# **Electronic Supplementary Information**

# Stable iridium(IV) complexes supported by tetradentate salen ligands. Synthesis, structures and reactivity

Chi Lun Lee,<sup>a</sup> Liangliang Wu,<sup>a</sup> Jie-Sheng Huang<sup>\*a</sup> and Chi-Ming Che<sup>\*ab</sup>

<sup>*a*</sup> State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China

<sup>b</sup> HKU Shenzhen Institute of Research & Innovation, Shenzhen, China

E-mail: cmche@hku.hk; jshuang@hku.hk

## **Table of Contents**

| Experimental Section                                                                                                                 |            |
|--------------------------------------------------------------------------------------------------------------------------------------|------------|
| Preparation of H <sub>2</sub> salen ligands                                                                                          | S3         |
| Preparation and characterization of complexes <b>1</b> , <b>2</b> , [Ir <sup>III</sup> (L <sup>3</sup> )(Cl)(CO)] and <b>3</b>       | S4         |
| Typical procedure for the intramolecular C–N bond formation from aryl azides                                                         | S6         |
| catalyzed by iridium-salen complexes under reflux conditions                                                                         |            |
| Typical procedure for the intramolecular C–N bond formation from aryl azides                                                         | S6         |
| catalyzed by dichloroiridium(IV)-salen complex 1 under irradiation with an                                                           |            |
| incandescent lamp (150 W)                                                                                                            |            |
| Typical procedure for the intramolecular C–N bond formation from aryl azides                                                         | S6         |
| catalyzed by iridium-salen complexes under microwave-assisted conditions                                                             |            |
| Computational details                                                                                                                | <b>S</b> 8 |
| References                                                                                                                           | S9         |
| Fig. S1 UV-vis spectrum of complex 1 in CH <sub>2</sub> Cl <sub>2</sub>                                                              | S10        |
| Fig. S2 UV-Vis spectrum of complex 2 in CH <sub>2</sub> Cl <sub>2</sub>                                                              | S11        |
| <b>Fig. S3</b> UV-Vis spectrum of complex [Ir <sup>III</sup> (L3)(Cl)(CO)] in CH <sub>2</sub> Cl <sub>2</sub>                        | S12        |
| Fig. S4 UV-Vis spectrum of complex 3 in CH <sub>2</sub> Cl <sub>2</sub>                                                              | S13        |
| Fig. S5 Experimental and simulated EPR spectrum of complex 1 in CH <sub>2</sub> Cl <sub>2</sub> at 10 K                              | S14        |
| <b>Fig. S6</b> Experimental and simulated EPR spectrum of complex <b>2</b> in CH <sub>2</sub> Cl <sub>2</sub> at 10 K                | S15        |
| Fig. S7 Experimental and simulated EPR spectrum of complex 3 in CH <sub>2</sub> Cl <sub>2</sub> at 10 K                              | S16        |
| <b>Fig. S8</b> Variable temperature <sup>1</sup> H NMR spectra of [Ir <sup>III</sup> (L <sup>3</sup> )(Cl)(CO)] in CDCl <sub>3</sub> | S17        |
| Fig. S9 ESI-MS spectrum of complex 1 with one equivalent of azide 4c in degassed                                                     | S18        |
| DCE under reflex conditions                                                                                                          |            |
| Table S1 Crystallographic data of complex 1                                                                                          | S19        |
| Table S2 Crystallographic data of complex 2                                                                                          | S20        |
| Table S3 Crystallographic data of complex [Ir <sup>III</sup> (L <sup>3</sup> )(Cl)(CO)]                                              | S21        |
| Table S4 Crystallographic data of complex 3                                                                                          | S22        |
| Table S5 Redox potentials and peak separations for complexes $1-3$ and                                                               | S23        |
| $[Ir^{III}(L^3)(CI)(CO)]$                                                                                                            |            |
| Table S6 Solvent effect of dihydroquinazolinone and/or quinazolinone formation                                                       | S24        |
| catalyzed by complex 1                                                                                                               |            |
| Table S7 Quinazolinone formation catalyzed by complex 1 under irradiation with an                                                    | S25        |
| incandescent lamp (150 W)                                                                                                            |            |
| Scheme S1 Synthesis of complex 1 using NaCl as a secondary source of Cl                                                              | S5         |
| Scheme S2 Synthesis of complex 3 using strongly oxidizing chlorine source                                                            | <b>S</b> 6 |
| PhICl <sub>2</sub>                                                                                                                   |            |
| Scheme S3 Treatment of 5a with complexes 1, 3 and [Ir <sup>III</sup> (L <sup>3</sup> )(Cl)(CO)]                                      | S26        |
| Cartesian coordinates for the DFT optimized structure of complex 1                                                                   | S27        |

