Supporting Information

2,7-Diazabicyclo[2.2.1]heptanes: Novel Asymmetric Access and Controlled Bridge-Opening

Gary R. Peczkowski, ${ }^{1}$ Philip G.E. Craven, ${ }^{1}$ Darren Stead ${ }^{2}$ and Nigel S. Simpkins* ${ }^{1}$

${ }^{1}$ School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
${ }^{2}$ AstraZeneca, Darwin Building, Cambridge, CB4 OFZ
Email: n.simpkins@bham.ac.uk

Contents

General Methods S1
Preparation of Catalysts and Reagents S2
Optimisation Tables S3
General Procedures S5
Synthesis of Amino Amides S4-S10 S7
Synthesis of α-Aryl Triketopiperazines 1a-j S11
Asymmetric Michael Additions 2a-q S16
2,7-diazabicyclo[2.2.1]heptanes 4a-m S28
Reduction of 4a S36
Formation of Iminium 6 S37
Synthesis of harmicine amide 10 S38
References S42
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S43
HPLC Traces S101
X-ray Crystal Structures S121

General Methods

All reactions were carried out under an atmosphere of nitrogen and using dry solvents unless otherwise stated. All reagents were used as received from commercial suppliers without further purification.

Microwave reactions were carried out in a CEM Discover-S microwave reactor using 150 Watts in dynamic mode.

The progress of reactions was monitored by thin layer chromatography using Merck silica gel $60 \mathrm{~F}_{254}$ plates, which were visualized with UV light and potassium permanganate. Flash column chromatography was carried out using Geduran $60 \AA$ silica gel and the indicated solvent systems.

NMR data were recorded on a Bruker AVIII300, AVIII400, AVIII400neo or AVIII500neo spectrometer in deuterated chloroform (unless otherwise indicated) and spectra were calibrated using residual solvent peaks (${ }^{1} \mathrm{H}=7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}=77.16 \mathrm{ppm}$). The multiplicities of ${ }^{1} \mathrm{H}$ NMR signals are abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) and combinations thereof.

Mass spectra were recorded on either a Waters Xevo G2-XS Tof or Synapt G2-S mass spectrometer using Zspray in ESI positive mode.

Infrared spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer or a Varian 660-IR FT-IR spectrometer using Agilent Resolutions Pro for processing data. Absorption maxima ($\mathrm{v}_{\max }$) are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$.

Melting points were measured using a Gallenkamp melting point apparatus and are uncorrected.

Optical rotations were measured using a Bellingham and Stanley ADP450 Series Peltier polarimeter at $20^{\circ} \mathrm{C}$ using the sodium D line $(589.3 \mathrm{~nm})$ and the indicated concentration and solvent.

High performance liquid chromatography (HPLC) analysis was performed using an LC-20 prominence system from Shimazdu, Chromeleon client, version 6.80 SR15 Build 4656, Phenomenex Lux Cellulose-1 ($250 \times 4.6 \mathrm{~mm}$), Phenomenex Lux Cellulose-3 ($250 \times 4.6 \mathrm{~mm}$), Phenomenex Lux Amylose-2 ($250 \times 4.6 \mathrm{~mm}$) and Shimazdu SPD-M20A diode Array Detector for the UV detection, monitored at 220 nm or 230 nm .

Some signals in the C-H aromatic region of the ${ }^{13} \mathrm{C}$ NMR spectra are not observed due to having equivalent resonances.

Preparation of Catalysts and Reagents

Catalysts 3+S2 were prepared according to literature procedure. ${ }^{1}$
Catalyst S1 was prepared according to literature procedure. ${ }^{2}$
Catalyst S3 was commercially available and purchased from Strem Chemicals, inc.

Triketopiperazine S11 was prepared according to literature procedure. ${ }^{3}$
1,1'-(1,2-Dioxoethane-1,2-diyl)bis-1H-benzotriazole (OxBzt) was prepared according to literature procedure. ${ }^{4}$

Phenyl vinyl ketone (PhVK) was prepared according to literature procedure. ${ }^{5}$

Optimisation Tables

Asymmetric Michael Additions

Entry	Catalyst	Temp (${ }^{\circ} \mathrm{C}$)	Time	2a (\%)	er
$\mathbf{1}$	$\mathbf{3}$	r.t.	16 h	98	$90: 10$
2	$\mathbf{S 2}$	r.t.	2 days	22	$77: 23$
3	$\mathbf{S 3}$	r.t.	4 days	37	$82: 18$
4	$\mathbf{S 1}$	r.t.	16 h	82	$14: 86$
5	$\mathbf{3}$	3	16 h	90	$92: 8$
6	$\mathbf{3}$	-30	12 days	83	$92: 8$
Figure 1. Optimisation of asymmetric Michael additions					

Reductive Ring Opening

Entry	Reducing agent	dr
1	NaBH_{4}	$1.0: 3.2$
2	$\mathrm{NaBH}_{4} / \mathrm{CeCl}_{3}$	$1.0: 2.0$
3	NaCNBH_{3}	$1.0: 1.8$
4	$\mathrm{Na}(\mathrm{OAC})_{3} \mathrm{BH}$	$2.7: 1.0$
5	DIBAL	$4.5: 1.0$
6	$\mathrm{DIBAL}\left(-78^{\circ} \mathrm{C}\right)$	$6.5: 1.0$
7	$\mathrm{~L}-$ selectride	NR
8	LiAlH_{4}	NR
9	$\mathrm{H}_{-\mathrm{cube}, \mathrm{H}_{2} \mathrm{Pd} / \mathrm{C}}^{\mathrm{NR}}$	
10	$\mathrm{NH}_{4} \mathrm{CO}_{2} \mathrm{H}, \mathrm{Pd} / \mathrm{C}$	NR

General Procedures

General procedure A for the synthesis of amino amides (S6-S8)

To a 2-necked round bottomed flask containing phenylacetic acid derivative (1 eq.) was added thionyl chloride (0.5 M) under a nitrogen atmosphere. The reaction mixture was heated under reflux for 1 hour then allowed to cool to room temperature followed by the addition of NBS (1.5 eq.) and HBr (3 drops). The reaction mixture was then heated at $80^{\circ} \mathrm{C}$ for 4 hours. Excess thionyl chloride was removed under reduced pressure and the resulting crude compound was heated with hexane (20 mL), filtered while hot and then washed with hot hexane ($4 \times 20 \mathrm{~mL}$). The washings were concentrated under reduced pressure to give the crude α-bromo acid chloride as an oil. The acid chloride was then added dropwise to a solution of benzylamine (5 eq .) in $\mathrm{MeCN}\left(1 \mathrm{M}\right.$) at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere and stirred for 16 hours at room temperature. The reaction mixture was filtered, washed with MeCN and the filtrate was concentrated under reduced pressure. The reaction was purified by flash column chromatography using the indicated solvent system.

General procedure B for the synthesis of aryl triketopiperazines (1a-g)

To a microwave vial containing a suspension of 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1Hbenzotriazole (1.5 eq.) in THF (0.2 M) was added N -benzyl-2-(benzylamino)-2phenylacetamide (1 eq .) in THF (0.2 M). The reaction mixture was stirred for 10 minutes then irradiated for 1 hour at $150{ }^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography using the indicated solvent system.

General procedures Ci and Cii for the racemic and enantioselective Michael additions of α aryl triketopiperazines (2a-q)

General procedure Ci for the racemic Michael additions of α-aryl triketopiperazines (2a-q)

To a solution of triketopiperazine 1a-j (1 eq .) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ was added triethylamine (1 eq.) followed by the Michael acceptor (2.5 eq.) at room temperature. The mixture was left to react until the starting material was consumed. The reaction was directly purified by flash column chromatography using the indicated solvent system.

General procedure Cii for the enantioselective Michael additions of α-aryl triketopiperazines (2a-q)

To a mixture of triketopiperazine 1a-j (1 eq.) and catalyst $\mathbf{3}$ ($10 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.1 M) at $78{ }^{\circ} \mathrm{C}$, the Michael acceptor (2.5 eq.) was added neat. The reaction mixture was allowed to warm to $3^{\circ} \mathrm{C}$ and left to react. After the starting material was consumed the reaction was directly purified by flash column chromatography using the indicated solvent system.

General procedure D for the synthesis of diazabicycles (4a-m)

To a solution of triketopiperazine $\mathbf{2 a}-\mathbf{k}, \mathbf{2 n}$ and $\mathbf{2 q}$ (1 eq.) in THF (0.2 M) was added ethanolamine (0.2 M). The reaction mixture was heated under reflux for 1 hour. The reaction mixture was concentrated under reduced pressure and directly purified by flash column chromatography using the indicated solvent system.

Synthesis of Amino Amides (S4-S10)

N-benzyl-2-(benzylamino)-2-phenylacetamide S4

S4
To a microwave vial containing a solution of benzylamine ($0.55 \mathrm{~mL}, 5 \mathrm{mmol}$) in $\mathrm{MeCN}(4 \mathrm{~mL})$ was added α-chlorophenylacetyl chloride ($0.16 \mathrm{~mL}, 1 \mathrm{mmol}$) dropwise at $0{ }^{\circ} \mathrm{C}$. TBAI (185 mg , 0.5 mmol) dissolved in MeCN (1 mL) was added and the reaction mixture was irradiated for 1 hour in the microwave at $150^{\circ} \mathrm{C}$. The reaction mixture was filtered, washed with MeCN (5 mL) and the filtrate concentrated under reduced pressure. The resulting oil was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(1: 0)$ to (2:1)) to afford S4 ($307 \mathrm{mg}, 93 \%$) as an orange oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3302,3061,3028,2845,1657,1515,1453,1028,730,694 ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.52-7.19(\mathrm{~m}, 16 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.05(\mathrm{br} \mathrm{s}$, 1H); ${ }^{13}{ }^{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,139.3,139.2,138.5,129.0,128.8,128.7,128.3$, 127.8, 127.6, 127.5, 127.5, 67.1, 52.7, 43.4; m / z (ES HRMS) $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}$ requires 331.1810, found $[\mathrm{MH}]^{+} 331.1813$.

N-benzyl-2-(benzylamino)-2-(4-methoxyphenyl)acetamide S5

To a 2-necked round bottomed flask containing 4-methoxyphenylacetic acid (1.81 g, 10 $\mathrm{mmol})$, NBS ($1.87 \mathrm{~g}, 10.5 \mathrm{mmol}$) and AIBN ($330 \mathrm{mg}, 2 \mathrm{mmol}$) was added $\mathrm{CCl}_{4}(15 \mathrm{~mL})$. The reaction mixture was heated under reflux for 16 hours then allowed to cool to room temperature, filtered, washed with CCl_{4} and concentrated under reduced pressure. To the resulting oil was added thionyl chloride (15 mL) and the reaction mixture was heated under reflux for 1 hour. The solvent was removed under reduced pressure to give crude 2 -bromo-2-(4-methoxyphenyl)acetyl chloride as an orange oil. The crude product was diluted with $\mathrm{MeCN}(5 \mathrm{~mL})$ and added dropwise to a solution of benzylamine ($5.4 \mathrm{~mL}, 50 \mathrm{mmol}$) in MeCN
(50 mL) at $0{ }^{\circ} \mathrm{C}$ and stirred for 16 hours at room temperature. The reaction mixture was filtered, washed with $\mathrm{MeCN}(10 \mathrm{~mL})$ and the filtrate was concentrated under reduced pressure. The resulting oil was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (1:1)) to afford $\mathbf{S 5}(1.79 \mathrm{~g}, 50 \%)$ as an orange oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3289,3030,2931,2838,1511,1453,1251,1177,1026,751,694 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{brs}, 1 \mathrm{H}), 7.35-7.18(\mathrm{~m}, 12 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 2 \mathrm{H}) 1.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 172.4,159.6,139.4,138.5,131.5,128.8,128.7,128.6,128.3,127.8,127.6,127.5$, 114.4, 66.5, 55.5, 52.6, 43.4; m/z (ESI HRMS) $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ requires 383.1735 , found [MNa] ${ }^{+}$383.1732.

N-benzyl-2-(benzylamino)-2-(4-nitrophenyl)acetamide S6

Following procedure A using 4-nitrophenylacetic acid (1.81 g, 10 mmol), NBS ($2.67 \mathrm{~g}, 15$ $\mathrm{mmol}), \mathrm{HBr}$ (3 drops) and benzylamine ($5.4 \mathrm{~mL}, 50 \mathrm{mmol}$). The resulting oil was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(1: 0)$ to (2:1)) to afford S6 ($1.85 \mathrm{~g}, 68 \%$) as an orange oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3347,3258,3033,2933,2846,1668,1519,1452,1343,750,734,689 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.37-7.19(\mathrm{~m}$, $10 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.6,147.8,146.3,138.6,138.0,128.9,128.8,128.4,128.3,127.8,124.1,66.3$, 52.4, 43.5; m / z (ES HRMS) $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 376.1661, found [MH] ${ }^{+} 376.1665$.

