code.9 IRC (Intrinsic Reaction Coordinate) calculations were carried out to authenticate that the transition state connects the corresponding stationary points. Furthermore, to refine the energies obtained from BP86/def2-SVP calculations, single point calculations were performed using the BP86 functional including the Grimme empirical dispersion correction D3¹³ employing a triple- ζ quality split valence plus polarization (def2-TZVP) basis set¹⁴ on the optimized geometries. The effect of solvation by toluene (dielectric constant ε = 2.37) was assessed by a self-consistent reaction field (SCRF) approach, using the SMD continuum solvation model.¹⁵ The tight wave function convergence criteria and an "ultrafine" (99950) grid was used for all solvent single point calculations. In this present calculations, the four tert-butyl (-tBu) groups and two phenyl (-Ph) groups of LSi-SiL [L = PhC(NtBu)2] were replaced by methyl (-Me) groups and this model substrate is designated as I. All energy values reported in the manuscript are at BP86-D3/def2-TZVP/SMD(Toluene)//BP86/def2-SVP level of theory. Figures were generated using the Chem Draw and CYLview visualization software.16

Figure S3.1 Overall free energy profile diagram for the formation of silicon-aluminum heterocycle 1. All values are in kcal/mol.

Figure S3.2 Optimized geometries of the selected transition states involved in the reaction mechanism. All hydrogen atoms (except AIH_3) are omitted for clarity. Color code: C: grey; N: blue; Si: pink; Al: light blue; H: sky blue. Distances (d) are in Å and angles (a) are in degree (°).

Table S3.1 Cartesian Coordinates

I				Н	3.85531	-2.52430	0.32753
С	-2.80391	0.11776	0.04299	Н	2.18836	-3.16987	0.34227
Ν	-2.27330	-1.09275	-0.20782	С	-2.83349	-2.38443	0.09887
Si	-0.69841	-0.35113	-1.02591	Н	-2.88486	-2.57970	1.19525
Si	0.69807	-0.35157	1.02492	Н	-3.85590	-2.52419	-0.32256
Ν	-1.87009	1.01636	-0.33835	Н	-2.18914	-3.16995	-0.34586
Ν	1.86980	1.01644	0.33863	С	-4.18572	0.42735	0.53968
Ν	2.27333	-1.09252	0.20695	Н	-4.84124	0.78733	-0.28585
С	2.80394	0.11821	-0.04277	н	-4.66073	-0.46841	0.98401
С	4.18605	0.42818	-0.53839	Н	-4.16250	1.22484	1.31114
н	4.84169	0.78548	0.28822	С	-2.04882	2.44349	-0.43668
Н	4.66052	-0.46676	-0.98496	н	-2.82276	2.73862	-1.18475
Н	4.16354	1.22771	-1.30774	н	-2.33253	2.90077	0.53940
С	2.04775	2.44368	0.43670	Н	-1.09445	2.90966	-0.75475
н	2.82192	2.73932	1.18432				
н	2.33065	2.90104	-0.53958	AIH ₃			
Н	1.09329	2.90932	0.75525	AI	-0.00000	-0.00001	0.00002
С	2.83487	-2.38391	-0.09850	н	0.98794	-1.25818	-0.00008
н	2.89134	-2.57796	-1.19484	н	0.59571	1.48470	-0.00008