# **Experimental Section**

General. Chemicals purchased from commercial sources were used without further purification. Unless otherwise stated, all reactions were performed in dried glassware under a dry argon atmosphere. DCE was freshly distilled from CaH<sub>2</sub> under an argon atmosphere. Merck silica gel 60 was used for flash column chromatography. NMR spectra were recorded on a Bruker AV-400 or DPX-300 spectrometer; chemical shifts were expressed in ppm and were determined with tetramethylsilane as internal reference. UV-vis absorption spectra were recorded on a Hewlett-Packard 8452A diode array spectrophotometer or on a Perkin-Lambda 19 UV-vis spectrophotometer. Cyclic voltammetry was conducted on a Princeton Applied Research Model 273A Potentiostat/galvanostat coulometer and Model 270/250 universal programmer equipped with PowerSuit 2.12.1 program. The working electrode was glassy carbon; the reference electrode was an Ag/AgNO<sub>3</sub> (0.1 M in MeCN) electrode; the counter electrode was a platinum wire/coil. X-band EPR spectra were recorded with a Bruker EMX EPR spectrometer equipped with a variable-temperature helium flow cryostat (Oxford Instruments), using dichloromethane the system as solvent. Positive-ion-mode FAB mass spectra and EI mass spectra were recorded on a Thermo Scientific DFS high-resolution magnetic sector MS. X-ray diffraction data of single crystals were collected on a MAR PSD diffractometer with a 300 mm image plate detector or Bruker X8 Proteum diffractometer.

General procedure for the preparation of H<sub>2</sub>salen ligands. The H<sub>2</sub>salen ligands were prepared according to the literature procedures.<sup>1-3</sup> To a solution of diamine (1 mmol) in EtOH (10 mL) was added the corresponding salicylaldehyde (2 mmol), and the mixture was stirred at reflux overnight. After cooling to room temperature, the resulting light yellow H<sub>2</sub>salen ligand was precipitated, separated from the solution by filtration and dried under vacuum.

Literature references of H<sub>2</sub>salen ligands



General procedure for the preparation of dichloroiridium(IV)-salen complexes 1 and 2. То a single-neck 50-mL round bottom flask were added bis(1,5-cyclooctadiene)diiridium(I) dichloride [Ir(Cl)(COD)]<sub>2</sub> (0.15 mmol) and the (0.2 corresponding H<sub>2</sub>salen ligand mmol), followed by addition of 1,2,4-trichlorobenzene (10 mL). The mixture was stirred in open atmosphere at 185 °C for 40 min before cooling to room temperature. The mixture was then subjected flash to chromatography on a silica gel column with *n*-hexane/dichloromethane (15:1 to 2:1 v/v) as eluent. The product was obtained by removing the solvent under vacuum. Diffraction-quality crystals of 1 and 2 were obtained by carefully layering *n*-hexane on the top of the  $CH_2Cl_2$  solutions of 1 and 2 using the samples of the two complexes prepared from enantiopure  $H_2L^1$  and  $H_2L^2$ ligands, respectively. A similar preparation of **1** in the presence of a secondary source of Cl (NaCl) is depicted in Scheme S1.

1: Yield (28%); paramagnetic; FAB-MS *m*/*z* 807 [M]<sup>+</sup>. Elemental analysis Calcd for C<sub>36</sub>H<sub>52</sub>Cl<sub>2</sub>IrN<sub>2</sub>O<sub>2</sub>: C, 53.52; H, 6.49; N, 3.47. Found: C, 53.60; H, 6.71; N, 3.38.

**2**: Yield (20%); paramagnetic; FAB-MS *m*/*z* 764 [M]<sup>+</sup>. Elemental analysis Calcd for C<sub>28</sub>H<sub>34</sub>Cl<sub>4</sub>IrN<sub>2</sub>O<sub>2</sub>: C, 43.98; H, 4.48; N, 3.66. Found: C, 43.91; H, 4.51; N, 3.63.



Scheme S1 Synthesis of complex 1 using NaCl as a secondary source of Cl.

**Procedure for the preparation of iridium(III)-salen complex [Ir<sup>III</sup>(L<sup>3</sup>)(Cl)(CO)].** To a 50-mL round bottom flask were added bis(1,5-cyclooctadiene)diiridium(I) dichloride [Ir(Cl)(COD)]<sub>2</sub> (0.15 mmol) and the salen ligand H<sub>2</sub>L<sup>3</sup> (0.2 mmol) in open atmosphere, followed by the addition of 1,2,4-trichlorobenzene (10 mL). The mixture was stirred at 185 °C for 2 h before cooling to room temperature. The mixture was then subjected to flash chromatography on a silica gel column with *n*-hexane/dichloromethane (20:1 to 1:1 v/v) as eluent, which afforded the product. A diffraction-quality crystal of [Ir<sup>III</sup>(L<sup>3</sup>)(Cl)(CO)] was obtained by carefully layering *n*-hexane on the top of a solution of the complex in CH<sub>2</sub>Cl<sub>2</sub>.