N-benzyl-2-(benzylamino)-2-(4-bromophenyl)acetamide S7

1) SOCl_{2}, reflux, 1 h then

NBS, HBr , reflux, 4 h
2) $\mathrm{BnNH}_{2}, \mathrm{MeCN}$
$0^{\circ} \mathrm{C}$ - r.t., 16 h

S7

Following general procedure \mathbf{A} using 4-bromophenylacetic acid ($860 \mathrm{mg}, 4 \mathrm{mmol}$), NBS (1 g , $6 \mathrm{mmol}), \mathrm{HBr}$ (3 drops) and benzylamine ($2.2 \mathrm{~mL}, 20 \mathrm{mmol}$). The resulting oil was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford S7 ($708 \mathrm{mg}, 45 \%$) as an orange oil.

IR $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1} 3299,3062,3028,2924,2848,1652,1517,1486,1453,1071,1010,907,727$, 696; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 12 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=6.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.27 ($\mathrm{s}, 1 \mathrm{H}$), $3.77(\mathrm{~s}, 2 \mathrm{H}), 2.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,139.0$, 138.3, 132.0, 129.1, 128.8, 128.7, 128.2, 127.7, 127.6, 127.5, 122.2, 66.3, 52.4, 43.3; m/z (ES HRMS) $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OBr}$ requires 409.0916, found $[\mathrm{MH}]^{+} 409.0924$.

N -benzyl-2-(benzylamino)-2-(2-bromophenyl)acetamide S8

1) SOCl_{2}, reflux, 1 h
then
 NBS, HBr , reflux, 4 h
2) $\mathrm{BnNH}_{2}, \mathrm{MeCN}$ $0^{\circ} \mathrm{C}$ - r.t., 16 h

S8

Following general procedure \mathbf{A} using 2-bromophenylacetic acid ($430 \mathrm{mg}, 2 \mathrm{mmol}$), NBS (530 $\mathrm{mg}, 3 \mathrm{mmol})$, HBr (3 drops) and benzylamine ($1.1 \mathrm{~mL}, 10 \mathrm{mmol}$). The resulting oil was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford S8 (474 mg, 58\%) as an orange oil.
$\mathbf{I R} \mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1} 3315,3061,3027,2922,2844,1658,1514,1453,1080,1025,748,697 ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 12 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{~s}$, $1 \mathrm{H}), 4.51$ (dd, $J=6.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.85(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,139.1,138.5,138.2,133.4,129.8,129.6,128.7$, 128.6, 128.3, 127.9, 127.8, 127.5, 127.4, 124.3, 65.8, 52.6, 43.4; m / z (ES HRMS) $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OBr}$ requires 409.0916, found $[\mathrm{MH}]^{+} 409.0911$.

N -benzyl-2-(benzylamino)-2-(furan-2-yl)acetamide $\mathbf{S 9}$

To a solution of glyoxylic acid monohydrate (460 mg , 5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(33 \mathrm{~mL})$ was added benzylamine ($0.55 \mathrm{~mL}, 5 \mathrm{mmol}$) and 2-furylboronic acid ($560 \mathrm{mg}, 5 \mathrm{mmol}$). The flask was
purged with argon and stirred at room temperature for 4 hours. The resulting precipitate was filtered, dried under reduced pressure and used without further purification. To a round bottomed flask containing the crude amino acid was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, followed by the addition of PyBOP ($2.8 \mathrm{~g}, 5.5 \mathrm{mmol}$), triethylamine ($1.1 \mathrm{~mL}, 7.5 \mathrm{mmol}$) and benzylamine ($1.4 \mathrm{~mL}, 12.5 \mathrm{mmol}$). The reaction mixture was allowed to warm to room temperature and was stirred for 16 hours. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford S9 ($1.24 \mathrm{~g}, 78 \%$) as an orange oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3304,3061,3028,2924,2849,1657,1520,1496,1453,1147,1073,1010,734$, $697 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, \mathrm{J}=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.23(\mathrm{~m}$, $10 \mathrm{H}), 6.38-6.29(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ ($\mathrm{d}, \mathrm{J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,151.6,142.6,139.0,138.3,128.8$, 128.7, 128.4, 127.8, 127.6, 127.6, 110.7, 108.5, 60.4, 52.4, 43.5; m/z (ES HRMS) $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 321.1603 , found $[\mathrm{MH}]^{+} 321.1604$.

N -benzyl-2-(benzylamino)-2-(thiophen-2-yl)acetamide S10

To a solution of glyoxylic acid monohydrate ($368 \mathrm{mg}, 4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was added benzylamine ($0.44 \mathrm{~mL}, 4 \mathrm{mmol}$) and 2-thiopheneboronic acid ($512 \mathrm{mg}, 4 \mathrm{mmol}$). The flask was purged with argon and stirred at room temperature for 72 hours. The resulting precipitate was filtered, dried under reduced pressure and used without further purification. To a round bottomed flask containing the crude amino acid was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, followed by the addition of PyBOP (2.3 $\mathrm{g}, 4.4 \mathrm{mmol})$, triethylamine ($0.84 \mathrm{~mL}, 6 \mathrm{mmol}$) and benzylamine ($1.1 \mathrm{~mL}, 10 \mathrm{mmol}$). The reaction mixture was allowed to warm to room temperature and stirred for 16 hours. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford S10 (749 mg, 56\%) as an orange oil.

IR $v_{\text {max }} / \mathrm{cm}^{-1} 3318,3061,2922,2851,1654,1517,1452,1359,1234,1078,1028,847,731$, $694 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.16(\mathrm{~m}, 12 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, \mathrm{J}=$ $5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=13.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.27 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,142.2,139.0,138.2,128.7,128.6$,
$128.3,127.7,127.5,127.4,126.9,126.0,125.5,62.3,52.3,43.4 ; m / z$ (ES HRMS) $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{OS}$ requires 337.1375 , found $[\mathrm{MH}]^{+} 337.1372$.

Synthesis of α-Aryl Triketopiperazines (1a-j)

1,4-dibenzyl-6-phenylpiperazine-2,3,5-trione 1a

Following general procedure B using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1 H-benzotriazole (394 mg, 1.35 mmol) in THF (2 mL), N-benzyl-2-(benzylamino)-2-phenylacetamide S4 (307 $\mathrm{mg}, 0.9 \mathrm{mmol}$) in THF (3 mL). The residue was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford 1a $(247.9 \mathrm{mg}, 72 \%)$ as a white solid.
m.p. $159-161{ }^{\circ} \mathrm{C}$; IR $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3034,1748,1673,1437,1253,1188,720,698 ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.18(\mathrm{~m}, 15 \mathrm{H}), 5.57(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.89(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)$) $\delta 166.8$, $156.4,153.0,135.0,134.1,134.0,130.0,129.8,129.3,129.2,128.9,128.7,128.2,127.0$, 63.8, 48.0, 44.7; $m / z(E S I H R M S) \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ requires 407.1372, found [MNa] ${ }^{+}$407.1370.

1,4-dibenzyl-6-(4-methoxyphenyl)piperazine-2,3,5-trione 1b

Following general procedure B using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1 H-benzotriazole ($438 \mathrm{mg}, 1.5 \mathrm{mmol}$) in THF (2 mL), N-benzyl-2-(benzylamino)-2-(4-methoxyphenyl)acetamide $\mathbf{S 5}$ ($360 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (3 mL). The residue was purified by column chromatography on silica gel (gradient: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:acetone $=(1: 0)$ to (95:5)) to afford $1 \mathrm{~b}(117.8 \mathrm{mg}, 28 \%)$ as a white solid.
m.p. $184-186^{\circ} \mathrm{C}$; IR $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ 2966, 2842, 2358, 1749, 1674, 1515, 1352, 1251, 1176, 1022, 831, 728, 695; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.14(\mathrm{~m}, 8 \mathrm{H}), 7.14-$ $7.09(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=$ $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,160.9$, 156.5, 153.0, 135.1, 134.1, 129.3, 128.8, 128.7, 128.3, 128.2, 125.8, 115.2, 63.2, 55.6, 47.8, 44.7; m / z (ESI HRMS) $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ requires 437.1477, found $[\mathrm{MNa}]^{+} 437.1482$.

1,4-dibenzyl-6-(4-nitrophenyl)piperazine-2,3,5-trione 1c

Following general procedure B using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1H-benzotriazole ($438 \mathrm{mg}, 1.5 \mathrm{mmol}$) in THF (2 mL), N -benzyl-2-(benzylamino)-2-(4-nitrophenyl)acetamide S6 ($375 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (3 mL). The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $\mathbf{1 c}(163 \mathrm{mg}, 38 \%)$ as a white solid.
m.p. $167-169^{\circ} \mathrm{C}$; IR $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3089,3030,1754,1684,1518,1346,1254,976,727,702 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.10(\mathrm{~m}, 12 \mathrm{H}), 5.51(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.23(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,155.8,152.8,148.9,140.9,134.7,133.3,129.5,129.3,129.2$, $129.2,128.8,128.5,128.2,124.9,63.3,48.6,45.0 ; m / z$ (ESI HRMS) $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}$ requires 452.1222, found $[\mathrm{MNa}]^{+} 452.1219$.

1,4-dibenzyl-6-(4-bromophenyl)piperazine-2,3,5-trione 1d

Following general procedure \mathbf{B} using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1H-benzotriazole (86 $\mathrm{mg}, 0.30 \mathrm{mmol}$) in THF (1 mL), N -benzyl-2-(benzylamino)-2-(4-bromophenyl)acetamide $\mathbf{S 7}$ ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$) in THF (1 mL). The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $\mathbf{1 d}(23 \mathrm{mg}, 21 \%)$ as an off white solid.
m.p. $159-162^{\circ} \mathrm{C}$; IR $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3028,2918,1744,1676,1491,1451,1434,1365,1251,1188$, 1072, 1010, 823, 741, 695; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}$, $3 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.07(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,156.2,152.9,134.9,133.7,133.1,133.0,129.3,129.2,129.0$, 128.7, 128.6, 128.4, 124.3, 63.3, 48.1, 44.8; m / \mathbf{z} (ES HRMS) $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{BrNa}$ requires 485.0477, found [MNa] ${ }^{+} 485.0476$.

1,4-dibenzyl-6-(furan-2-yl)piperazine-2,3,5-trione 1e

Following general procedure B using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1 H -benzotriazole ($225 \mathrm{mg}, 0.77 \mathrm{mmol}$) in THF (2 mL), N -benzyl-2-(benzylamino)-2-(furan-2-yl)acetamide $\mathbf{S 9}$ ($204 \mathrm{mg}, 0.64 \mathrm{mmol}$) in THF (2 mL). The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $\mathbf{1 e}(94.2 \mathrm{mg}, 40 \%)$ as an off white solid.
m.p. 144 - $146^{\circ} \mathrm{C}$; IR $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3062,3033,2925,1748,1688,1496,1430,1361,1255,1208$, $1013,730,699{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.11(\mathrm{~m}, 11 \mathrm{H}), 6.34(\mathrm{dd}, \mathrm{J}=3.4,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.30(\mathrm{dd}, \mathrm{J}=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.7$, 156.4, 153.0, 145.8, 144.3, 135.0, 133.9, 129.2, 129.1, 129.1, 128.8, 128.7, 128.2, 111.6, 111.2, 57.8, 48.0, 44.9; m / z (ES HRMS) $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ requires 397.1164, found [MNa$]^{+}$ 397.1166.

1,4-dibenzyl-6-(thiophen-2-yl)piperazine-2,3,5-trione $\mathbf{1 f}$

Following general procedure B using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1H-benzotriazole ($105 \mathrm{mg}, 0.36 \mathrm{mmol}$) in THF (1 mL), N -benzyl-2-(benzylamino)-2-(thiophen-2-yl)acetamide S10 ($100 \mathrm{mg}, 0.30 \mathrm{mmol}$) in THF (1 mL). The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $\mathbf{1 f}(40 \mathrm{mg}, 34 \%)$ as an off white solid.
m.p. $135-137^{\circ} \mathrm{C}$; IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3033,2923,2853,1747,1688,1495,1431,1361,1253,1207$, 1087, 971, 729, 700; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.23(\mathrm{~m}, 11 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H})$, $5.56(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ ($d, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,156.1,152.5,136.9,134.9,133.9$, $129.3,129.3,129.2,128.9,128.7,128.3,127.9,127.6,59.4,48.0,44.9 ; m / z$ (ES HRMS) $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}$ requires 413.0936, found [MNa] ${ }^{+} 413.0926$.