н	-1.58364	-0.22641	-0.0008	С	2.23997	-0.53254	2.56478	
				н	3.15674	-1.08570	2.86645	
I _A				н	2.35315	0.53000	2.87528	
С	2.80499	-0.36277	0.12697	н	1.39394	-0.96999	3.13013	
N	2.11496	-0.60709	-1.00384	н	1.99780	2.83237	0.74783	
AI	-0.80494	-3.15950	-0.31971	н	1.25068	2.86446	-1.86293	
Si	0.56850	-1.05866	-0.03579	н	-0.08654	4.47539	-0.04310	
Si	-0.56869	1.05906	-0.03562	Н	0.08717	-4.47502	-0.04399	
AI	0.80513	3.15968	-0.31931	Н	-1.25086	-2.86418	-1.86321	
Ν	1.97602	-0.66181	1.14874	Н	-1.99757	-2.83274	0.74766	
Ν	-1.97614	0.66170	1.14881					
N	-2.11505	0.60736	-1.00379	[I _A -I _B]‡				
С	-2.80502	0.36260	0.12697	С	2.94344	-0.38393	-0.10086	
С	-4.18486	-0.19718	0.23871	Ν	2.41765	0.66822	-0.75821	
Н	-4.78501	0.02495	-0.66406	Si	0.74915	-0.19660	-0.92778	
Н	-4.11393	-1.30254	0.34610	Si	-0.79316	0.85768	0.50807	
Н	-4.70777	0.20204	1.12973	AI	-0.51346	1.58435	2.76694	
С	-2.24012	0.53207	2.56481	Ν	1.93699	-1.25914	0.08493	
Н	-3.15776	1.08388	2.86627	Ν	-1.94949	-1.06538	0.26668	
н	-2.35184	-0.53063	2.87533	Ν	-2.39348	0.98701	-0.38353	
Н	-1.39485	0.97079	3.13031	С	-2.79659	-0.31771	-0.41083	
С	-2.51729	0.35505	-2.37179	С	-4.01209	-0.76541	-1.17216	
н	-2.37981	-0.71362	-2.65148	Н	-4.34142	-1.77124	-0.85020	
н	-3.58049	0.63168	-2.53681	Н	-4.85365	-0.05429	-1.05404	
н	-1.90197	0.97817	-3.05048	Н	-3.75910	-0.81949	-2.25352	
С	2.51738	-0.35476	-2.37179	С	-2.06731	-2.49073	0.46717	
Н	2.37983	0.71390	-2.65150	Н	-3.11947	-2.82423	0.62546	
Н	3.58064	-0.63126	-2.53663	Н	-1.65477	-3.06607	-0.39411	
н	1.90224	-0.97795	-3.05058	Н	-1.49482	-2.78524	1.37216	
С	4.18503	0.19651	0.23884	С	-2.99453	2.06407	-1.14658	
н	4.78529	-0.02615	-0.66373	н	-3.00133	1.85450	-2.23972	
н	4.11454	1.30193	0.34586	н	-4.03895	2.27353	-0.82257	
Н	4.70757	-0.20266	1.13009	н	-2.40387	2.98589	-0.98195	

С	3.10629	1.82554	-1.28126	Н	3.63783	2.04568	1.17274
Н	3.56901	1.63129	-2.27549	С	4.23278	-1.60126	0.77974
Н	2.38405	2.65741	-1.40147	н	5.19664	-1.37426	0.27244
н	3.90304	2.17257	-0.58865	Н	4.32098	-1.31387	1.85126
С	4.38176	-0.54885	0.28454	Н	4.10400	-2.70190	0.75098
н	4.51957	-1.38238	0.99791	С	1.88733	2.37789	-0.81972
н	5.00419	-0.74967	-0.61384	Н	1.78497	2.91356	0.14932
Н	4.76497	0.37966	0.75453	Н	2.77897	2.77092	-1.35437
С	1.96027	-2.57073	0.68789	н	0.99648	2.63217	-1.42366
Н	2.99801	-2.94053	0.82265	С	-3.71574	0.07446	-1.92443
Н	1.46141	-2.57280	1.68264	н	-4.04487	-0.88310	-2.38349
Н	1.42594	-3.29294	0.03594	н	-4.62198	0.63763	-1.60441
н	0.99423	1.82593	3.27682	н	-3.21513	0.66799	-2.71430
н	-0.41409	2.40290	0.35004	С	-4.00781	-2.04104	0.33018
н	-1.71616	2.19229	3.64446	н	-3.86216	-2.66577	1.23035
AI	0.05394	-1.31918	-3.09758	н	-5.00186	-1.55013	0.39865
Н	-1.28040	-0.51434	-3.56397	н	-4.02614	-2.70710	-0.55750
н	1.35148	-1.20879	-4.06319	С	-1.55926	-1.42232	2.27411
Н	-0.24487	-2.80748	-2.49260	Н	-2.42193	-1.95863	2.72194
				Н	-0.73987	-2.15304	2.09162
I _B				Н	-1.20400	-0.68053	3.01771
С	-2.92581	-1.01465	0.19182	Н	1.06946	-2.99939	0.69002
Ν	-2.78842	-0.14910	-0.83734	Н	0.28993	0.35816	-2.62503
Si	-1.34799	0.71944	0.01231	Н	2.36130	-3.12972	-1.73180
Si	0.51959	-0.14279	-1.21128	AI	-1.59530	3.00418	1.08223
AI	1.69979	-2.21641	-0.57998	Н	-1.41822	4.00818	-0.18202
Ν	-1.93537	-0.73806	1.05638	Н	-3.04568	2.97073	1.80372
Ν	3.08372	-0.97735	0.11903	Н	-0.29547	2.92566	2.06569
Ν	1.94661	0.92081	-0.64836				
С	3.00688	0.35009	-0.01620	[I _B -I _C] [‡]			
С	4.08333	1.26876	0.51889	Si	-1.31932	1.09390	-2.12150
Н	4.85016	0.72592	1.09581	AI	-2.11443	2.65003	-3.76290
н	4.58974	1.80108	-0.31344	Ν	-1.83804	1.29212	-0.36406