[**Ir**<sup>III</sup>(**L**<sup>3</sup>)(**Cl**)(**CO**)]: yield (31%); <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 400 MHz)  $\delta$  8.20 (d, *J* = 8.6 Hz, 1H), 8.06 (d, *J* = 8.1 Hz, 1H), 7.97 (s, 1H),7.95 (d, *J* = 8.6 Hz, 1H), 7.91 (d, *J* = 8.2 Hz, 1H), 7.62(d, *J* = 8.5 Hz, 1H), 7.57-7.45 (m, 3H), 7.43 (s, 1H), 7.42-7.35 (m, 2H), 7.27-7.23 (m, 2H), 7.17 (d, *J* = 8.2 Hz, 1H), 7.05 (d, *J* = 2.5 Hz, 1H), 6.94 (d, *J* = 8.7Hz, 1H), 6.77 (d, *J* = 2.5 Hz, 1H), 1.42 (s, 9H), 1.39 (s, 9H), 1.25 (s, 9H), 1.18 (s, 9H); IR 2059 cm<sup>-1</sup> (v(CO)); FAB-MS *m*/*z* 970 [M]<sup>+</sup>. Elemental analysis Calcd for C<sub>51</sub>H<sub>54</sub>ClIrN<sub>2</sub>O<sub>3</sub>: C, 63.11; H, 5.61; N, 2.89. Found: C, 63.02; H, 5.66; N, 2.83.

**Procedure for the preparation of dichloroiridium(IV)-salen complex 3.** To a two-neck 50-mL round bottom flask was added  $cis-\beta$ -[Ir<sup>III</sup>(L<sub>3</sub>)(Cl)(CO)] (0.1 mmol), followed by addition of carbon tetrachloride (20 mL). The mixture was refluxed under argon for 2 days before cooling to room temperature. The mixture was then subjected to flash chromatography on a silica gel column with *n*-hexane/dichloromethane (15:1 to 5:1 v/v) as eluent. The product was obtained by removing the solvent under vacuum. A diffraction-quality crystal of **3** was obtained by carefully layering *n*-hexane on the top of a solution of **3** in CH<sub>2</sub>Cl<sub>2</sub>. For similar preparation of **3** using a strongly oxidizing chlorine source (PhICl<sub>2</sub>), see Scheme S2.

**3**: yield (46%); paramagnetic; FAB-MS *m*/*z* 978 [M]<sup>+</sup>. Elemental analysis Calcd for C<sub>50</sub>H<sub>54</sub>Cl<sub>2</sub>IrN<sub>2</sub>O<sub>2</sub>: C, 61.40; H, 5.56; N, 2.86. Found: C, 61.48; H, 5.60; N, 2.81.



Scheme S2 Synthesis of complex 3 using strongly oxidizing chlorine source PhICl<sub>2</sub>.

Typical procedure for the intramolecular C–N bond formation from aryl azides catalyzed by iridium-salen complexes under reflux conditions. A mixture of aryl azide (0.1 mmol) and the Ir(IV)-salen complex 1 (5 mol%) was refluxed in DCE under N<sub>2</sub> for 18 h before cooling to room temperature. The solvent was removed under reduced pressure. The crude mixture was analyzed by <sup>1</sup>H NMR spectroscopy and then purified by flash chromatography (*n*-hexane/CH<sub>2</sub>Cl<sub>2</sub>) to afford the corresponding product.

Typical procedure for the intramolecular C–N bond formation from aryl azides catalyzed by dichloroiridium(IV)-salen complex 1 under irradiation with an incandescent lamp (150 W). A mixture of aryl azide (0.1 mmol) and complex 1 (5 mol%) was stirred under irradiation using an incandescent lamp (150 W) in DCE under N<sub>2</sub> for 12 h before cooling to room temperature. The solvent was removed under reduced pressure. The crude mixture was analyzed by <sup>1</sup>H NMR spectroscopy and then purified by flash chromatography (*n*-hexane/CH<sub>2</sub>Cl<sub>2</sub>) to afford the corresponding product.

Typical procedure for the intramolecular C–N bond formation from aryl azides catalyzed by iridium-salen complexes under microwave-assisted conditions. A mixture of aryl azide (0.1 mmol) and complex 1 (5 mol%) was stirred for 1 h at 120 °C in open atmosphere under microwave irradiation (200 W) in DCE before cooling to room temperature. The solvent was removed under reduced pressure. The crude mixture was analyzed by <sup>1</sup>H NMR spectroscopy and then purified by flash chromatography (*n*-hexane/CH<sub>2</sub>Cl<sub>2</sub>) to afford the corresponding product.