1,4-dibenzyl-6-(2-bromophenyl)piperazine-2,3,5-trione 1g

Following general procedure \mathbf{B} using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1H-benzotriazole (85 $\mathrm{mg}, 0.30 \mathrm{mmol}$) in THF (1 mL), N -benzyl-2-(benzylamino)-2-(2-bromophenyl)acetamide S8 ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$) in THF (1 mL). The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $\mathbf{1 g}(43 \mathrm{mg}, 38 \%)$ as an off white solid.
m.p. $153-155^{\circ} \mathrm{C}$; $\mathrm{IR}_{\mathrm{max}} / \mathrm{cm}^{-1} 3062,3032,2932,1744,1682,1494,1429,1363,1257,1190$, $1027,908,728,698 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{dd}, \mathrm{J}=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.23$ $(\mathrm{m}, 10 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{dd}, \mathrm{J}=7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.36(\mathrm{~d}, \mathrm{~J}=14.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.9,156.3,153.1,134.9,134.6,134.0,133.5,131.4,129.7,129.3$, 129.1, 128.7, 128.4, 128.3, 124.0, 63.8, 48.2, 44.8; $\boldsymbol{m} / \mathbf{z}$ (ES HRMS) $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{BrNa}$ requires 485.0477, found $[\mathrm{MNa}]^{+} 485.0474$.

1,4-dibenzyl-6-(1-methyl-1H-pyrrol-2-yl)piperazine-2,3,5-trione $\mathbf{1 h}$ and 1,4-dibenzyl-6-(1-methyl-1H-pyrrol-3-yl)piperazine-2,3,5-trione 1i

To a round bottomed flask containing triketopiperazine S11 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$), NBS (87 $\mathrm{mg}, 0.49 \mathrm{mmol}$) and AIBN ($11 \mathrm{mg}, 65 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) was added diethylcarbonate (1.6 mL)
and the reaction mixture was heated under reflux for 1 hour. The reaction mixture was allowed to cool to room temperature, filtered, washed with diethylcarbonate ($3 \times 2 \mathrm{~mL}$) and the filtrate concentrated under reduced pressure. The crude α-bromo triketopiperazine was then used without further purification. To the crude residue was added diethylcarbonate (2 mL) and N-methyl pyrrole ($58 \mu \mathrm{~L}, 0.65 \mathrm{mmol}$) and the reaction mixture was stirred for 7 days at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford $\mathbf{1 h}(66.6 \mathrm{mg}, 52 \%)$ as a colourless waxy solid and $\mathbf{1 i}$ ($10.4 \mathrm{mg}, 8 \%$) as a colourless waxy solid.

1,4-dibenzyl-6-(1-methyl-1H-pyrrol-2-yl)piperazine-2,3,5-trione 1h
IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3062,3032,2944,1745,1684,1493,1427,1359,1301,1251,1207,1089,908$, 723,$698 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{dd}, \mathrm{J}=$ $2.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.13 (dd, J = 3.8, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.06 (dd, J = 3.9, 1.7 Hz, 1H), 5.47 (d, J = 14.4 $\mathrm{Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, 1H), 3.39 (s, 3H); ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,156.2,153.1,135.1,133.8,129.4$, $129.2,129.1,128.8,128.7,128.2,125.3,124.1,109.0,108.3,56.5,48.1,44.6,34.2 ; m / z$ (ES HRMS) $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}$ requires 410.1481, found [MNa] ${ }^{+} 410.1489$.

1,4-dibenzyl-6-(1-methyl-1H-pyrrol-3-yl)piperazine-2,3,5-trione 1i
IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3062,3031,2942,1745,1683,1495,1429,1357,1253,1207,1155,1088,1029$, 909, 726, 698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.55(\mathrm{t}, \mathrm{J}$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=2.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.06-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,156.9,153.1,135.3,134.6,129.5,129.3,129.2,128.7,128.6$, $128.1,123.5,120.7,117.5,106.6,58.2,47.6,44.6,36.6 ; m / z$ (ES HRMS) $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}$ requires 410.1481 , found $[\mathrm{MNa}]^{+} 410.1484$.

1,4-dibenzyl-6-(1H-indol-3-yl)piperazine-2,3,5-trione $\mathbf{1 j}$

To a round bottomed flask containing triketopiperazine $\mathbf{S 1 1}$ ($308 \mathrm{mg}, 1.0 \mathrm{mmol}$), NBS (267 $\mathrm{mg}, 1.5 \mathrm{mmol}$) and AIBN ($30 \mathrm{mg}, 0.20 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added diethylcarbonate (5 mL) and the reaction mixture was heated under reflux for 1 hour. The reaction mixture was allowed to cool to room temperature, filtered, washed with diethylcarbonate ($3 \times 3 \mathrm{~mL}$) and
the filtrate concentrated under reduced pressure. The crude α-bromo triketopiperazine was then used without further purification. To the crude residue was added DMF (5 mL) and indole ($177 \mathrm{mg}, 1.5 \mathrm{mmol}$) and the reaction mixture was stirred for 24 hours at room temperature. The reaction mixture was diluted with EtOAc (5 mL), washed with water ($5 \times$ 10 mL) and brine (10 mL) and the organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(1: 0)$ to (1:1)) to afford $\mathbf{1 j}(329 \mathrm{mg}, 78 \%)$ as a white solid.
m.p. $178-180^{\circ} \mathrm{C}$; IR $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3270,3059,1747,1691,1661,1548,1494,1425,1360,1272$, 1201, 1147, 1100, 1077, 970, 735, 695; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.37$ (m, 2H), $7.36-7.08(\mathrm{~m}, 13 \mathrm{H}), 5.54(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.88(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,156.8$, 153.1, 136.7, 135.1, 134.5, 129.4, 129.2, 129.2, 128.7, 128.6, 128.2, 124.9, 124.0, 123.5, 121.2, 118.7, 112.0, 109.8, 57.6, 47.8, 44.8; m / z (ES HRMS) $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}$ requires 446.1481, found [MNa] ${ }^{+} 446.1480$.

Asymmetric Michael Additions (2a-q)

1,4-dibenzyl-6-(3-oxobutyl)-6-phenylpiperazine-2,3,5-trione 2a

Following general procedure $\mathbf{C i i}$ using triketopiperazine $\mathbf{1 a}$ ($38 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst $\mathbf{3}(4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and methyl vinyl ketone ($\mu \mathrm{L}, 0.25 \mathrm{mmol}$). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (2:1)) to afford $2 \mathrm{a}(44.6 \mathrm{mg}, 98 \%)$ as a colourless oil in $8: 92 \mathrm{er}$ as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, $50: 50,1.0 \mathrm{ml} / \mathrm{min}$, $\lambda 220 \mathrm{~nm}, \mathrm{t}($ minor $)=20.5 \mathrm{~min}, \mathrm{t}($ major $)=22.4 \mathrm{~min}]$.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3067,3035,1744,1682,1495,1419,1358,1266,1144,1074,1029,707,693 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.43$ - $7.18(\mathrm{~m}, 15 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}$, 1 H), 4.93 (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.64(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.04-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=$ $14.8,9.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.1$, 169.1, 155.8, 155.1, 138.0, 136.6, 135.1, 129.7, 129.6, 129.2, 129.2, 128.9, 128.7, 128.3,
128.2, 126.3, 72.8, 48.9, 44.7, 37.1, 30.1, 29.4; m / z (ESI HRMS) $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ requires 477.1790, found $[\mathrm{MNa}]^{+} 477.1792 ;[\alpha]_{D}^{20}=-23.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

1,4-dibenzyl-6-(4-methoxyphenyl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2b

Following general procedure Cii using triketopiperazine 1b ($41 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and methyl vinyl ketone ($20 \mu \mathrm{~L}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to $(2: 1))$ to afford 2 b $(40.0 \mathrm{mg}, 83 \%)$ as a colourless oil in 7:93 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 50:50, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 230 \mathrm{~nm}, \mathrm{t}($ minor $)=13.9 \mathrm{~min}, \mathrm{t}($ major $)=16.9 \mathrm{~min}]$.

IR $v_{\max } / \mathrm{cm}^{-1} 3036,2959,1739,1683,1512,1420,1358,1260,1229,1184,1077,1031,824$, 698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.21(\mathrm{~m}, 12 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, 1 H), $3.02-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.38$ (ddd, J = 14.8, $9.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 205.2,169.4,160.4,155.9,155.1,136.8,135.2,129.8$, $129.3,129.2,128.9,128.7,128.3,128.2,127.6,115.0,72.4,55.6,48.8,44.7,37.2,30.2,29.4 ;$ $\boldsymbol{m} / \boldsymbol{z}$ (ES HRMS) $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}$ requires 507.1896, found $[\mathrm{MNa}]^{+} 507.1898 ;[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}=-18.5$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$.

1,4-dibenzyl-6-(4-nitrophenyl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2c

Following general procedure $\mathbf{C i i}$ using triketopiperazine 1c ($43 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and methyl vinyl ketone ($20 \mu \mathrm{~L}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (2:1)) to afford 2c ($34.6 \mathrm{mg}, 70 \%$) as a colourless oil in 5:95 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 45:55, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}($ minor $)=23.2 \mathrm{~min}, \mathrm{t}($ major $)=27.1 \mathrm{~min}]$.

IR $v_{\text {max }} / \mathrm{cm}^{-1} 3080,3003,2939,1751,1680,1517,1417,1345,1229,1109,1079,1030,854$, 730,$703 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.22$ ($\mathrm{m}, 10 \mathrm{H}$), $5.20-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ (ddd, $J=$ $14.4,10.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56 (ddd, J = 14.7, 10.8, $4.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.99-1.82$ (m, 2H), 1.73 (s, 3H); ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.7,168.2,155.4,154.7,148.4,144.6,136.1,134.8,129.4$, 129.1, 129.0, 128.8, 128.6, 128.4, 127.9, 124.5, 72.3, 49.0, 45.0, 36.9, 30.5, 29.5; m/z (ES HRMS) $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}$ requires 522.1641, found $[\mathrm{MNa}]^{+} 522.1638 ;[\alpha]_{D}^{20}=-7.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

1,4-dibenzyl-6-(4-bromophenyl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2d

Following general procedure $\mathbf{C i i}$ using triketopiperazine 1d ($46 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and methyl vinyl ketone ($20 \mu \mathrm{~L}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (2:1)) to afford 2d $(46.7 \mathrm{mg}, 88 \%)$ as a colourless oil in 9:91 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 50:50, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 230 \mathrm{~nm}, \mathrm{t}($ minor $)=21.6 \mathrm{~min}, \mathrm{t}($ (major $)=24.3 \mathrm{~min}]$.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3063,3032,1743,1716,1680,1491,1360,1228,1077,908,727,701 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 12 \mathrm{H}), 5.16(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (d, J = 13.6 Hz, 1H), $4.93(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (ddd, $J=14.4$, $10.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (ddd, J = 14.8, 9.8, $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.86-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 204.9,168.8,155.6,155.0,137.1,136.4,135.0,132.8,129.3,129.2$, $128.9,128.8,128.5,128.3,128.1,124.1,72.4,48.9,44.9,37.0,30.2,29.4 ; m / z$ (ES HRMS) $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaBr}$ requires 555.0895, found $[\mathrm{MNa}]^{+} 555.0900 ;[\alpha]_{D}^{20}=-4.7\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Following general procedure $\mathbf{C i i}$ using triketopiperazine $\mathbf{1 e}(37 \mathrm{mg}, 0.10 \mathrm{mmol})$, chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and methyl vinyl ketone ($20 \mu \mathrm{~L}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to $(2: 1)$) to afford $\mathbf{2 e}(44 \mathrm{mg}, 99 \%)$ as a colourless oil in 94:6 er as determined by HPLC analysis [Phenomenex Lux Cellulose-3, MeCN:water, 35:65, 1.0 $\mathrm{ml} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}($ major $)=24.4 \mathrm{~min}, \mathrm{t}($ minor $)=27.8 \mathrm{~min}]$.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3036,2935,1746,1684,1495,1415,1365,1342,1231,1147,1015,908,731$, $700 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.17(\mathrm{~m}, 11 \mathrm{H}), 6.57(\mathrm{dd}, \mathrm{J}=3.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ (dd, $J=3.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.74 (ddd, $J=14.7,10.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (ddd, $J=14.9,10.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}$, $2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.0,167.1,155.8,154.9,149.8,143.7$, 136.3, 135.1, 129.2, 128.8, 128.8, 128.7, 128.3, 128.0, 111.1, 110.7, 68.5, 47.7, 44.9, 36.6, 29.5, 28.6; m / z (ES HRMS) $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}$ requires 467.1583, found $[\mathrm{MNa}]^{+} 467.1590 ;[\boldsymbol{\alpha}]_{D}^{20}=$ -12.1 (c 1.0, CHCl_{3}).