н	-1.96656	2.26089	-5.31921	н	5.07461	-0.03350	-2.39430
Н	-3.07670	3.88779	-3.39559	н	4.39443	-0.23279	-4.03954
С	-0.72240	1.85090	0.18701	Н	4.14431	1.29432	-3.15836
С	-3.02755	0.88683	0.35499	Н	-0.39902	-1.44064	-3.74068
N	0.18205	2.05318	-0.74725				
С	-0.60701	2.12450	1.66135	Ic			
Н	-2.80722	0.15233	1.16244	Si	-0.85799	0.35177	-0.68266
Н	-3.56545	1.75014	0.81004	AI	-2.58892	2.07540	-0.33116
Н	-3.72129	0.40158	-0.35894	Ν	-3.76857	0.52440	0.08091
С	1.49883	2.59677	-0.54563	Ν	-2.09451	-1.03040	-0.43118
Н	0.23292	2.81052	1.88121	С	-3.37179	-0.74192	-0.06026
Н	-1.54129	2.56175	2.06682	С	-4.31363	-1.90335	0.17555
н	-0.41703	1.17123	2.20000	н	-5.31271	-1.57383	0.50535
Н	2.25376	1.79736	-0.35670	н	-4.43476	-2.49829	-0.75349
н	1.82288	3.14644	-1.45564	н	-3.90227	-2.59041	0.94319
н	1.55948	3.31467	0.30630	С	-5.13774	0.84483	0.49050
н	-2.67897	0.40267	-2.57670	н	-5.90111	0.48333	-0.23437
Si	0.11897	-0.73242	-2.50528	н	-5.38905	0.44446	1.49782
AI	1.21128	-1.85034	-0.59705	н	-5.24146	1.94684	0.54738
Ν	1.76087	-0.07883	-3.13437	С	-1.68695	-2.42268	-0.64619
Ν	2.89036	-1.07885	-1.34374	н	-1.79057	-3.04303	0.27141
Н	0.97404	-1.15159	0.84562	н	-2.27116	-2.90888	-1.45854
Н	1.38186	-3.45474	-0.59108	н	-0.62054	-2.44645	-0.94082
С	2.91156	-0.34999	-2.46228	н	-2.43249	2.94722	1.02011
С	1.80262	0.69214	-4.37817	н	-0.26399	-0.00432	-2.03278
С	4.12631	-1.39484	-0.62514	н	-3.21181	2.83244	-1.61461
С	4.20477	0.19401	-3.03255	Si	0.88140	-0.14283	0.87908
Н	2.19488	1.72270	-4.22752	AI	2.44072	-2.03039	0.57522
Н	2.41999	0.19991	-5.16214	Ν	2.20021	1.09965	0.40380
Н	0.77361	0.78604	-4.77385	Ν	3.68622	-0.63465	-0.10666
Н	4.84824	-1.97558	-1.24179	Н	3.12854	-2.71159	1.86698
Н	4.64405	-0.48887	-0.23709	Н	2.08802	-3.01366	-0.65967
н	3.87426	-2.02311	0.25245	С	3.40395	0.66915	-0.06174