#### Literature references of the known substrates and products





# **Computational details**

DFT calculations on the Ir(IV)-salen complexes were performed using complex **1** as example. The hybrid density functional, PBE0,<sup>9</sup> was employed for all calculations using the program package G09.<sup>10</sup> The 6-31G\* basis set<sup>11</sup> was used for all atoms except Ir, which is described by the Stuttgart relativistic pseudopotential and its accompanying basis set (ECP60MWB).<sup>12</sup> Geometry optimizations of the ground state were carried out without symmetry constraints. Frequency calculations were performed on the optimized structures to ensure that they are minimum energy structures by the absence of imaginary frequency (i.e. NImag = 0). The computed spin density distribution was based on the modified Mulliken atom population defined by Ros and Schuit (SCPA);<sup>13</sup> the spin density plot is depicted below:



Spin density plot (contour value: 0.01) for complex **1**. Hydrogen atoms are not shown for clarity.

### References

- 1 L. Deng and E. N. Jacobsen, J. Org. Chem., 1992, 57, 4320.
- 2 N. Takenaka, Y. Huang and V. H. Rawal, *Tetrahedron*, 2002, 58, 8299.
- 3 A. M. DiCiccio, J. M. Longo, G. G. Rodriguez-Calero and G. W. Coates, *J. Am. Chem. Soc.*, 2016, **138**, 7107.
- 4 Y. Liu, J. Wei and C.-M. Che, *Chem. Commun.*, 2010, **46**, 6926.
- 5 M. Carpintero, M. Cifuentes, R. Ferritto, R. Haro and M. A. Toledo, *J. Comb. Chem.*, 2007, **9**, 818.
- 6 W. R. Bowman, M. R. J. Elsegood, T. Stein and G. W. Weaver, *Org. Biomol. Chem.*, 2007, **5**, 103.
- 7 M. Dabiri, P. Salehi, A. A. Mohammadi and M. Baghbanzadeh, *Synth. Commun.*, 2005, **35**, 279.
- 8 C. Zhang, C. K. De, R. Mal and D. Seidel, J. Am. Chem. Soc., 2008, 130, 416.
- 9 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09 Revision D.01*, Gaussian Inc., Wallingford CT, 2013.
- 11 (*a*) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, 28, 213; (*b*) M. M.
  Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J.
  A. Pople. *J. Chem. Phys.*, 1982, 77, 3654.
- 12 D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, *Theor. Chim. Acta*, 1990, **77**, 123.
- 13 P. Ros and G. C. A. Schuit, *Theor. Chim. Acta*, 1966, 4, 1.



Fig. S1 UV-vis spectrum of complex 1 in CH<sub>2</sub>Cl<sub>2</sub> (concentration  $\sim 2 \times 10^{-5}$  M).



Fig. S2 UV-vis spectrum of complex 2 in CH<sub>2</sub>Cl<sub>2</sub> (concentration  $\sim 2 \times 10^{-5}$  M).



Fig. S3 UV-vis spectrum of complex [Ir<sup>III</sup>(L<sup>3</sup>)(Cl)(CO)] in CH<sub>2</sub>Cl<sub>2</sub> (concentration ~2 ×  $10^{-5}$  M).



Fig. S4 UV-vis spectrum of complex 3 in CH<sub>2</sub>Cl<sub>2</sub> (concentration  $\sim 2 \times 10^{-5}$  M).



**Fig. S5** Experimental and simulated EPR spectrum of complex **1** in CH<sub>2</sub>Cl<sub>2</sub> at 10 K. Experimental conditions: frequency, 9.37 GHz; microwave power, 2.00 mW; modulation frequency, 100.0 kHz; modulation amplitude, 5.0 G. Simulation parameters:  $g_x = 2.11$ ,  $g_y = 2.10$ ,  $g_z = 1.55$ ,  $A_{xx} = 92.8$  Gauss,  $A_{yy} = 35.7$  Gauss,  $A_{zz} = 35$  Gauss.



**Fig. S6** Experimental and simulated EPR spectrum of complex **2** in CH<sub>2</sub>Cl<sub>2</sub> at 10 K. Experimental conditions: frequency, 9.37 GHz; microwave power, 2.00 mW; modulation frequency, 100.0 kHz; modulation amplitude, 5.0 G. Simulation parameters:  $g_x = 2.14$ ,  $g_y = 2.12$ ,  $g_z = 1.51$ ,  $A_{xx} = 77$  Gauss,  $A_{yy} = 74$  Gauss,  $A_{zz} = 30$  Gauss.



