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Materials and Methods

UV-vis and fluorescence measurements. All UV-vis absorbances (A) were measured on a Cary
300-Bio UV-Vis spectrophotometer using 10 mm light path quartz glass cells with a baseline correction.
Samples were prepared in methanol or an appropriate solvent mentioned with the concentration of
coumarin 466 (3) at 5 uM and probe 1 and probe 2 at 5 uM in methanol and probe 2 at 20 uM in
isopropanol, water and dioxane. The molar extinction coefficients (¢) were calculated by using Beer-
Lambert’s law (A = &cl) from five different solutions of known concentration. To obtain good solubility
of the probes, the 4 mM stock solutions were prepared in spectroscopic grade DMSO, prior to dilution
with other solvents for spectrophotometric measurements wherein the concentration of DMSO was
assumed to be negligible.

The relative fluorescence quantum yield (®y) for all chromophores were calculated using UV—vis
absorbances (A) in methanol except for fluorescence standards, quinine bisulfite (QBS, @y = 0.46)
fluorescein (®sw = 0.91) which are measured in 0.5 M H2SO4 and 0.1 M NaOH, respectively. Integrated
fluorescence intensities (FI) were measured by exciting at the wavelengths of maximum absorption for
each sample and the fluorescence quantum yields were determined by using the following equation. The
differences in solvents is accounted by including the ratio of refractive indices (1) as shown in the
equation.

2
®, = O < Astd )(Flprobe) ( n probe)
n otd Aprobe Flstd lestd

All fluorescence measurements to study the effect of solvent polarity and viscosity in appropriate
solvents and biopolymer binding in 50 mM sodium phosphate (Na*) buffer, pH = 7.1 were performed on
the Edinburgh Instrument Spectrofluorometer FS5 at 1 uM concentration. Both excitation and emission
spectra were measured in quartz cells (108.002F-QS) with a path length of 10 mm at 25 °C and both
excitation and emission slit widths were kept constant at 3 nm. The fluorescence emissions were
measured by exciting at 352 nm, unless otherwise mentioned to observe the dual-fluorescence emission

spectrum. For biopolymer binding, up to 2 equivalents of desired biopolymers were directly added to



the dye solution in Na" buffer and the fluorescence spectra were immediately recorded after manual
mixing of the samples. The fluorescence titrations with BnBtC probe (1 uM) in Na* buffer were carried
out with systematic addition of desired biopolymer (either PS2.M or BSA) from a stock solution in

water until a final concentration of 4 equiv. was reached.

Table S1. Photophysical parameters of 1 and 2 in MeOH.

Aabs max € AFmax” Brightness
a ' ’ d e
Probe (nm) (M_l, cm‘l) (nm) Dr (B)° Brel Berobe
341 8950 0.0165 147.68
MeBtC (1 447 .01
eBtC (1) 545 73950 , 639 0.1073¢ 7934.84 0.0186 1.8925
351 7150 0.0356f 254.54 '
BnBtC (2 446, 651 0.0352
@) 561 61150 0.1183¢ 7234.05

aMeasured in MeOH, ®(Azx = 352 nm), °Brightness (B = e®g), Bre = B3s0/Bsso, ©Bprove
Brei Bnsic/Breimesic, fobtained by comparative method using quinine bisulfate in 0.5 M H»SO4 standard
(Dsia = 0.46, Aex = ~350 nm), Jobtained by comparative method using fluorescein in 0.1 M NaOH
standard (@ s = 0.91, Agx=~550 nm),
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Figure S1. (a) Structure of Comarin-466 dye (3). (b) Structure of BnBtC probe (2). Absorption spectra

of (¢) 3 (5 uM) and (d) 2 (20 uM); and fluorescence emission spectra (Aex

352 nm) of (e) 3 (1 uM)

and (d) 2 (1 uM) in water (solid green traces), isopropanol (dotted red traces) and 1,4-dioxane (dashed

blue traces).



Synthetic Materials and Description. Synthesis of MeBtC probe (1) was performed using reported

5152 and the purity of the final product 1 was confirmed by comparing it’s '"H NMR spectrum

procedure
to the published reports. Although the synthesis and characterization of the N-benzyl BnBtC probe (2)
has been reported previously (called BOB in previous report),5 the spectral and NMR chemical shifts in
support of dye structure were not accurate. Specifically, dye 2 does not exhibit an absorption band at
426 nm in MeOH and its '*C NMR spectrum is not limited to 12 peaks with a signal at & 195.60 ppm,
and its spectrum should not contain a signal at 63.03 ppm (See Supporting Information for ref. S3; list
of peaks for BOB in experimental section and attached '*C NMR spectrum). Therefore, BnBtC (2) was
rigorously characterized by 'H, '3C and HSQC NMR that were recorded on 300 or 400 MHz
spectrometers in DMSO-de. Further details are as described below.

MeBtC (1). 'H NMR (DMSO-ds, 400 MHz): 6 (ppm) 1.18 (t, J = 7 Hz, 6H), 2.29 (s, 3H), 3.55 (q, J =
7 Hz, 4H), 4.23 (s, 3H), 6.70 (d, /=2 Hz, 1H), 6.89 (dd, /=9 & 2 Hz, 1H), 7.11 (d, J = 8 Hz, 2H), 7.48
(d, J=8 Hz, 2H), 7.59 (d, J =9 Hz, 1H), 7.75 (t, /= 7.5 Hz, 1H), 7.85 (t, J= 7.5 Hz, 1H), 8.00 (d, J =

15.5 Hz, 1H), 8.07 (d, J = 15.5 Hz, 1H), 8.23 (d, J= 8.5 Hz, 1H), 8.38 (d, /= 8.5 Hz, 1H), 8.61 (s, 1H).
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Figure S2. '"H NMR spectra of compound 1.

BnBtC (2). '"H NMR (DMSO-d6, 300 MHz): 6 (ppm) 1.17 (t, J = 7 Hz, 6H), 3.55 (q, J = 7 Hz, 4H),
6.08 (s, 2H), 6.68 (d, J= 2 Hz, 1H), 6.88 (dd, J= 9 & 2 Hz, 1H), 7.32-7.44 (m, SH), 7.58 (d, /= 9 Hz,

1H), 7.71-7.85 (m, 2H), 8.10 (d, J = 15 Hz, 1H), 8.18 (d, J = 15 Hz, 1H), 8.21 (d, J = 8 Hz, 1H), 8.43



(d, J = 8 Hz, 1H), 8.60 (s, 1H); 1*C NMR (DMSO- &°, 100 MHz): 6 (ppm) 12.9, 45.2, 51.8, 97.0, 109.5,
111.2, 111.5, 112.4, 117.0, 125.0, 128.3, 128.6, 129.1, 129.7, 130.0, 132.5, 134.1, 141.9, 146.1, 149.1,
154.0, 157.8, 160.0, 173.0. HRMS (ESI/Q-TOF) m/z: [M]+ = Calcd for C29H27N202S+: 467.1788;

Found: 467.1794.
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Figure S3. '"H NMR spectra of compound 2.
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Figure S4. 1°C-jmod NMR spectra of compound 2.
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Figure S5. HSQC spectra of compound 2.
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Figure S6. HRMS spectra of compound 2.

Counts vs. Mass-to-Charge (m/z)
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Figure S7. Determination of Limits of Detection (LoD) and quantification (LoQ) for 2 binding to (a)

PS2.M and (b) BSA targets.
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