С	1.91752	2.53453	0.50449	Н	4.90142	2.21482	0.67283	
С	4.98077	-1.10927	-0.60035	н	0.44625	0.42839	2.00754	
С	4.39885	1.71665	-0.51369	Si	-0.92265	0.83553	-0.75966	
н	2.64993	3.06240	1.15390	AI	-2.44349	2.00204	0.56633	
н	1.90975	3.03904	-0.48761	Ν	-4.07935	1.80314	-0.33364	
Н	0.91577	2.67059	0.95447	Ν	-2.87633	0.65426	-1.94786	
н	5.15903	-0.83902	-1.66501	С	-4.04004	1.10306	-1.51760	
н	5.83674	-0.73884	0.00694	С	-5.34623	0.87561	-2.25434	
н	4.99742	-2.21601	-0.54291	н	-6.06421	0.32680	-1.60933	
н	5.30911	1.27138	-0.94832	н	-5.82649	1.84126	-2.51762	
н	3.94334	2.38675	-1.27076	н	-5.20691	0.29420	-3.18142	
Н	4.70287	2.35746	0.34047	С	-5.35247	2.29277	0.18985	
н	0.42088	0.39141	2.22029	н	-5.84730	3.02261	-0.49031	
				н	-6.08056	1.47426	0.38997	
[l _c -l _D]‡				н	-5.17293	2.81038	1.15336	
Si	0.87377	0.03550	0.59796	С	-2.75349	-0.04279	-3.21456	
AI	2.25886	-1.96713	0.19338	н	-3.17426	-1.07421	-3.18319	
Ν	2.35340	1.16754	0.32047	Н	-3.22484	0.49985	-4.06459	
Ν	3.73245	-0.66633	-0.14329	н	-1.67167	-0.13983	-3.45055	
н	2.71029	-2.88139	1.44819	Н	-1.93672	0.07446	0.26987	
н	2.00516	-2.74719	-1.20076	Н	-0.41692	0.65519	-2.18211	
С	3.56591	0.65102	-0.01914	Н	-2.58483	2.56956	2.05300	
С	2.20170	2.61073	0.50511					
С	5.02908	-1.23274	-0.51609	Ι _D				
С	4.70736	1.62145	-0.24468	AI	2.68018	-1.12262	0.83451	
н	2.80046	2.99499	1.36162	Ν	2.96230	0.81797	0.75700	
н	2.48482	3.19172	-0.40066	Ν	3.98225	-0.65132	-0.55003	
н	1.13659	2.82901	0.71309	С	3.81277	0.65733	-0.27138	
н	5.37090	-0.90229	-1.52273	Si	0.45828	-1.72282	-0.07950	
н	5.83053	-1.00142	0.22132	С	4.47643	1.76557	-1.04435	
н	4.93470	-2.33636	-0.55450	н	4.05068	1.81792	-2.06919	
н	5.64275	1.11070	-0.52752	н	4.33430	2.75015	-0.56242	
н	4.45214	2.34533	-1.04601	н	5.56320	1.57128	-1.15118	

С	4.83098	-1.15452	-1.60495	AI	2.67406	-0.68317	0.74396	
н	4.54039	-0.77886	-2.61424	Ν	3.42665	1.09716	0.35248	
н	5.90667	-0.90023	-1.45266	Ν	4.24199	-0.80230	-0.44121	
н	4.76166	-2.25977	-1.63645	С	4.36536	0.53776	-0.43093	
С	2.49745	2.08638	1.27625	Si	0.47856	-1.06378	-0.31312	
н	3.32282	2.82178	1.40970	С	5.41307	1.28380	-1.21591	
Н	1.71942	2.55692	0.63092	н	5.27324	1.10935	-2.30390	
Н	2.04289	1.92791	2.27460	н	5.37818	2.37264	-1.02830	
Н	0.35556	-1.35481	-1.54695	н	6.42654	0.91237	-0.95686	
Н	0.16220	-3.21117	-0.02434	С	5.08569	-1.68807	-1.20808	
Н	3.25514	-1.88176	2.12642	н	5.03519	-1.49588	-2.30611	
Si	-1.26794	-0.51307	1.00284	н	6.15961	-1.62787	-0.91058	
Al	-1.69508	1.86664	0.52881	н	4.76211	-2.73524	-1.04659	
Ν	-2.89619	-1.01848	0.21830	С	3.26605	2.51558	0.57577	
Ν	-3.33708	1.20216	-0.37831	н	4.13007	2.97157	1.11468	
Н	-2.16125	2.83025	1.73917	н	3.11408	3.09195	-0.36662	
Н	-0.76135	2.55281	-0.60095	н	2.36855	2.68409	1.20314	
С	-3.68101	-0.08797	-0.38761	н	0.45942	-0.48715	-1.72062	
С	-3.29989	-2.42530	0.23179	н	0.22852	-2.55353	-0.48248	
С	-4.17846	2.21173	-1.02350	н	2.95042	-1.19882	2.24406	
С	-4.94743	-0.56938	-1.06410	Si	-1.41238	-0.15258	0.84023	
Н	-4.27498	-2.57885	0.74496	AI	-2.67028	1.16291	-0.60069	
Н	-3.37373	-2.85858	-0.79042	Ν	-3.57692	2.33410	0.56281	
Н	-2.53583	-3.00812	0.77992	Ν	-2.51384	1.19991	2.28302	
Н	-4.27095	2.05715	-2.12198	С	-3.33327	2.16538	1.90309	
Н	-5.20116	2.26499	-0.58749	С	-4.01301	3.10992	2.87656	
Н	-3.71271	3.20673	-0.87677	н	-3.75301	4.16333	2.64126	
Н	-5.48963	0.24634	-1.57033	н	-5.11780	3.02910	2.80028	
Н	-4.71247	-1.35001	-1.81629	Н	-3.72402	2.91242	3.92267	
Н	-5.63255	-1.03317	-0.32416	С	-4.45918	3.40323	0.10353	
Н	-1.40329	-1.11414	2.38880	н	-5.49995	3.30013	0.48644	
				н	-4.09640	4.41662	0.39028	
[I _D -C]‡				Н	-4.51216	3.37891	-1.00338	