**Fig. S7** Experimental and simulated EPR spectrum of complex **3** in CH<sub>2</sub>Cl<sub>2</sub> at 10 K. Experimental conditions: frequency, 9.37 GHz; microwave power, 2.00 mW; modulation frequency, 100.0 kHz; modulation amplitude, 5.0 G. Simulation parameters:  $g_x \sim g_y = 2.17$ ,  $g_z = 1.52$ ,  $A_{xx} \sim A_{yy} = 38$  Gauss,  $A_{zz} = 26$  Gauss.



**Fig. S8** Variable temperature <sup>1</sup>H NMR spectra of  $[Ir^{III}(L^3)(CI)(CO)]$  in CDCl<sub>3</sub> (-40 °C to 50 °C). The peak marked with an asterisk came from water.



**Fig. S9** ESI-MS spectrum of complex **1** with one equivalent of azide **4c** in degassed DCE under reflux conditions for 30 min and simulated spectrum of the target species showing the isotopic distribution pattern.

| Empirical formula                           | $C_{38}H_{56}Cl_6IrN_2O_2$                             |
|---------------------------------------------|--------------------------------------------------------|
| Formula weight                              | 977.74                                                 |
| Temperature/K                               | 100                                                    |
| Crystal system                              | triclinic                                              |
| Space group                                 | P1                                                     |
| a/Å                                         | 12.6783(7)                                             |
| b/Å                                         | 12.9154(7)                                             |
| c/Å                                         | 14.6274(8)                                             |
| α/°                                         | 81.8890(10)                                            |
| β/°                                         | 73.0200(10)                                            |
| γ/°                                         | 65.1680(10)                                            |
| Volume/Å <sup>3</sup>                       | 2078.5(2)                                              |
| Ζ                                           | 2                                                      |
| $\rho_{calc}g/cm^3$                         | 1.562                                                  |
| μ/mm <sup>-1</sup>                          | 10.031                                                 |
| F(000)                                      | 986                                                    |
| Crystal size/mm <sup>3</sup>                | 0.3 	imes 0.06 	imes 0.02                              |
| Radiation                                   | $CuK\alpha$ ( $\lambda = 1.54178$ )                    |
| $2\Theta$ range for data collection/°       | 6.32 to 135.28                                         |
| Index ranges                                | $-15 \le h \le 15, -15 \le k \le 15, -14 \le l \le 16$ |
| Reflections collected                       | 37568                                                  |
| Independent reflections                     | 13132 [ $R_{int} = 0.0513$ , $R_{sigma} = 0.0516$ ]    |
| Data/restraints/parameters                  | 13132/3/907                                            |
| Goodness-of-fit on F <sup>2</sup>           | 1.025                                                  |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0331, wR_2 = 0.0900$                          |
| Final R indexes [all data]                  | $R_1 = 0.0333, wR_2 = 0.0904$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 1.37/-0.73                                             |
| Flack parameter                             | -0.035(5)                                              |

Table S1 Crystallographic data of complex  $1 \cdot 2CH_2Cl_2$ 

| Empirical formula                           | $C_{28}H_{34}Cl_4IrN_2O_2$                             |
|---------------------------------------------|--------------------------------------------------------|
| Formula weight                              | 764.57                                                 |
| Temperature/K                               | 100                                                    |
| Crystal system                              | orthorhombic                                           |
| Space group                                 | P21212                                                 |
| a/Å                                         | 11.8989(4)                                             |
| b/Å                                         | 12.7089(4)                                             |
| c/Å                                         | 23.2281(7)                                             |
| α/°                                         | 90                                                     |
| β/°                                         | 90                                                     |
| $\gamma/^{\circ}$                           | 90                                                     |
| Volume/Å <sup>3</sup>                       | 3512.60(19)                                            |
| Ζ                                           | 4                                                      |
| $\rho_{calc}g/cm^3$                         | 1.446                                                  |
| µ/mm <sup>-1</sup>                          | 10.346                                                 |
| F(000)                                      | 1508                                                   |
| Crystal size/mm <sup>3</sup>                | 0.25 	imes 0.16 	imes 0.14                             |
| Radiation                                   | $CuK\alpha$ ( $\lambda = 1.54178$ )                    |
| 20 range for data collection/°              | 3.804 to 135.306                                       |
| Index ranges                                | $-14 \le h \le 13, -15 \le k \le 15, -27 \le l \le 27$ |
| Reflections collected                       | 30388                                                  |
| Independent reflections                     | 6301 [ $R_{int} = 0.0445, R_{sigma} = 0.0297$ ]        |
| Data/restraints/parameters                  | 6301/0/341                                             |
| Goodness-of-fit on F <sup>2</sup>           | 1.046                                                  |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0251, wR_2 = 0.0661$                          |
| Final R indexes [all data]                  | $R_1 = 0.0265, wR_2 = 0.0677$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 1.03/-0.44                                             |
| Flack parameter                             | 0.007(4)                                               |