1,4-dibenzyl-6-(3-oxobutyl)-6-(thiophen-2-yl)piperazine-2,3,5-trione $\mathbf{2 f}$

Following general procedure Cii using triketopiperazine 1 f ($39 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and methyl vinyl ketone ($20 \mu \mathrm{~L}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (2:1)) to afford $\mathbf{2 f}(42.7 \mathrm{mg}, 93 \%)$ as a colourless oil in 6:94 er as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, 50:50, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 230 \mathrm{~nm}, \mathrm{t}($ minor $)=21.4 \mathrm{~min}, \mathrm{t}($ major $)=23.4 \mathrm{~min}]$.
 $\left.\mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{dd}, \mathrm{J}=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.06(\mathrm{dd}, \mathrm{J}=3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (dd, $J=5.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.37(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}$, 1 H), 3.84 (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (ddd, $J=14.6,11.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48 (ddd, $J=14.8,11.5$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ (ddd, $J=17.1,11.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (ddd, $J=17.8,11.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58$ (s, 3H); ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.9,167.9,155.4,154.8,142.8,136.7,135.0,129.1$, $129.1,129.0,128.7,128.3,128.3,127.8,127.6,126.9,70.8,48.8,44.9,37.3,31.6,29.3 ; m / z$ (ES HRMS) $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaS}$ requires 483.1354, found $[\mathrm{MNa}]^{+} 483.1353$; $[\boldsymbol{\alpha}]_{D}^{20}=-33.5$ (c 1.0, CHCl_{3}).

1,4-dibenzyl-6-(2-bromophenyl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2g

Following general procedure $\mathbf{C i i}$ using triketopiperazine $\mathbf{1 g}(46 \mathrm{mg}, 0.10 \mathrm{mmol})$, chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and methyl vinyl ketone ($20 \mu \mathrm{~L}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (2:1)) to afford $\mathbf{2 g}(47.1 \mathrm{mg}, 88 \%)$ as a colourless oil in 45:55 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 50:50, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 230 \mathrm{~nm}, \mathrm{t}($ minor $)=19.4 \mathrm{~min}, \mathrm{t}($ major $)=23.5 \mathrm{~min}]$.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3064,3033,1741,1717,1680,1494,1419,1361,1262,1227,1075,1027,908$, 727,$700 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.32$ $-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{ddd}, \mathrm{J}=14.0,11.4,4.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.44 (ddd, $J=14.1,11.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.90 (ddd, $J=17.6,11.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-$ 1.60 (m, 4H); ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.6, 169.3, 156.5, 155.0, 136.2, 135.9, 135.3, 134.9, 131.2, 130.4, 129.8, 129.0, 128.7, 128.6, 128.5, 128.1, 128.0, 124.5, 71.7, 47.7, 44.6, 36.4, 33.0, 29.7; m / z (ES HRMS) $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{BrNa}$ requires 555.0895, found [MNa] ${ }^{+} 555.0898$; $[\alpha]_{D}^{20}=1.9$ (c 1.0, CHCl_{3}).

Following general procedure $\mathbf{C i i}$ using triketopiperazine $\mathbf{1 h}(39 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and methyl vinyl ketone ($20 \mu \mathrm{~L}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (2:1)) to afford $\mathbf{2 h}(45.0 \mathrm{mg}, 99 \%$) as a colourless oil in 49:51 er as determined by HPLC analysis [Phenomenex Lux Cellulose-3, MeCN:water, 40:60, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}($ minor $)=15.9 \mathrm{~min}, \mathrm{t}($ major $)=18.3 \mathrm{~min}$].

IR $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3063,3033,2947,1742,1717,1681,1491,1416,1358,1306,1261,1222,1074$, 908, 724, 699; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.19-$ 7.09 (m, 3H), $6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.46$ (dd, J = 3.8, 1.8 Hz, 1H), 6.39 (dd, J = 2.8, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.14 (dd, $J=3.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.10 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.55 (d, J = $13.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.32(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.52$ (ddd, $J=14.5,9.9,5.6 \mathrm{~Hz}$, 1H), $2.15-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.9,168.8,156.1$, 154.2, 135.8, 135.0, 130.1, 129.7, 128.7, 128.6, 128.3, 128.0, 126.9, 125.4, 112.2, 107.4, 67.6, 47.5, 44.9, 37.0, 34.0, 33.2, 29.9; m / z (ES HRMS) $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}$ requires 480.1899, found $[\mathrm{MNa}]^{+} 480.1904 ;[\alpha]_{D}^{20}=5.7$ (c 1.0, CHCl_{3}).

1,4-dibenzyl-6-(1-methyl-1H-pyrrol-3-yl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2i

Following general procedure Cii using triketopiperazine $\mathbf{1 i}(34 \mathrm{mg}, 90 \mu \mathrm{~mol})$, chiral catalyst $\mathbf{3}$ ($3.5 \mathrm{mg}, 9 \mu \mathrm{~mol} 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and methyl vinyl ketone ($18 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (2:1)) to afford $\mathbf{2 i}(25.1 \mathrm{mg}, 63 \%)$ as a colourless oil in 77:23 er as determined by HPLC analysis [Phenomenex Lux Cellulose-3, MeCN:water, 35:65, $1.0 \mathrm{ml} / \mathrm{min}$, $\lambda 220 \mathrm{~nm}, \mathrm{t}$ (major) $=19.5 \mathrm{~min}, \mathrm{t}($ minor $)=21.1 \mathrm{~min}]$.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3062,3031,1741,1714,1682,1495,1419,1362,1227,1166,1080,911,729$, $701 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.59(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{t}, \mathrm{J}=2.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.90 (dd, $J=2.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.29(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (d, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.91(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.61(\mathrm{~s}, 3 \mathrm{H}), 2.81$ (ddd, $J=14.8,11.8,5.3 \mathrm{~Hz}$, 1 H), 2.30 (ddd, $J=14.9,11.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.82 (ddd, $J=17.1,11.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.70 (ddd, $J=$ 17.9, 11.8, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.57 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.7,169.7,156.1,155.3$, $137.4,135.4,129.2,129.1,128.8,128.6,128.1,128.0,123.3,122.9,120.4,106.5,69.5,48.3$, 44.7, 37.4, 36.7, 30.4, 29.4; m / z (ES HRMS) $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires 458.2080, found [MH] ${ }^{+}$ 458.2082; $[\boldsymbol{\alpha}]_{D}^{20}=-21.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

1,4-dibenzyl-6-(1H-indol-3-yl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2j

Following general procedure Cii using triketopiperazine $\mathbf{1 j}$ ($12 \mathrm{mg}, 30 \mu \mathrm{~mol}$), chiral catalyst $\mathbf{3}$ ($1 \mathrm{mg}, 3 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and methyl vinyl ketone ($6 \mu \mathrm{~L}, 80 \mu \mathrm{~mol}$). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (2:1)) to afford $\mathbf{2 j}(12.5 \mathrm{mg}, 91 \%)$ as a colourless oil in 27:73 er as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, $60: 40,1.0 \mathrm{ml} / \mathrm{min}$, $\lambda 220 \mathrm{~nm}, \mathrm{t}($ minor $)=5.8 \mathrm{~min}, \mathrm{t}($ major $)=9.9 \mathrm{~min}]$.

IR $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3343,1739,1715,1676,1496,1416,1362,1225,1166,1017,980,909,728$, 699; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.84-8.76(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.13(\mathrm{~m}$, $9 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.94 (d, J = 14.7 Hz, 1H), 2.83 (ddd, J = 14.4, 11.5, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50-2.41$ (m, 1H), 1.90 (ddd, $J=17.6,11.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.77 ($\mathrm{ddd}, J=17.3,11.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.3,169.6,156.4,154.8,136.9,136.8,135.2,129.6,129.1,128.7,128.4$, $128.0,124.8,124.1,123.3,121.2,118.4,114.1,112.2,69.4,48.0,44.9,36.7,31.9,29.6 ; m / z$ (ES HRMS) $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}$ requires 516.1899, found $[\mathrm{MNa}]^{+} 516.1901$; $[\alpha]_{D}^{20}=-14.5$ (c 1.0, CHCl_{3}).

Following general procedure Cii using triketopiperazine 1a ($38 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and ethyl vinyl ketone ($25 \mu \mathrm{~L}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (2:1)) to afford $\mathbf{2 k}(41.3 \mathrm{mg}, 91 \%)$ as a colourless oil in 4:96 er as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, 50:50, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 230 \mathrm{~nm}, \mathrm{t}($ minor $)=28.1 \mathrm{~min}, \mathrm{t}$ (major) $=30.6 \mathrm{~min}]$.

IR $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2938,1743,1680,1495,1416,1362,1261,1222,1144,1077,1030,782,697 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.17(\mathrm{~m}, 15 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93$ (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.37(\mathrm{~m}$, 1H), $1.93-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 3 \mathrm{H}), 0.76(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 207.9, 169.2, 155.9, 155.2, 138.0, 136.7, 135.1, 129.7, 129.6, 129.2, 128.8, 128.7, $128.3,128.1,126.3,72.8,48.9,44.7,35.8,35.4,30.1,7.7 ; m / z$ (ES HRMS) $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ requires 491.1947, found $[\mathrm{MNa}]^{+} 491.1949 ;[\alpha]_{D}^{20}=-23.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

1,4-dibenzyl-6-(4-methoxyphenyl)-6-(3-oxopentyl)piperazine-2,3,5-trione $\mathbf{2 I}$

Following general procedure $\mathbf{C i i}$ using triketopiperazine $\mathbf{1 b}$ ($41 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and ethyl vinyl ketone ($25 \mu \mathrm{~L}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (2:1)) to afford $\mathbf{2 l}(37 \mathrm{mg}, 75 \%)$ as a colourless oil in 3:97 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 50:50, 1.0 $\mathrm{ml} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}($ minor $)=22.1 \mathrm{~min}, \mathrm{t}($ major $)=27.4 \mathrm{~min}]$.

IR $v_{\max } / \mathrm{cm}^{-1} 2970,2936,1742,1681,1605,1511,1416,1362,1256,1222,1183,1078,1031$, 910, 832, 728, 700; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.18(\mathrm{~m}, 12 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H})$, $5.21(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.69$ (d, J = 14.7 Hz, 1H), $2.97(d d d, J=14.4,9.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{dq}, J=$ $17.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 3 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) δ 208.0, 169.4, 160.4, 156.0, 155.2, 136.8, 135.2, 129.8, 129.3, 129.3, 128.8, 128.7, 128.3, 128.1, 127.7, 115.0, 72.5, 55.6, 48.8, 44.7, 35.9, 35.5, 30.2, 7.7; m/z (ES HRMS) $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}$ requires 521.2052, found $[\mathrm{MNa}]^{+} 521.2048 ;[\alpha]_{D}^{20}=-4.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

1,4-dibenzyl-6-(4-nitrophenyl)-6-(3-oxopentyl)piperazine-2,3,5-trione $\mathbf{2 m}$

Following general procedure Cii using triketopiperazine 1c ($43 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and ethyl vinyl ketone ($25 \mu \mathrm{~L}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to $(2: 1)$) to afford $2 \mathrm{~m}(31.5 \mathrm{mg}, 63 \%)$ as a colourless oil in 3:97 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 50:50, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 230 \mathrm{~nm}, \mathrm{t}($ minor $)=19.3 \mathrm{~min}, \mathrm{t}($ major $)=22.7 \mathrm{~min}]$.

IR $v_{\max } / \mathrm{cm}^{-1}$ 2980, 2933, 1744, 1682, 1608, 1525, 1495, 1415, 1349, 1221, 1113, 1078, 1030, $852,729,700 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.32-$ $7.14(\mathrm{~m}, 10 \mathrm{H}), 5.13-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (ddd, $J=14.4,10.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (ddd, $J=14.7,10.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.91 (dq, $J=17.6,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 3 \mathrm{H}), 0.79(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.)^{2}\right) \delta 207.5$, $168.3,155.4,154.7,148.4,144.7,136.1,134.8,129.4,129.1,128.9,128.8,128.6,128.3$, 127.9, 124.5, $72.4,49.0,45.0,35.5,30.6,7.7 ; ~ m / z$ (ES HRMS) $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}$ requires 536.1798, found $[\mathrm{MNa}]^{+} 536.1800 ;[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}=-7.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Following general procedure Cii using triketopiperazine 1a ($38 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and phenyl vinyl ketone ($33 \mathrm{mg}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (2:1)) to afford $\mathbf{2 n}(46 \mathrm{mg}, 90 \%)$ as a colourless oil in 85:15 er as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, 50:50, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 230 \mathrm{~nm}, \mathrm{t}($ major $)=61.3 \mathrm{~min}, \mathrm{t}($ minor $)=70.3 \mathrm{~min}]$.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3064,3029,1742,1678,1597,1494,1415,1361,1262,1228,1138,1073,1002$, 746, 690; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.29$ (m, 12H), $7.25-7.17$ (m, 5H), $7.06-6.99$ $(\mathrm{m}, 2 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.73 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 (ddd, $J=14.4,9.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (ddd, $J=14.7$, $9.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8,169.3,155.9,155.2$, 138.1, 136.4, 136.1, 135.2, 133.2, 129.7, 129.6, 129.3, 128.9, 128.8, 128.4, 128.3, 128.0, 127.7, 126.4, 72.9, 49.0, 44.7, 32.5, 30.6; m / z (ES HRMS) $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ requires 539.1947, found $[\mathrm{MNa}]^{+} 539.1957 ;[\alpha]_{D}^{20}=-12.5$ (c 1.0, CHCl_{3}).