С	-2.26816	0.92783	3.68729	С	5.45199	1.94667	0.09793
Н	-1.61696	1.69348	4.16919	н	5.30739	2.44190	-0.88541
Н	-3.19959	0.83492	4.28950	н	5.26509	2.68768	0.89656
Н	-1.73747	-0.04622	3.75957	н	6.51635	1.63464	0.14885
Н	-0.98081	1.37796	0.37195	С	5.49104	-0.39669	-1.75730
Н	-1.43952	-1.00329	2.10238	н	5.31590	0.39612	-2.52297
Н	-2.73215	1.59689	-2.13594	н	6.56437	-0.33729	-1.45892
				н	5.34788	-1.37257	-2.26176
с				С	3.28999	1.49151	2.21515
Al	3.11870	-1.16387	0.34525	н	4.11386	1.59181	2.96044
Ν	3.60395	0.56356	1.15214	Н	3.04486	2.51305	1.84243
Ν	4.59149	-0.30098	-0.63158	н	2.39917	1.12599	2.76276
С	4.55086	0.74509	0.21519	Н	-3.55181	-2.45721	-1.19583
Si	-0.91475	-1.10940	0.75721	Н	0.74370	0.12133	-1.63536
Н	-0.70489	-2.28301	1.69407	Н	0.70390	-2.27787	-1.69934
Н	-0.74476	0.11638	1.63735	н	3.55207	-2.45973	1.18959
Si	0.91372	-1.10710	-0.75891				
Al	-3.11922	-1.16332	-0.34811	L₂AIH			
Ν	-4.59226	-0.30240	0.62995	Ν	-1.80290	0.89934	0.38628
Ν	-3.60338	0.56638	-1.15096	Ν	-1.24861	-1.17068	-0.14578
С	-4.55051	0.74601	-0.21389	С	-2.23282	-0.24569	-0.14287
С	-5.45062	1.94802	-0.09331	С	-3.62346	-0.52163	-0.66028
Н	-6.51525	1.63689	-0.14370	н	-4.08363	-1.36469	-0.10282
Н	-5.30457	2.44109	0.89092	н	-4.28436	0.36073	-0.57400
Н	-5.26398	2.69057	-0.89057	н	-3.58324	-0.82690	-1.72720
С	-5.49220	-0.40054	1.75513	С	-1.37841	-2.49238	-0.70687
Н	-5.31810	0.39133	2.52201	н	-2.11896	-3.13248	-0.16762
Н	-6.56547	-0.34162	1.45637	н	-1.67804	-2.48471	-1.78286
Н	-5.34841	-1.37703	2.25822	н	-0.39902	-3.00771	-0.64842
С	-3.28791	1.49742	-2.21082	С	-2.63901	2.04549	0.65075
Н	-4.11154	1.60143	-2.95588	н	-2.99529	2.55318	-0.27842
Н	-3.04133	2.51736	-1.83467	н	-3.54224	1.80865	1.26314
н	-2.39757	1.13243	-2.75955	н	-2.05663	2.79590	1.22315