 Table S2 Crystallographic data of complex 2

| Empirical formula                           | $C_{52}H_{56}Cl_3IrN_2O_3$                             |
|---------------------------------------------|--------------------------------------------------------|
| Formula weight                              | 1055.54                                                |
| Temperature/K                               | 296(2)                                                 |
| Crystal system                              | triclinic                                              |
| Space group                                 | P-1                                                    |
| a/Å                                         | 13.1578 (11)                                           |
| b/Å                                         | 14.0956 (12)                                           |
| c/Å                                         | 15.0289 (13)                                           |
| α/°                                         | 71.647 (1)                                             |
| β/°                                         | 85.234 (1)                                             |
| $\gamma/^{\circ}$                           | 70.951 (1)                                             |
| Volume/Å <sup>3</sup>                       | 2500.1 (4)                                             |
| Ζ                                           | 2                                                      |
| $\rho_{calc}g/cm^3$                         | 1.402                                                  |
| $\mu/\text{mm}^{-1}$                        | 2.872                                                  |
| F(000)                                      | 1068                                                   |
| Crystal size/mm <sup>3</sup>                | 0.40	imes 0.27	imes 0.25                               |
| Radiation                                   | MoKa ( $\lambda = 0.71073$ )                           |
| 20 range for data collection/°              | 5.26 to 50.06                                          |
| Index ranges                                | $-15 \le h \le 12, -16 \le k \le 16, -17 \le l \le 16$ |
| Reflections collected                       | 14009                                                  |
| Independent reflections                     | 8640 [ $R_{int} = 0.0124$ , $R_{sigma} = N/A$ ]        |
| Data/restraints/parameters                  | 8640/ 54 / 581                                         |
| Goodness-of-fit on F <sup>2</sup>           | 1.05                                                   |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0244, \ wR_2 = 0.06\overline{45}$             |
| Final R indexes [all data]                  | $R_1 = 0.0287, wR_2 = 0.0673$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.94/-0.67                                             |

**Table S3** Crystallographic data of complex  $[Ir^{III}(L^3)(Cl)(CO)] \cdot CH_2Cl_2$ 

| Empirical formula                           | $C_{52,41}H_{56,41}Cl_{9,23}IrN_2O_2$                    |
|---------------------------------------------|----------------------------------------------------------|
| Formula weight                              | 1265.58                                                  |
| Temperature/K                               | 100                                                      |
| Crystal system                              | monoclinic                                               |
| Space group                                 | P2 <sub>1</sub> /c                                       |
| a/Å                                         | 24.7754(14)                                              |
| b/Å                                         | 14.4960(8)                                               |
| c/Å                                         | 16.5663(9)                                               |
| α/°                                         | 90                                                       |
| β/°                                         | 98.226(2)                                                |
| $\gamma^{\prime}$                           | 90                                                       |
| Volume/Å <sup>3</sup>                       | 5888.5(6)                                                |
| Ζ                                           | 4                                                        |
| $\rho_{calc}g/cm^3$                         | 1.428                                                    |
| $\mu/\text{mm}^{-1}$                        | 8.537                                                    |
| F(000)                                      | 2539                                                     |
| Crystal size/mm <sup>3</sup>                | $0.3 \times 0.06 \times 0.06$                            |
| Radiation                                   | $CuK\alpha (\lambda = 1.54178)$                          |
| 20 range for data collection/°              | 3.604 to 134.482                                         |
| Index ranges                                | $-29 \le h \le 28,  -12 \le k \le 17,  -19 \le l \le 19$ |
| Reflections collected                       | 83040                                                    |
| Independent reflections                     | 10085 [ $R_{int} = 0.0983$ , $R_{sigma} = 0.0502$ ]      |
| Data/restraints/parameters                  | 10085/9/635                                              |
| Goodness-of-fit on F <sup>2</sup>           | 1.136                                                    |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0468, \ wR_2 = 0.1259$                          |
| Final R indexes [all data]                  | $R_1 = 0.0493, wR_2 = 0.1274$                            |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 2.17/-0.99                                               |

Table S4 Crystallographic data of complex 3.2.41CHCl<sub>3</sub>

|                           | Reduction |                  | Oxidation I |                  | Oxidation II |                  |
|---------------------------|-----------|------------------|-------------|------------------|--------------|------------------|
| Complex                   | $E_{1/2}$ | $\Delta E_{1/2}$ | $E_{1/2}$   | $\Delta E_{1/2}$ | $E_{1/2}$    | $\Delta E_{1/2}$ |
|                           | (V)       | (mV)             | (V)         | (mV)             | (V)          | (mV)             |
| 1                         | -0.17     | 124              | 0.75        | 136              | -            | -                |
| 2                         | 0.08      | 90               | 0.99        | 84               | -            | -                |
| 3                         | -0.11     | 102              | 0.80        | 109              | -            | -                |
| $[Ir^{III}(L^3)(Cl)(CO)]$ | -         | -                | 0.89        | 177              | 1.27         | 183              |