1,4-dibenzyl-6-(4-methoxyphenyl)-6-(3-oxo-3-phenylpropyl)piperazine-2,3,5-trione 20

Following general procedure $\mathbf{C i i}$ using triketopiperazine 1b ($41 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and phenyl vinyl ketone ($33 \mathrm{mg}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (2:1)) to afford $\mathbf{2 0}(52 \mathrm{mg}, 95 \%)$ as a colourless oil in 87:13 er as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, 60:40, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}($ major $)=22.1 \mathrm{~min}, \mathrm{t}($ minor $)=26.0 \mathrm{~min}]$.

IR $v_{\max } / \mathrm{cm}^{-1} 3061,2958,1741,1678,1603,1511,1447,1415,1362,1256,1227,1182,1077$, 1030, 832, 733, 697; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 8 \mathrm{H})$, $7.25-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 3 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (d, J = 13.5 Hz, 1H), 4.97 (d, J = $13.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (ddd, $J=14.4,9.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{ddd}, J=14.6,9.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.23(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 196.9,169.5,160.4,156.0,155.2,136.5,136.1,135.3,133.2,129.9$, 129.4, 128.9, 128.8, 128.4, 128.3, 128.0, 127.7, 115.0, 72.6, 55.6, 48.8, 44.7, 32.5, 30.7; m/z (ES HRMS) $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}$ requires 569.2052, found $[\mathrm{MNa}]^{+} 569.2048 ;[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}=-7.9$ (c 1.0, CHCl_{3}).

1,4-dibenzyl-6-(4-nitrophenyl)-6-(3-oxo-3-phenylpropyl)piperazine-2,3,5-trione $\mathbf{2 p}$

Following general procedure Cii using triketopiperazine 1c ($43 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and phenyl vinyl ketone ($33 \mathrm{mg}, 0.25$ $\mathrm{mmol})$. The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to $(2: 1))$ to afford $2 p(49.5 \mathrm{mg}, 88 \%)$ as a colourless oil in 4:96 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 50:50, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 230 \mathrm{~nm}, \mathrm{t}($ minor $)=42.8 \mathrm{~min}, \mathrm{t}($ major $)=50.2 \mathrm{~min}]$.

IR $v_{\max } / \mathrm{cm}^{-1} 3064,3034,1744,1679,1597,1521,1495,1417,1348,1263,1227,1140,1077$, 907, 851, 727, 702; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.98$ $(\mathrm{m}, 2 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, \mathrm{~J}=14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.22-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.4,168.4,155.5,154.8,148.4,144.8,135.9,134.9,133.5,129.5,128.9,128.8$, 128.6, 128.6, 128.3, 127.9, 127.8, 124.5, 72.5, 49.0, 45.0, 32.2, $31.0 ; \mathrm{m} / \mathrm{z}$ (ES HRMS) $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}$ requires 584.1798, found $[\mathrm{MNa}]^{+} 584.1803 ;[\alpha]_{D}^{20}=-5.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Following general procedure Cii using triketopiperazine 1a ($38 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral catalyst 3 ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and acrolein ($17 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (1:1)) to afford $\mathbf{2 q}(37.2 \mathrm{mg}, 85 \%)$ as a colourless oil.

IR $v_{\max } / \mathrm{cm}^{-1} 3035,2943,1738,1711,1680,1495,1418,1361,1303,1265,1148,1072,911$, 754,$692 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.07(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.17(\mathrm{~m}, 15 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (ddd, J = $14.4,11.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (ddd, $J=14.7,11.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.2,169.0,155.7,155.2,137.8,136.6,135.0,129.8,129.7,129.1$, 129.1, 129.0, 128.7, 128.3, 126.2, 72.8, 49.0, 44.9, 38.1, 28.5; $\boldsymbol{m} / \mathbf{z}$ (ES HRMS) $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ requires 463.1634 , found $[\mathrm{MNa}]^{+} 463.1631$.

6-(2-(1,3-dioxolan-2-yl)ethyl)-1,4-dibenzyl-6-phenylpiperazine-2,3,5-trione S12

To a vial containing aldehyde $\mathbf{2 q}$ ($37 \mathrm{mg}, 85 \mu \mathrm{~mol}$) was added 2 -ethyl-2-methyl-1,3dioxolane (0.25 mL) and PTSA (5 mg) and the reaction mixture was stirred for 16 hours at room temperature. The solvent was removed under reduced pressure and the reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (1:1)) to afford $\mathbf{S 1 2}(40 \mathrm{mg}, 98 \%)$ as a colourless oil in $42: 58 \mathrm{er}$ as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, 50:50, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 230 \mathrm{~nm}$, $\mathrm{t}($ minor $)=25.7 \mathrm{~min}, \mathrm{t}($ major $)=28.1 \mathrm{~min}]$.

IR $v_{\max } / \mathrm{cm}^{-1} 3062,2951,2885,1742,1683,1494,1418,1363,1263,1234,1128,1076,1029$, 732,$698 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.20(\mathrm{~m}, 15 \mathrm{H}), 5.15(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-$
$4.98(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.67(\mathrm{~m}, 4 \mathrm{H}), 2.93(\mathrm{ddd}$, $J=13.8,11.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=13.8,11.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5,156.0,154.9,138.5,136.5,135.1,129.5,129.4,129.3,128.6$, 128.6, 128.2, 127.9, 126.4, 103.1, 73.1, 64.8, 64.8, 48.8, 44.7, 30.7, 28.6; m/z (ES HRMS) $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ requires 507.1896, found [MNa] ${ }^{+} 507.1897$.

2,7-Diazabicyclo[2.2.1]heptanes (4a-m)

2,7-dibenzyl-1-methyl-4-phenyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4a

Following general procedure \mathbf{D} using triketopiperazine 2a ($19 \mathrm{mg}, 40 \mu \mathrm{~mol}$), THF (0.1 mL) and ethanolamine (0.1 mL). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to $(2: 1)$) to afford 4 ($13.9 \mathrm{mg}, 87 \%$) as a colourless oil in 92:8 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 70:30, $1.0 \mathrm{ml} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}($ major $)=8.1 \mathrm{~min}, \mathrm{t}($ minor $)=9.8 \mathrm{~min}]$.

IR $v_{\max } / \mathrm{cm}^{-1} 3060,3028,2979,2943,1692,1494,1453,1405,1318,1182,955,700 ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.24-7.09(\mathrm{~m}, 5 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ - $2.16(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.6,140.8,138.6,136.5,128.8,128.5,128.2,128.2,127.9,127.8,127.7,127.6$, $126.5,84.1,75.3,46.8,43.7,35.3,35.2,18.2 ; m / z$ (ES HRMS) $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}$ requires 383.2123, found $[\mathrm{MH}]^{+} 383.2121 ;[\alpha]_{D}^{20}=15.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

2,7-dibenzyl-4-(4-methoxyphenyl)-1-methyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4b

Following general procedure D using triketopiperazine 2b ($26 \mathrm{mg}, 53 \mu \mathrm{~mol}$), THF (0.14 mL) and ethanolamine (0.14 mL). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford $\mathbf{4 b}(11.2 \mathrm{mg}, 51 \%)$ as a colourless oil.

IR $v_{\text {max }} / \mathrm{cm}^{-1}$ 2979, 2940, 2837, 1689, 1514, 1494, 1454, 1404, 1319, 1246, 1177, 1028, 831, 728,$699 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.10$ $(\mathrm{m}, 5 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.43(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 2 \mathrm{H})$, $1.57-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.8,159.2,140.8,138.6$, 129.3, 128.7, 128.3, 128.2, 128.1, 127.7, 127.6, 126.5, 113.9, 84.0, 75.0, 55.4, 46.7, 43.7, 35.2, 34.9, 18.2; $\boldsymbol{m} / \mathbf{z}$ (ES HRMS) $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 413.2229, found [MH$]^{+} 413.2231$.

2,7-dibenzyl-1-methyl-4-(4-nitrophenyl)-2,7-diazabicyclo[2.2.1]heptan-3-one 4c

Following general procedure D using triketopiperazine $\mathbf{2 c}(25 \mathrm{mg}, 50 \mu \mathrm{~mol})$, THF ($125 \mu \mathrm{~L}$) and ethanolamine ($125 \mu \mathrm{~L}$). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford $4 \mathrm{c}(13.1 \mathrm{mg}, 61 \%)$ as a colourless oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ 2940, 2925, 2853, 1692, 1601, 1517, 1494, 1406, 1347, 1317, 1182, 1028, 956, 909, 852, 729, 698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26-8.15(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H})$, $7.24-7.13(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.36(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H})$,
1.19 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 174.5, 147.4, 144.2, 139.8, 138.1, 128.9, 128.4, $128.2,127.8,127.5,126.9,123.6,84.4,74.9,47.2,43.9,35.8,35.5,18.0 ; m / z$ (ES HRMS) $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 428.1974, found $[\mathrm{MH}]^{+} 428.1975$.

2,7-dibenzyl-4-(4-bromophenyl)-1-methyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4d

Following general procedure \mathbf{D} using triketopiperazine $\mathbf{2 d}$ ($45 \mathrm{mg}, 85 \mu \mathrm{~mol}$), THF ($215 \mu \mathrm{~L}$) and ethanolamine ($215 \mu \mathrm{~L}$). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford 4d (23.1 mg, 60\%) as a colourless oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3030,2923,2850,1693,1493,1405,1318,1182,1011,955,823,703 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.11$ $(\mathrm{m}, 5 \mathrm{H}), 4.55(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 2 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H})$, $1.95-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2$, $140.4,138.4,135.6,131.6,129.8,128.8,128.3,128.2,127.7,127.6,126.6,122.0,84.1,74.9$, 46.9, 43.8, 35.3, 18.1; m / z (ES HRMS) $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OBr}$ requires 461.1229, found [MH] ${ }^{+}$ 461.1226.

2,7-dibenzyl-4-(furan-2-yl)-1-methyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4e

Following general procedure \mathbf{D} using triketopiperazine $\mathbf{2 e}(59 \mathrm{mg}, 0.13 \mathrm{mmol})$, THF ($325 \mu \mathrm{~L}$) and ethanolamine ($325 \mu \mathrm{~L}$). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford $4 \mathrm{e}(36.6 \mathrm{mg}, 75 \%)$ as a colourless oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3028,2945,1697,1494,1454,1405,1312,1185,1006,910,729,697 ;{ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{dd}, \mathrm{J}=$ $3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, 1H), $3.49-3.36$ (m, 2H), 2.57 (ddd, $J=12.1,10.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.88 (ddd, $J=11.5,10.4,4.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.74 (ddd, $J=12.1,9.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.49 (ddd, $J=11.4,9.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.21$ (s, 3H); ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2,148.1,142.9,140.1,138.3,128.8,128.2,128.0,127.7$, $126.4,111.8,110.4,84.3,72.7,47.1,43.8,35.1,30.0,17.9 ; m / z$ (ES HRMS) $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 373.1916 , found $[\mathrm{MH}]^{+} 373.1919$.

2,7-dibenzyl-1-methyl-4-(thiophen-2-yl)-2,7-diazabicyclo[2.2.1]heptan-3-one $\mathbf{4 f}$

Following general procedure \mathbf{D} using triketopiperazine $\mathbf{2 f}(12 \mathrm{mg}, 26 \mu \mathrm{~mol})$, THF ($65 \mu \mathrm{~L}$) and ethanolamine ($65 \mu \mathrm{~L}$). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford $\mathbf{4 f}(5 \mathrm{mg}, 50 \%)$ as a colourless oil in $93: 7 \mathrm{er}$ as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 70:30, 1.0 $\mathrm{ml} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}($ major $)=7.8 \mathrm{~min}, \mathrm{t}($ minor $)=9.4 \mathrm{~min}]$.