AI	0.00278	-0.00250	0.81162	Si	0.92299	0.68782	2.08167	
Ν	1.80151	-0.89984	0.36281	Н	0.35569	2.09430	2.13842	
Ν	1.24044	1.17046	-0.16203	н	1.71731	0.52688	3.36256	
С	2.22641	0.24892	-0.16614	AI	-2.24402	-0.43572	-0.00068	
С	2.66937	-2.01617	0.64872	Ν	-4.13617	-0.95498	-0.00056	
С	1.33928	2.49486	-0.72498	Ν	-3.41929	1.13946	0.00039	
С	3.63318	0.49778	-0.65277	С	-4.50130	0.34243	0.00022	
Н	2.07261	-2.84730	1.07598	С	-5.93423	0.80455	0.00058	
Н	3.18187	-2.41663	-0.25974	н	-6.46516	0.41106	-0.89168	
Н	2.06339	3.15378	-0.18742	н	-6.46500	0.41057	0.89273	
н	1.63041	2.49441	-1.80293	Н	-6.01574	1.90689	0.00091	
н	0.34708	2.98484	-0.66229	С	-5.06827	-2.05876	-0.00078	
Н	4.30427	0.68947	0.21253	Н	-5.72872	-2.06657	0.89820	
Н	4.03215	-0.38916	-1.18490	н	-5.72978	-2.06534	-0.89901	
Н	3.69007	1.37400	-1.32608	н	-4.50827	-3.01446	-0.00176	
Н	0.01473	0.00382	2.42326	С	-3.44333	2.58555	0.00118	
Н	3.46825	-1.77860	1.39324	н	-3.94578	3.01021	-0.89865	
				н	-3.94375	3.00918	0.90263	
1				н	-2.40266	2.96414	0.00023	
Si	0.92340	0.68952	-2.08057	С	5.96332	-0.70447	-0.00045	
Н	0.35645	2.09619	-2.13632	Н	6.17164	-1.33449	-0.89071	
Н	1.71836	0.52971	-3.36121	Н	6.66198	0.15205	-0.00375	
Si	-0.94489	-0.77076	-2.07910	Н	6.17355	-1.32884	0.89339	
Н	-0.38323	-2.17947	-2.12383	С	3.61155	-2.55649	-0.00078	
Н	-1.73465	-0.61399	-3.36324	Н	4.14648	-2.94050	-0.90103	
Al	2.22764	0.39125	0.00064	Н	4.15062	-2.94117	0.89668	
Ν	4.09231	1.01118	0.00028	Н	2.60404	-3.01602	0.00134	
Ν	3.48285	-1.11713	0.00006	С	4.94299	2.18011	0.00057	
С	4.52352	-0.26381	-0.00009	Н	5.59517	2.24167	0.90274	
Si	-0.94512	-0.77278	2.07771	Н	5.60024	2.23842	-0.89809	
Н	-0.38332	-2.18149	2.12120	н	4.31005	3.08929	-0.00288	
н	-1.73545	-0.61765	3.36171					

S4. References

- 2
- J. A. Cabeza, P. García-Álvarez and L. González-Álvarez, *Chem. Commun.*, 2017, **53**, 10275–10278. S. S. Sen, A. Jana, H. W. Roesky and C. Schulzke, *Angew. Chem., Int. Ed.*, 2009, **48**, 8536–8538. Bruker AXS Inc., in *Bruker Apex CCD, SAINT v8.30C* (Ed.: Bruker AXS Inst. Inc.), WI, USA, Madison, 2013. L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, *J. Appl. Crystallogr.*, 2015, **48**, 3-10. 3
- 4
- G. M. Sheldrick, Acta Crystallogr., 2015, A71, 3-8. 5
- 6 G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3-8.
- 8
- G. M. Sneidrick, Acta Crystallogr., 2015, C71, 3-8.
 C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Crystallogr., 2011, 44, 1281-1284.
 A. Thorn, B. Dittrich and G. M. Sheldrick, Acta Crystallogr., 2012, A68, 448-451.
 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, M. Cossi, M. Cossi, M. Mattine, M. Miller, M. Kitara, K. Cover, A. Charte, M. Katarover, A. M. Avetin, P. Correction, Comparison of the approximation of the approximat 9 D. Rega, J. M. Milam, M. Klene, J. E. Knox, J. B. Kross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098–3100.
 (a) J. P. Perdew, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1986, **33**, 8822–8824; (b) J. P. Perdew, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1986, **34**, 7406-7406
- 12 A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571–2577.
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
 A. Schafer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829–5835.
- 15 A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396
- 16 C. Y. Legault, CYLview, 1.0 b, Universit e de Sherbrooke, Quebec (Canada), 2009, http://www.cylview.org .