**Table S5** Redox potentials ( $E_{1/2}$ ) and peak separations ( $\Delta E_{1/2}$ ) for complexes **1–3** and [Ir<sup>III</sup>(L<sup>3</sup>)(Cl)(CO)] (*E* vs Ag/AgNO<sub>3</sub> (0.1 M in MeCN))

**Table S6** Solvent effect of dihydroquinazolinone and quinazolinone formation catalyzed by complex  $1^a$ 



| Entry | Solvent         | Time (h) | <b>5a</b> Yield (%) <sup>b</sup> | <b>6a</b> Yield (%) <sup>b</sup> |
|-------|-----------------|----------|----------------------------------|----------------------------------|
| 1     | benzene         | 18       | 9                                | 89                               |
| 2     | acetonitrile    | 18       |                                  | —                                |
| 3     | dichloromethane | 18       |                                  | —                                |
| 4     | DCE             | 18       |                                  | 95                               |

<sup>*a*</sup> Reaction conditions: A mixture of substrate **4a** (0.1 mmol) and complex **1** (5 mol%) was refluxed in degassed solvent under N<sub>2</sub>. <sup>*b*</sup> Isolated yield.



**Table S7** Quinazolinone formation catalyzed by complex 1 under irradiation with an incandescent lamp  $(150 \text{ W})^a$ 

<sup>*a*</sup>Reaction conditions: A mixture of substrate (0.1 mmol) and **1** (5 mol%) was stirred under irradiation with an incandescent lamp (150 W) in DCE under N<sub>2</sub>. <sup>*b*</sup> Isolated yield.



Scheme S3 Treatment of 5a with complexes 1, 3 and  $[Ir^{III}(L^3)(Cl)(CO)]$ .

# Cartesian coordinates for the DFT optimized structure of complex 1

| Ir | 18.907557930 | 9.639566165  | 5.385728546  |
|----|--------------|--------------|--------------|
| Cl | 18.439359204 | 11.962090397 | 5.540985922  |
| Cl | 19.380474906 | 7.319264107  | 5.210084710  |
| 0  | 17.454026880 | 9.421545720  | 3.999265516  |
| 0  | 20.248706284 | 10.036110005 | 3.925755392  |
| Ν  | 17.671657903 | 9.262111653  | 6.876027201  |
| Ν  | 20.257056066 | 9.834086800  | 6.810458224  |
| С  | 16.306537554 | 8.851701411  | 4.198960922  |
| С  | 15.472967444 | 8.592681054  | 3.052476441  |
| С  | 14.252496427 | 7.984541564  | 3.267333607  |
| Н  | 13.629181932 | 7.778750088  | 2.404620446  |
| С  | 13.747550098 | 7.609894761  | 4.536823937  |
| С  | 14.541803714 | 7.884928233  | 5.628277678  |
| Н  | 14.204299016 | 7.637991268  | 6.630312001  |
| С  | 15.811284165 | 8.490827716  | 5.500422952  |
| С  | 16.484062445 | 8.765019638  | 6.735362998  |
| Η  | 15.920336801 | 8.543104660  | 7.640085699  |
| С  | 18.262391219 | 9.632598488  | 8.172104312  |
| Н  | 18.172678107 | 10.727697890 | 8.229705256  |
| С  | 17.627145894 | 9.008893090  | 9.407269788  |
| Н  | 16.573991197 | 9.301474291  | 9.482983834  |
| Н  | 17.662622095 | 7.913579477  | 9.327131820  |
| С  | 18.369218453 | 9.468600849  | 10.663763171 |
| H  | 17.924881811 | 8.988598454  | 11.542560208 |
| Н  | 18.228069312 | 10.550945492 | 10.790179012 |
| C  | 19.859624690 | 9.155063488  | 10.586129217 |
| Н  | 20.004497387 | 8.066080316  | 10.568099513 |
| Н  | 20.373559147 | 9.526354725  | 11.479474025 |
| С  | 20.502291779 | 9.768729018  | 9.340942976  |
| Н  | 20.468417873 | 10.865416110 | 9.400205695  |
| Н  | 21.556063073 | 9.472252066  | 9.294904556  |
| C  | 19.766751913 | 9.302145870  | 8.092177063  |
| H  | 19.853704784 | 8.208767934  | 8.003607132  |
| C  | 21.433333004 | 10.348175883 | 6.640527185  |
| Н  | 22.066300433 | 10.459169858 | 7.519550763  |
| С  | 22.011250812 | 10.772667955 | 5.400220858  |
| С  | 23.292503816 | 11.358048431 | 5.504647638  |
| H  | 23.706834732 | 11.479366708 | 6.501033205  |
| C  | 24.005688324 | 11.764049198 | 4.398296208  |
| C  | 23.403410900 | 11.546613071 | 3.134750073  |
| H  | 23.962414431 | 11.854013034 | 2.258291909  |
| C  | 22.163738634 | 10.971095664 | 2.940173170  |
| Ċ  | 21.414593303 | 10.575357814 | 4.105948676  |
| Č  | 15.938076622 | 8.975220271  | 1.642703809  |
| Č  | 16.157740638 | 10.496570201 | 1.554750502  |
| H  | 16.916033855 | 10.835587024 | 2.263046593  |
|    |              |              |              |