IR $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1} 3062,2928,2851,1699,1484,1454,1405,1296,1182,1028,842,700 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62$ (dd, J = 3.6, $\left.1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.38-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 5 \mathrm{H})$, 7.02 (dd, $J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, \mathrm{~J}=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.34 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (ddd, $J=12.2,10.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98 (ddd, $J=$ $12.2,9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.90 (ddd, $J=11.6,10.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.49 (ddd, $J=11.6,9.2,4.3 \mathrm{~Hz}$, 1H), $1.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,140.6,138.3,128.8,128.3,128.1$, $127.9,127.7,126.9,126.5,126.2,84.5,73.9,46.7,43.9,36.0,35.2,18.2 ; \mathrm{m} / \mathrm{z}$ (ES HRMS) $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OS}$ requires 389.1688 , found $[\mathrm{MH}]^{+} 389.1685 ;[\alpha]_{D}^{20}=-7.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Following general procedure \mathbf{D} using triketopiperazine $\mathbf{2 g}(36 \mathrm{mg}, 68 \mu \mathrm{~mol})$, THF ($175 \mu \mathrm{~L}$) and ethanolamine ($175 \mu \mathrm{~L}$). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford $4 \mathrm{~g}(9 \mathrm{mg}, 29 \%)$ as a colourless oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ 2921, 2850, 1688, 1494, 1455, 1406, 1313, 1028, 755, 698; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.08(\mathrm{~m}, 13 \mathrm{H}), 4.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.32$ (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.99 (ddd, $J=11.8,10.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.85 (br s, 1H), 1.62 (br s, 2H), $1.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,140.1,138.5$, 135.5, 133.9, 132.0, 129.9, 128.7, 128.4, 128.1, 128.0, 127.5, 127.2, 126.6, 84.0, 77.4, 48.0, 43.4, 34.8, 29.2, 18.2; m / z (ES HRMS) $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OBr}$ requires 461.1229, found [MH] ${ }^{+}$ 461.1233.

2,7-dibenzyl-1-methyl-4-(1-methyl-1H-pyrrol-2-yl)-2,7-diazabicyclo[2.2.1]heptan-3-one 4h

Following general procedure \mathbf{D} using triketopiperazine $\mathbf{2 h}$ ($34.7 \mathrm{mg}, 76 \mu \mathrm{~mol}$), THF ($190 \mu \mathrm{~L}$) and ethanolamine ($190 \mu \mathrm{~L}$). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford $4 \mathrm{~h}(7.5 \mathrm{mg}, 26 \%)$ as a colourless oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3029,2924,2852,1702,1494,1453,1404,1322,1274,1225,1179,1028,950$, 700; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.01(\mathrm{~m}$, $2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{dd}, \mathrm{J}=2.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, \mathrm{J}=3.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=15.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, 1 H), 2.43 (ddd, $J=13.6,10.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.92-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}$, 3H); ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.0,140.0,138.4,128.8,128.1,127.9,127.5,126.5$,
$124.7,112.1,107.0,84.0,72.6,47.4,43.3,35.2,33.5,29.4,17.7 ; m / z$ (ES HRMS) $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}$ requires 386.2232 , found $[\mathrm{MH}]^{+} 386.2230$.

2,7-dibenzyl-1-methyl-4-(1-methyl-1H-pyrrol-3-yl)-2,7-diazabicyclo[2.2.1]heptan-3-one 4i

Following general procedure D using triketopiperazine $\mathbf{2 i}$ ($16 \mathrm{mg}, 35 \mu \mathrm{~mol}$), THF ($100 \mu \mathrm{~L}$) and ethanolamine ($100 \mu \mathrm{~L}$). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to $(2: 1))$ to afford $4 \mathbf{~ (3 . 3 ~ m g , ~ 2 5 \%) ~ a s ~ a ~ c o l o u r l e s s ~ o i l . ~}$

IR $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ 2922, 2852, 1693, 1494, 1453, 1410, 1272, 1207, 1079, 1028, 793, 733, 700; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.55$ (t, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=2.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.86$ $-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 176.5,141.6$, $138.8,128.7,128.2,128.0,128.0,127.5,126.2,122.4,122.0,117.8,107.8,84.2,72.9,46.4$, 43.8, 36.3, 35.1, 34.1, 18.3; m / z (ES HRMS) $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}$ requires 386.2232 , found $[\mathrm{MH}]^{+}$ 386.2233.

2,7-dibenzyl-4-(1H-indol-3-yl)-1-methyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4j

Following general procedure D using triketopiperazine $\mathbf{2 j}(9.5 \mathrm{mg}, 19 \mu \mathrm{~mol})$, THF ($50 \mu \mathrm{~L}$) and ethanolamine ($50 \mu \mathrm{~L}$). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford $4 \mathbf{j}(2 \mathrm{mg}, 21 \%)$ as a colourless oil.

IR $v_{\max } / \mathrm{cm}^{-1} 3300,2924,2852,1680,1494,1455,1409,1351,1217,1074,942,741,700 ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28-8.19(\mathrm{~m}, 2 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 5 \mathrm{H})$, $7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 6 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (d, J = $15.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.46(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72 (ddd, $J=12.4$, $10.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.96 (ddd, $J=11.6,10.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.73 (ddd, $J=12.4,9.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.57-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 176.4,140.9,138.6,136.4$, 128.8, 128.2, 128.0, 128.0, 127.6, 126.3, 126.2, 125.4, 122.2, 120.9, 119.7, 111.3, 109.7, 84.2, 73.0, 47.2, 43.7, $35.5,31.8,18.6 ; m / z$ (ES HRMS) $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}$ requires 422.2232 , found $[\mathrm{MH}]^{+} 422.2235$.

2,7-dibenzyl-1-ethyl-4-phenyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4k

Following general procedure D using triketopiperazine $\mathbf{2 k}$ ($24 \mathrm{mg}, 50 \mu \mathrm{~mol}$), THF ($125 \mu \mathrm{~L}$) and ethanolamine ($125 \mu \mathrm{~L}$). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford $4 \mathrm{k}(9.8 \mathrm{mg}, 50 \%)$ as a colourless oil.

IR $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3030,2931,2850,1692,1494,1453,1399,1314,1074,1028,760,734,700 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 5 \mathrm{H}), 4.63$ $(\mathrm{d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=$ $11.7,10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.90 (ddd, $J=12.1,9.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dq}, J=14.9,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.54(\mathrm{dq}, \mathrm{J}=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 1 \mathrm{H}), 0.55(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.3,140.1,138.8,136.3,128.7,128.4,128.3,128.1,128.0,127.8,127.5$, 126.5, 88.1, 75.7, 47.1, 43.7, 34.2, 30.8, 23.0, 7.8; m / z (ES HRMS) $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}$ requires 397.2280, found $[\mathrm{MH}]^{+} 397.2281$.

Following general procedure D using triketopiperazine $\mathbf{2 n}(18 \mathrm{mg}, 35 \mu \mathrm{~mol})$, THF ($90 \mu \mathrm{~L}$) and ethanolamine $(90 \mu \mathrm{~L})$. After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to $(2: 1)$) to afford $41(13 \mathrm{mg}, 84 \%)$ as a colourless oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3059,3031,2926,1705,1494,1450,1398,1322,1198,1074,1029,951,911$, 752, 731, 695; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31$ $7.14(\mathrm{~m}, 9 \mathrm{H}), 6.96-6.87(\mathrm{~m}, 5 \mathrm{H}), 6.75-6.68(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.16(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.10$ (ddd, $J=11.2,8.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87$ (ddd, $J=11.9,8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, CDCl_{3}) $\delta 175.7,139.4,137.6,134.6,133.1,130.3,129.7,129.5,128.8,128.7,128.4,128.2$, 128.2, 127.5, 127.4, 126.1, 88.6, 77.5, 48.3, 44.2, 30.3, 26.5; m/z (ES HRMS) $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}$ requires 445.2280 , found $[\mathrm{MH}]^{+} 445.2281$.

2,7-dibenzyl-4-phenyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4m

Following general procedure \mathbf{D} using triketopiperazine $\mathbf{2 q}(19 \mathrm{mg}, 44 \mu \mathrm{~mol})$, THF ($110 \mu \mathrm{~L}$) and ethanolamine ($110 \mu \mathrm{~L}$). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(9: 1)$ to (2:1)) to afford $4 \mathrm{~m}(4.4 \mathrm{mg}, 28 \%)$ as a colourless oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2916,2854,1694,1494,1451,1411,1330,1249,701 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.07-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.85-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}$ $=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (d, J = 13.0 Hz, 1H), 2.26-2.17 (m, 1H), 2.00-1.91 (m, 2H), 1.65-1.59 (m, 1H); ${ }^{13}$ C NMR
(126 MHz, CDCl_{3}) $\delta 174.0,138.7,137.0,135.4,129.0,129.0,128.8,128.6,128.3,128.0$, 127.9, 127.9, 127.1, 84.1, $73.9,48.6,44.8,29.9,28.0 ; \mathrm{m} / \mathbf{z}$ (ES HRMS) $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ requires 369.1967, found $[\mathrm{MH}]^{+} 369.1966$.

Reduction of 4a

N,1-dibenzyl-5-methyl-2-phenylpyrrolidine-2-carboxamide 5a and 5b

To a solution of diazabicycle 4 a ($29 \mathrm{mg}, 77 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added DIBAL ($65 \mu \mathrm{~L}$, $77 \mu \mathrm{~mol})$ at $-78^{\circ} \mathrm{C}$. After 1 hour a further equivalent of DIBAL ($65 \mu \mathrm{~L}, 77 \mu \mathrm{~mol}$) was added and the reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over 1 hour. The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ followed by the addition of aqueous Rochelle's salt (3 $\mathrm{mL}, 20 \% \mathrm{w} / \mathrm{w}$) and stirred vigorously for 1 hour. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$ and the combined organic layers were washed with brine (5 mL), dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel (hexane:EtOAc =9:1) to afford 5a ($11.4 \mathrm{mg}, 39 \%$) and 5b (5.4 $\mathrm{mg}, 18 \%$) as colourless oils.

Major $(2 R, 5 S)$ or $(2 S, 5 R)$ N,1-dibenzyl-5-methyl-2-phenylpyrrolidine-2-carboxamide 5a
IR $v_{\text {max }} / \mathrm{cm}^{-1} 3351,3060,3028,2958,2924,2864,1666,1495,1452,1374,1317,1111,1077$, 1027, 748, 698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.19(\mathrm{~m}, 10 \mathrm{H}), 7.14-7.03$ (m, 3H), $6.85-6.78$ (m, 2H), 4.48 (dd, J = 14.6, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ (dd, J = 14.6, 5.7 Hz, 1H), 3.41 (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.23-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.69$ (ddd, $J=13.1,7.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (ddd, J $=13.1,11.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.08 (dddd, $J=13.0,7.1,6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.48 (dddd, $J=12.5,11.3$, $10.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.8,140.7,139.4$, 138.6, 129.3, 128.8, 128.7, 128.3, 128.2, 128.0, 127.7, 127.5, 126.9, 78.3, 63.3, 55.4, 43.8, 38.1, 33.1, 22.2; m / \mathbf{z} (ES HRMS) $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}$ requires 385.2280, found [MH] ${ }^{+} 385.2279$.

Minor (2R,5R) or (2S,5S) N,1-dibenzyl-5-methyl-2-phenylpyrrolidine-2-carboxamide 5b
IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3349,3060,3028,2958,2924,2852,1657,1495,1453,1371,1208,1119,1079$, 1028, 751, 698; ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.21$ 7.12 (m, 5H), 4.54 (dd, J = 14.6, 5.9 Hz, 1H), 4.45 (dd, J = 14.6, 5.5 Hz, 1H), 3.60 (d, J = 14.7 $\mathrm{Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{pd}, J=6.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=12.9,7.8,3.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.41$ (ddd, J = 13.0, 10.0, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.15-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.51(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 175.1,141.5,140.6,138.5,128.9,128.5,128.4$, $128.4,128.2,128.0,127.6,127.4,126.8,77.6,57.5,52.4,43.9,38.2,31.7,19.4,1.2 ; \mathrm{m} / \mathrm{z}$ (ES $\mathrm{HRMS}) \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}$ requires 385.2280 , found $[\mathrm{MH}]^{+} 385.2282$.

Formation of Iminium 6

1-benzyl-2-(benzylcarbamoyl)-5-methyl-2-phenyl-3,4-dihydro-2H-pyrrol-1-ium chloride 6

To a round bottomed flask containing diazabicycle 4 ($39 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added HCl in dioxane ($0.2 \mathrm{~mL}, 4 \mathrm{M}$) and the reaction mixture was stirred at room temperature for 1 hour. The solvent was removed under reduced pressure to afford 6 (quant.) as a colourless residue.

IR $v_{\max } / \mathrm{cm}^{-1} 3169,3030,1666,1530,1496,1452,1359,1271,1127,1079,1028,957,729$, 696; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.04(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.31-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.66-6.58(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.72(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.43(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 3 \mathrm{H})$, $2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 196.5,168.2,138.6,133.8,131.2,130.4,129.2$, 129.0, 128.7, 128.5, 127.3, 126.9, 89.0, 54.1, 44.1, 40.5, 33.4, 21.4; m / z (ES HRMS) $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}$ requires 383.2123 , found $[\mathrm{M}]^{+} 383.2124$.