| Η      | 15.223922396 | 11.034105487 | 1.758770584  |
|--------|--------------|--------------|--------------|
| Η      | 16.485567849 | 10.762602527 | 0.542271412  |
| С      | 17.239411056 | 8.231488160  | 1.291857356  |
| Н      | 17.084960463 | 7.146283790  | 1.323701672  |
| Η      | 18.047996962 | 8.487191634  | 1.978836420  |
| Η      | 17.552025426 | 8.497633835  | 0.274538195  |
| С      | 14.899484724 | 8.602656098  | 0.577961639  |
| Н      | 15.279917340 | 8.899669159  | -0.405621317 |
| Н      | 13.944915061 | 9.120157634  | 0.730676198  |
| Н      | 14.709246191 | 7.523322898  | 0.544467905  |
| С      | 12.377411827 | 6.943809250  | 4.637232182  |
| С      | 11.998671891 | 6.621209252  | 6.084686917  |
| Η      | 12.711685580 | 5.928901422  | 6.547330870  |
| Η      | 11.012800811 | 6.143847664  | 6.106544848  |
| Η      | 11.942293823 | 7.525020128  | 6.702463890  |
| С      | 12.390931617 | 5.630207958  | 3.837162702  |
| Н      | 13.137561715 | 4.935526810  | 4.238307193  |
| Н      | 12.619150948 | 5.797599211  | 2.778966264  |
| Н      | 11.408387158 | 5.146537392  | 3.893695189  |
| С      | 11.308151885 | 7.884110972  | 4.055540479  |
| Н      | 10.320914999 | 7.410189194  | 4.112213113  |
| Н      | 11.501500710 | 8.124716860  | 3.004566431  |
| Н      | 11.268037498 | 8.825118986  | 4.615872445  |
| C      | 25.386970010 | 12.409721749 | 4.476436817  |
| С      | 25.867255462 | 12.569092421 | 5.920889043  |
| Н      | 25.193283464 | 13.205262324 | 6.506255179  |
| H      | 26.856051040 | 13.040839121 | 5.926515044  |
| H      | 25.958973733 | 11.601754187 | 6.428248420  |
| C      | 25.335512973 | 13.803408038 | 3.827836466  |
| H      | 25.034708569 | 13.754820835 | 2.775780786  |
| H      | 26.325409557 | 14.273455656 | 3.870062360  |
| H      | 24.625979947 | 14.453244208 | 4.352544750  |
| C      | 26.402995462 | 11.533898847 | 3.723650319  |
| H      | 26.468246773 | 10.536552612 | 4.173199807  |
| H      | 27.397818791 | 11.993354876 | 3.765237115  |
| H      | 26.136825973 | 11.412207447 | 2.668149452  |
| C      | 21.593450662 | 10.762654386 | 1.532489291  |
| C      | 20.283790471 | 11.554344298 | 1.367463683  |
| H      | 20.461042942 | 12.62/434477 | 1.507556861  |
| H      | 19.524828268 | 11.232945162 | 2.082/3/4/3  |
| H      | 19.889478595 | 11.40/433/92 | 0.354321395  |
| C      | 22.560019314 | 11.250451403 | 0.446622678  |
| H      | 23.514466948 | 10./1114506/ | 0.468595028  |
| H      | 22.764598180 | 12.324/38105 | 0.525800627  |
| H<br>C | 22.1063259/1 | 11.0/4565268 | -0.534983472 |
| U<br>H | 21.344442868 | 9.204184387  | 1.281/29200  |
| H<br>H | 20.948994425 | 9.120865831  | 0.268625963  |
| H<br>H | 20.02800/552 | 8.849623703  | 1.993/61891  |
| Н      | 22.281317003 | 8.699603699  | 1.360100144  |