Synthesis of harmicine Amide 10

N-benzyl-2-chloro-2-phenylacetamide S13

S13
To a solution of benzylamine ($0.69 \mathrm{~mL}, 6.33 \mathrm{mmol}$) and triethylamine ($1.06 \mathrm{~mL}, 7.60 \mathrm{mmol}$) in MeCN (30 mL) was added α-chlorophenylacetyl chloride ($1.0 \mathrm{~mL}, 6.33 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature over 1 hour then filtered, washed with $\mathrm{MeCN}(3 \times 5 \mathrm{~mL})$ and the filtrate was concentrated under reduced pressure. The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, the organic layer was dried with MgSO_{4}, filtered and concentrated under reduced pressure to afford $\mathbf{S 1 3}$ as a pale yellow solid ($1.55 \mathrm{~g}, 95 \%$).

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3289,3064,3031,1659,1530,1496,1454,1213,1029,730,695 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.91(\mathrm{Br} \mathrm{s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 167.5,137.5,137.2,129.3,129.1,129.0,127.9,61.9,44.3 ; \mathbf{m} / \mathbf{z}$ (ES) $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NOClNa}$ requires 282.7, found [MNa] ${ }^{+} 282.3$. Data is in agreement with literature. ${ }^{6}$

2-((2-(1H-indol-3-yl)ethyl)amino)-N-benzyl-2-phenylacetamide S14

To a solution of $\mathbf{S 1 3}$ ($457 \mathrm{mg}, 1.76 \mathrm{mmol}$) and triethylamine ($0.98 \mathrm{~mL}, 7.04 \mathrm{mmol}$) in MeCN $(9 \mathrm{~mL})$ was added tryptamine ($705 \mathrm{mg}, 4.40 \mathrm{mmol}$) in one portion. The reaction mixture was stirred for 72 hours at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, washed with $1 \mathrm{M} \mathrm{HCl}(15$ mL), and the organic layer was dried with MgSO_{4}, filtered and concentrated under reduced pressure. The residue was then purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$:Acetone $=$ 9:1) to afford $\mathbf{S 1 4}$ ($215 \mathrm{mg}, 32 \%$) as a brown oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3297,3059,2924,2846,1654,1520,1454,1230,908,731 ;{ }^{1} \mathbf{H}$ NMR (400 MHz , CDCl_{3}) $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.17(\mathrm{ddd}, \mathrm{J}=8.2,7.0,1.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, \mathrm{J}=14.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H})$, 4.19 (dd, J = 14.9, 5.8 Hz, 1H), 3.05-2.87 (m, 4H), $1.99(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,139.4,138.5,136.5,128.9,128.7,128.2,127.6,127.4,127.4,122.2,119.5,118.9$, 113.5, 111.4, 67.7, 48.8, 43.1, $25.9 ; m / z$ (ES HRMS) $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}$ requires 384.2076 , found $[\mathrm{MH}]^{+} 384.2084$.

1-(2-(1H-indol-3-yl)ethyl)-4-benzyl-6-phenylpiperazine-2,3,5-trione 7

Following general procedure B using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1H-benzotriazole ($171 \mathrm{mg}, 0.59 \mathrm{mmol}$) in THF (1.5 mL), $\mathbf{S 1 4}$ ($187 \mathrm{mg}, 0.49 \mathrm{mmol}$) in THF (2 mL). The residue was purified by flash column chromatography on silica gel (gradient: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=(1: 0)$ to ($99: 1$)) to afford 7 ($67.5 \mathrm{mg}, 32 \%$) as a waxy yellow solid.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3332,3057,3034,2937,1744,1683,1454,1428,1362,1198,908,732 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, \mathrm{J}=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=$ $8.9 \mathrm{~Hz}, 5 \mathrm{H}$), 7.18 (ddd, J = 8.2, 7.1, $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.99$ (d, J = $13.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.85-4.77$ (m, 2H), 4.20 (ddd, J = 13.1, 7.8, $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 (dt, J = $13.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (dt, $J=13.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (dddd, $J=13.6,7.1,4.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 166.7,156.6,153.0,136.4,135.2,134.5,129.8,129.6,129.2,128.7$, $128.2,127.1,126.9,122.6,122.3,119.9,118.4,112.0,111.6,66.3,47.1,44.6,23.0 ; m / z$ (ES HRMS) $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}$ requires 460.1637 , found $[\mathrm{MNa}]^{+} 460.1635$.

1-(2-(1H-indol-3-yl)ethyl)-4-benzyl-6-(3-oxobutyl)-6-phenylpiperazine-2,3,5-trione 8

Following general procedure Cii using triketopiperazine $\mathbf{7}$ ($66 \mathrm{mg}, 0.15 \mathrm{mmol}$), triethylamine $(20 \mu \mathrm{~L}, 0.15 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and methyl vinyl ketone ($30 \mu \mathrm{~L}, 0.375 \mathrm{mmol}$). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to (1:1)) to afford $\mathbf{8}(75 \mathrm{mg}, 99 \%)$ as a yellow oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3339,2950,1741,1712,1677,1419,1362,1227,907,726 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.15$ (ddd, $J=8.2,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (ddd, $J=8.0,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (ddd, $J=13.5,11.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (ddd, $J=13.4,11.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.61(\mathrm{ddd}, J=14.3,11.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (ddd, $J=17.7,11.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04 (ddd, $J=17.3,11.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.4,169.7,156.0,153.8,138.0,136.2,135.3,129.5,128.8,128.5$, 127.0, 126.6, 122.4, 122.3, 119.7, 118.9, 112.1, 111.3, 71.7, 47.4, 44.7, 37.3, 30.1, 30.0, 23.3; m / z (ES HRMS) $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}$ requires 530.2056 , found [MNa$]^{+} 530.2057$.

7-(2-(1H-indol-3-yl)ethyl)-2-benzyl-1-methyl-4-phenyl-2,7-diazabicyclo[2.2.1]heptan-3-one 9

Following general procedure D using triketopiperazine 8 ($54 \mathrm{mg}, 0.11 \mathrm{mmol}$), THF (0.27 mL) and ethanolamine (0.27 mL). The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc $=(4: 1)$ to $(1: 1))$ to afford $9(24 \mathrm{mg}, 52 \%)$ as a colourless oil.

IR $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3408,3298,3057,2923,2852,1685,1494,1455,1318,1182,961,908,739 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.24$ ($\mathrm{m}, 7 \mathrm{H}$) , $7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.97$ (ddd, $J=8.0,6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.29(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.95-$ $1.81(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.0,138.5$, $136.5,136.2,128.8,128.5,128.4,128.2,127.9,127.5,127.4,122.0,121.4,119.3,119.0$, 114.4, 111.1, 83.9, 76.0, 44.0, 43.8, 35.1, 34.1, 27.1, 17.7; m / z (ES HRMS) $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}$ requires 436.2389, found $[\mathrm{MH}]^{+} 436.2392$.
N-benzyl-11b-methyl-3-phenyl-2,3,5,6,11,11b-hexahydro-1H-indolizino[8,7-b]indole-3carboxamide 10

To a round bottomed flask containing 9 ($16 \mathrm{mg}, 38 \mu \mathrm{~mol}$) was added HCl in dioxane (0.5 ml) and the reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture was concentrated under reduced pressure and the resulting residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL), washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3$ mL), the organic layers were combined and washed with brine (5 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (1:1)) to afford $\mathbf{1 0}$ (10.4 mg, 63%) as a pale yellow oil.

IR $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1} 3284,2960,2922,2852,1651,1499,1449,1331,1275,1117,908,732 ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.80(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.36-7.23$ $(\mathrm{m}, 7 \mathrm{H}), 7.14$ (ddd, $J=8.1,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (ddd, $J=8.0,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=$ 14.7, $6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.54 (dd, $J=14.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ (dd, J = 8.4, 2.8 Hz, 2H), 2.56-2.39 (m, 2H), 2.29 (ddd, J = 12.4, 6.1, 2.2 Hz, 1H), $1.99-1.89$ (m, 2H), $1.68-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.48$ (s, 3H); ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 177.0,139.1,139.0,137.8,135.7,129.1,128.9,128.2$, 128.1, 128.0, 127.7, 127.5, 121.9, 119.4, 118.3, 110.9, 109.9, 76.6, 62.5, 44.0, 39.9, 37.4, 33.6, 28.4, 19.4; m / \mathbf{z} (ES HRMS) $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}$ requires 436.2389, found [MH] ${ }^{+} 436.2388$.

References

1 F. Wu, H. Li, R. Hong and L. Deng, Angew. Chemie Int. Ed., 2006, 45, 947-950.
2 H. Li, Y. Wang, L. Tang and L. Deng, J. Am. Chem. Soc., 2004, 126, 9906-9907.
3 A. Cabanillas, C. D. Davies, L. Male and N. S. Simpkins, Chem. Sci., 2015, 6, 1350-1354.
4 A. R. Katritzky, J. R. Levell and D. P. M. Pleynet, Synthesis (Stuttg)., 1998, 1998, 153156.

5 S. Chanthamath, S. Takaki, K. Shibatomi and S. Iwasa, Angew. Chemie Int. Ed., 2013, 52, 5818-5821.

6 D. Koszelewski, M. Cwiklak and R. Ostaszewski, Tetrahedron Asymmetry, 2012, 23, 1256-1261.

Appendix

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR

$$
\stackrel{\circ}{\text { ion }}
$$

06-03-Simpkins-7.10.fid
GP123 F13-25
GP123 F13-25

07-02-Simpkins-14
GP TKPPh

[^0]

O7-02-Simpkins-13.12.fid
GP140

2016-GP281.12.fid
GP281

[^1]

[^2]

GP657 F1.10.fic

HPLC Traces

Racemic 2a

Enantioenriched 2a

No.	Ret.Time	Peak Name	Height m min		Area $m A U^{\star} \min$		Rel.Area $\%$
	manount	Type					
1	20.52	n.a.	177.646	132.404	7.58	n.a.	BM *
2	22.45	n.a.	1460.047	1613.796	92.42	n.a.	MB *
Total:			1637.693	1746.200	100.00	0.000	

Racemic 2b

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* ${ }^{*}$ min	Rel.Area \%	Amount	Type
1	13.80	n.a.	541.362	562.858	50.17	n.a.	BM
2	17.34	n.a.	403.063	559.055	49.83	n.a.	MB
Total:			944.425	1121.913	100.00	0.000	

Enantioenriched 2b

No.	Ret.Time min	Peak Name	Height mAU	Area mAU *in	Rel.Area \%	Amount	Type
1	13.95	n.a.	140.291	142.204	6.75	n.a.	BM *
2	16.98	n.a.	1363.126	1964.114	93.25	n.a.	BMB*
Total:			1503.417	2106.317	100.00	0.000	

Racemic 2c

No.	Ret.Time min	Peak Name	Height mAU	Area $m A U^{*}$ min	Rel.Area \%	Amount	Type
1	23.19	n.a.	130.978	187.560	50.09	n.a.	BMB*
2	27.80	n.a.	107.295	186.869	49.91	n.a.	BMB^{*}
Total:			238.272	374.428	100.00	0.000	

Enantioenriched 2c

No.	Ret.Time min	Peak Name	Height $m A U$	Area $m A U^{\star} \min$	Rel.Area $\%$	Amount	Type
1	23.18	n.a.	54.700	76.651	5.18	n.a.	BM *
2	27.09	n.a.	733.882	1402.155	94.82	n.a.	MB *
Total:			788.582	1478.805	100.00	0.000	

Racemic 2d

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* min	Rel.Area \%	Amount	Type
1	21.85	n.a.	164.480	226.832	50.69	n.a.	BM
2	25.58	n.a.	136.763	220.650	49.31	n.a.	MB
Total:			301.243	447.481	100.00	0.000	

Enantioenriched 2d

No.	Ret.Time min	Peak Name	Height mAU	Area $\mathrm{mAU}{ }^{*}$ min	Rel.Area \%	Amount	Type
1	21.61	n.a.	251.463	330.308	8.85	n.a.	BM *
2	24.35	n.a.	1726.188	3401.101	91.15	n.a.	M *
Total:			1977.651	3731.409	100.00	0.000	

Racemic 2e

No.	Ret.Time min	Peak Name	Height mAU	$\begin{gathered} \text { Area } \\ \mathrm{mAU} \text { min } \end{gathered}$	$\begin{gathered} \text { Rel.Area } \\ \% \\ \hline \end{gathered}$	Amount	Type
1	24.64	n.a.	294.928	249.797	49.97	n.a.	BMB
2	27.87	n.a.	256.581	250.075	50.03	n.a.	BMB
Total:			551.509	499.872	100.00	0.000	

Enantioenriched $\mathbf{2 e}$

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	24.47	n.a.	1397.277	1282.471	93.61	n.a.	BM *
2	27.80	n.a.	95.256	87.511	6.39	n.a.	BMB^{*}
Total:			1492.533	1369.982	100.00	0.000	

Racemic $\mathbf{2 f}$

Enantioenriched $\mathbf{2 f}$

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* min	Rel.Area \%	Amount	Type
1	21.42	n.a.	311.979	212.461	6.33	n.a.	BM *
2	23.43	n.a.	2529.509	3144.680	93.67	n.a.	MB*
Total:			2841.488	3357.141	100.00	0.000	

Racemic 2g

Enantioenriched 2g

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	18.81	n.a.	1246.977	1888.738	44.52	n.a.	M *
2	22.86	n.a.	1163.774	2354.138	55.48	n.a.	MB*
Total:			2410.751	4242.876	100.00	0.000	

Racemic 2h

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* min	Rel.Area \%	Amount	Type
1	15.98	n.a.	958.754	607.956	50.14	n.a.	BM
2	18.47	n.a.	908.054	604.457	49.86	n.a.	MB
Total:			1866.807	1212.413	100.00	0.000	

Enantioenriched 2h

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	15.90	n.a.	1927.872	1316.173	49.44	n.a.	BM
2	18.35	n.a.	1862.252	1346.180	50.56	n.a.	MB
Total:			3790.124	2662.353	100.00	0.000	

Racemic 2i

No.	Ret.Time min	Peak Name	Height mAU	Area mAU * min	Rel.Area \%	Amount	Type
1	19.55	n.a.	426.460	384.961	50.07	n.a.	BM *
2	21.10	n.a.	456.759	383.860	49.93	n.a.	MB*
Total:			883.219	768.822	100.00	0.000	

Enantioenriched $\mathbf{2 i}$

No.	Ret.Time min	Peak Name	Height mAU	Area mAU *in	Rel.Area \%	Amount	Type
1	19.50	n.a.	761.853	730.578	76.98	n.a.	BM
2	21.07	n.a.	253.055	218.440	23.02	n.a.	MB
Total:			1014.909	949.018	100.00	0.000	

Racemic 2j

No.	Ret.Time min	Peak Name	Height mAU	Area $\mathrm{mAU}{ }^{*}$ min	Rel.Area \%	Amount	Type
1	5.71	n.a.	39.245	13.113	51.85	n.a.	BMB*
2	9.84	n.a.	10.163	12.176	48.15	n.a.	BMB
Total:			49.409	25.289	100.00	0.000	

Enantioenriched 2j

No.	Ret. Time min	Peak Name	Height mAU	Area mAU *in	$\begin{gathered} \hline \text { Rel.Area } \\ \% \\ \hline \end{gathered}$	Amount	Type
1	5.80	n.a.	386.569	125.565	26.97	n.a.	BMB*
2	9.92	n.a.	278.305	339.956	73.03	n.a.	BMB^{*}
Total:			664.874	465.521	100.00	0.000	

Racemic 2k

No.	Ret.Time min	Peak Name	Height mAU	Area mAU *in	Rel.Area \%	Amount	Type
1	27.99	n.a.	456.057	518.128	47.41	n.a.	BM *
2	30.78	n.a.	416.599	574.848	52.59	n.a.	MB*
Total:			872.656	1092.976	100.00	0.000	

Enantioenriched 2k

No.	Ret.Time min	Peak Name	Height mAU	Area mAU**in	Rel.Area \%	Amount	Type
1	28.16	n.a.	54.747	53.896	4.28	n.a.	BM *
2	30.60	n.a.	828.738	1205.445	95.72	n.a.	MB*
Total:			883.485	1259.341	100.00	0.000	

Racemic 21

No.	Ret.Time min	Peak Name	Height mAU	Area $\mathrm{mAU} * \mathrm{~min}$	Rel.Area \%	Amount	Type
1	21.78	n.a.	228.350	356.991	56.96	n.a.	BMB
2	27.44	n.a.	135.520	269.763	43.04	n.a.	BMB
Total:			363.870	626.754	100.00	0.000	

Enantioenriched 21

No.	Ret.Time min	Peak Name	Height mAU	Area $\mathrm{mAU} *$ min	Rel.Area \%	Amount	Type
1	22.07	n.a.	14.675	19.493	3.45	n.a.	BMB*
2	27.45	n.a.	274.201	546.040	96.55	n.a.	BMB*
Total:			288.876	565.534	100.00	0.000	

Racemic 2m

2m

No.	Ret.Time min	Peak Name	Height mAU	Area mAU^{*} min	Rel.Area \%	Amount	Type
1	19.34	n.a.	68.582	85.180	50.35	n.a.	BMB
2	23.50	n.a.	55.127	83.995	49.65	n.a.	BMB*
Total:			123.708	169.175	100.00	0.000	

Enantioenriched 2m

No.	Ret.Time min	Peak Name	Height mAU	Area $\mathrm{mAU}{ }^{*}$ min	Rel.Area \%	Amount	Type
1	19.27	n.a.	35.861	39.429	3.16	n.a.	BMB*
2	22.73	n.a.	725.399	1207.175	96.84	n.a.	BMB^{*}
Total:			761.260	1246.603	100.00	0.000	

Racemic 2n

No.	Ret.Time min	Peak Name	Height mAU	Area $m A U^{*}$ min	Rel.Area \%	Amount	Type
1	62.03	n.a.	101.474	244.752	51.33	n.a.	BMB*
2	70.37	n.a.	80.817	232.108	48.67	n.a.	BMB*
Total:			182.291	476.860	100.00	0.000	

Enantioenriched 2n

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* min	Rel.Area \%	Amount	Type
1	61.33	n.a.	460.948	1277.125	84.82	n.a.	BM *
2	70.31	n.a.	74.566	228.631	15.18	n.a.	MB*
Total:			535.514	1505.755	100.00	0.000	

Racemic 20

No.	Ret.Time						
min		Peak Name	Height $m A U$	Area mAU* $\boldsymbol{m i n}$	Rel.Area $\%$	Amount	Type
1	22.41	n.a.	809.199	773.125	49.87	n.a.	BM
2	25.84	n.a.	581.731	777.194	50.13	n.a.	MB
Total:			1390.930	1550.319	100.00	0.000	

Enantioenriched 20

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* min	Rel.Area \%	Amount	Type
1	22.16	n.a.	2511.561	3130.746	86.65	n.a.	BM *
2	26.04	n.a.	392.916	482.445	13.35	n.a.	MB*
Total:			2904.477	3613.191	100.00	0.000	

Racemic 2p

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* min	Rel.Area \%	Amount	Type
1	42.43	n.a.	130.933	378.436	50.31	n.a.	BMB*
2	51.54	n.a.	102.868	373.771	49.69	n.a.	BMB*
Total:			233.802	752.207	100.00	0.000	

Enantioenriched 2p

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	42.81	n.a.	21.362	54.970	3.93	n.a.	BMB*
2	50.24	n.a.	348.274	1343.057	96.07	n.a.	BMB^{*}
Total:			369.636	1398.027	100.00	0.000	

Racemic S12

No.	Ret.Time min	Peak Name	Height mAU	Area mAU * min	Rel.Area \%	Amount	Type
1	25.84	n.a.	923.568	905.571	46.59	n.a.	BM *
2	28.25	n.a.	876.679	1038.263	53.41	n.a.	M*
Total:			1800.247	1943.834	100.00	0.000	

Enantioenriched S12

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* ${ }^{*}$ in	Rel.Area \%	Amount	Type
1	25.71	n.a.	708.926	700.257	41.99	n.a.	BM
2	28.10	n.a.	795.741	967.366	58.01	n.a.	MB
Total:			1504.667	1667.623	100.00	0.000	

Racemic 4a

4a

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* ${ }^{*}$ in	Rel.Area \%	Amount	Type
1	8.21	n.a.	156.872	56.766	50.82	n.a.	BMB
2	9.80	n.a.	112.994	54.941	49.18	n.a.	BMB
Total:			269.866	111.707	100.00	0.000	

Enantioenriched 4a

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	8.13	n.a.	641.599	267.022	91.89	n.a.	MB*
2	9.78	n.a.	49.709	23.556	8.11	n.a.	BMB
Total:			691.308	290.578	100.00	0.000	

Enantioenriched sample of $\mathbf{2 f}$ used to generate diazabicycle $\mathbf{4 f}$

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	21.29	n.a.	144.430	113.348	6.95	n.a.	BM *
2	23.57	n.a.	1426.436	1516.427	93.05	n.a.	MB*
Total:			1570.867	1629.776	100.00	0.000	

Racemic 4f

4f

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*	Rel.Area $\%$	Amount	Type
1	7.92	n.a.	455.326	168.503	50.97	n.a.	BM
2	9.49	n.a.	343.722	162.098	49.03	n.a.	MB
Total:			799.047	330.601	100.00	0.000	

Enantioenriched 4f

No.	Ret.Time min	Peak Name	Height mAU	Area $\mathrm{mAU}{ }^{*}$ min	Rel.Area \%	Amount	Type
1	7.79	n.a.	1120.559	406.547	92.86	n.a.	BM *
2	9.40	n.a.	69.116	31.260	7.14	n.a.	MB*
Total:			1189.675	437.807	100.00	0.000	

X-ray Crystal Structures

The datasets were measured on an Agilent SuperNova diffractometer using an Atlas detector. The data collections were driven and processed and absorption corrections were applied using CrysAlisPro. ${ }^{[51]}$ The structure of $\mathbf{2 f}$ was solved using SheIXX ${ }^{[52]}$ and that of 4a was solved using ShelXS ${ }^{[53]}$ and both structures were refined by a full-matrix least-squares procedure on F^{2} in ShelXL. ${ }^{[54]}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were added at calculated positions and refined by use of a riding model with isotropic displacement parameters based on the equivalent isotropic displacement parameter ($U_{\text {eq }}$) of the parent atom. Figures and reports were produced using OLEX2. ${ }^{[55]}$

The structure of $\mathbf{2 f}$ occupies a chiral space group and the absolute structure has been determined from the diffraction data, with the Flack parameter being -0.004 (6).

In $2 f$ the thiophene ring, $C(7)-S(8)-C(9)-C(10)-C(11), \quad\left(C\left(7^{\prime}\right)-S\left(8^{\prime}\right)-C\left(9^{\prime}\right)-C\left(10^{\prime}\right)-C\left(11^{\prime}\right)\right)$ is disordered over two positions at a refined percentage occupancy ratio of 63. 9(3) : 36.1 (3).

The structure of $\mathbf{4 a}$ occupies a centrosymmetric space group. Thus in one molecule in the unit cell $C(6)$ is R and $C(9)$ is S while in the other molecule $C(6)$ is S and $C(9)$ is R. The relative stereochemistry is the same in all molecules.

The CIFs for the crystal structures of $\mathbf{2 f}$ and $\mathbf{4 a}$ have been deposited with the CCDC and have been given the deposition numbers: CCDC 1880502 and CCDC 1880503 respectively.

Crystal structure determination of $\mathbf{2 f}$:

Crystal Data for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}=460.53 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1}$ (no. 4), $a=$ $7.27000(10) \AA$ A , $b=11.16340(10) \AA, c=14.17310(10) \AA, b=96.9580(10)^{\circ}, V=1141.79(2) \AA^{3}$, $Z=2, T=100.01(10) \mathrm{K}, \mu(C u K \alpha)=1.556 \mathrm{~mm}^{-1}, D c a l c=1.340 \mathrm{~g} / \mathrm{cm}^{3}, 21276$ reflections measured $\left(12.264^{\circ} \leq 2 \Theta \leq 144.218^{\circ}\right), 4388$ unique ($R_{\text {int }}=0.0209, \mathrm{R}_{\text {sigma }}=0.0147$) which were used in all calculations. The final R_{1} was $0.0227(I>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.0582 (all data). Flack $=-0.004(6)$.

Crystal structure determination of 4a:

Crystal Data for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}(M=382.49 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=$ $9.9803(5) \AA, \quad b=10.7055(5) \AA, \quad c=11.0770(7) \AA, \quad \alpha=76.953(5)^{\circ}, \quad b=64.440(6)^{\circ}, \quad \gamma=$ $72.474(4)^{\circ}, V=1011.80(11) \AA^{3}, Z=2, T=100.01(10) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=0.076 \mathrm{~mm}^{-1}$, Dcalc $=$ $1.255 \mathrm{~g} / \mathrm{cm}^{3}, 8126$ reflections measured $\left(7.212^{\circ} \leq 2 \Theta \leq 53.462^{\circ}\right), 4266$ unique ($R_{\text {int }}=0.0201$, $\mathrm{R}_{\text {sigma }}=0.0362$) which were used in all calculations. The final R_{1} was $0.0451(\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1063 (all data).
[S1] CrysAlisPro, Agilent Technologies, Version 1.171.36.28, 2013.
[S2] G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
[S3] G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
[S4] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
[S5] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339-341.

[^0]: $\begin{array}{llllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

[^1]: $\begin{array}{lllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

[^2]: $\begin{array}{lllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \text { f1 } & & & & & & & & & & & 100\end{array}$

