Supporting Information

2,7-Diazabicyclo[2.2.1]heptanes: Novel Asymmetric Access and Controlled Bridge-Opening

Gary R. Peczkowski,¹ Philip G.E. Craven,¹ Darren Stead² and Nigel S. Simpkins^{*1}

¹School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. ²AstraZeneca, Darwin Building, Cambridge, CB4 0FZ

Email: n.simpkins@bham.ac.uk

Contents

General Methods	S1
Preparation of Catalysts and Reagents	S2
Optimisation Tables	\$3
General Procedures	\$5
Synthesis of Amino Amides S4-S10	S7
Synthesis of α -Aryl Triketopiperazines 1a-j	S11
Asymmetric Michael Additions 2a-q	S16
2,7-diazabicyclo[2.2.1]heptanes 4a-m	S28
Reduction of 4a	S36
Formation of Iminium 6	S37
Synthesis of harmicine amide 10	S38
References	S42
¹ H and ¹³ C NMR Spectra	S43
HPLC Traces	S101
X-ray Crystal Structures	S121

General Methods

All reactions were carried out under an atmosphere of nitrogen and using dry solvents unless otherwise stated. All reagents were used as received from commercial suppliers without further purification.

Microwave reactions were carried out in a CEM Discover-S microwave reactor using 150 Watts in dynamic mode.

The progress of reactions was monitored by thin layer chromatography using Merck silica gel 60 F_{254} plates, which were visualized with UV light and potassium permanganate. Flash column chromatography was carried out using Geduran 60 Å silica gel and the indicated solvent systems.

NMR data were recorded on a Bruker AVIII300, AVIII400, AVIII400neo or AVIII500neo spectrometer in deuterated chloroform (unless otherwise indicated) and spectra were calibrated using residual solvent peaks (1 H = 7.26 ppm; 13 C = 77.16 ppm). The multiplicities of 1 H NMR signals are abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) and combinations thereof.

Mass spectra were recorded on either a Waters Xevo G2-XS Tof or Synapt G2-S mass spectrometer using Zspray in ESI positive mode.

Infrared spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer or a Varian 660-IR FT-IR spectrometer using Agilent Resolutions Pro for processing data. Absorption maxima (v_{max}) are reported in wavenumbers (cm⁻¹).

Melting points were measured using a Gallenkamp melting point apparatus and are uncorrected.

Optical rotations were measured using a Bellingham and Stanley ADP450 Series Peltier polarimeter at 20 °C using the sodium D line (589.3 nm) and the indicated concentration and solvent.

High performance liquid chromatography (HPLC) analysis was performed using an LC-20 prominence system from Shimazdu, Chromeleon client, version 6.80 SR15 Build 4656, Phenomenex Lux Cellulose-1 (250 x 4.6 mm), Phenomenex Lux Cellulose-3 (250 x 4.6 mm), Phenomenex Lux Amylose-2 (250 x 4.6 mm) and Shimazdu SPD-M20A diode Array Detector for the UV detection, monitored at 220 nm or 230 nm.

Some signals in the C-H aromatic region of the ¹³C NMR spectra are not observed due to having equivalent resonances.

Preparation of Catalysts and Reagents

Catalysts **3+S2** were prepared according to literature procedure.¹

Catalyst **S1** was prepared according to literature procedure.²

Catalyst **S3** was commercially available and purchased from Strem Chemicals, inc.

Triketopiperazine **S11** was prepared according to literature procedure.³

1,1'-(1,2-Dioxoethane-1,2-diyl)bis-1H-benzotriazole (OxBzt) was prepared according to literature procedure.⁴

Phenyl vinyl ketone (PhVK) was prepared according to literature procedure.⁵

Optimisation Tables

Asymmetric Michael Additions

Entry	Catalyst	Temp (°C)	Time	2a (%)	er
1	3	r.t.	16 h	98	90:10
2	S2	r.t.	2 days	22	77:23
3	S 3	r.t.	4 days	37	82:18
4	S1	r.t.	16 h	82	14:86
5	3	3	16 h	90	92:8
6	3	-30	12 days	83	92:8

Figure 1. Optimisation of asymmetric Michael additions

Reductive Ring Opening

Entry	Reducing agent	dr 1.0:3.2	
1	NaBH ₄		
2	$NaBH_4/CeCl_3$	1.0:2.0	
3	NaCNBH ₃	1.0:1.8	
4	Na(OAc)₃BH	2.7:1.0	
5	DIBAL	4.5:1.0	
6	DIBAL (-78 °C)	6.5:1.0	
7	L-selectride	NR	
8	LiAlH ₄	NR	
9	H-cube, H ₂ Pd/C	NR	
10	NH₄CO₂H, Pd/C	NR	

General Procedures

General procedure A for the synthesis of amino amides (S6-S8)

To a 2-necked round bottomed flask containing phenylacetic acid derivative (1 eq.) was added thionyl chloride (0.5 M) under a nitrogen atmosphere. The reaction mixture was heated under reflux for 1 hour then allowed to cool to room temperature followed by the addition of NBS (1.5 eq.) and HBr (3 drops). The reaction mixture was then heated at 80 °C for 4 hours. Excess thionyl chloride was removed under reduced pressure and the resulting crude compound was heated with hexane (20 mL), filtered while hot and then washed with hot hexane (4 x 20 mL). The washings were concentrated under reduced pressure to give the crude α -bromo acid chloride as an oil. The acid chloride was then added dropwise to a solution of benzylamine (5 eq.) in MeCN (1 M) at 0 °C under a nitrogen atmosphere and stirred for 16 hours at room temperature. The reaction mixture was filtered, washed with MeCN and the filtrate was concentrated under reduced pressure. The reaction was purified by flash column chromatography using the indicated solvent system.

General procedure B for the synthesis of aryl triketopiperazines (1a-g)

To a microwave vial containing a suspension of 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1*H*-benzotriazole (1.5 eq.) in THF (0.2 M) was added *N*-benzyl-2-(benzylamino)-2-phenylacetamide (1 eq.) in THF (0.2 M). The reaction mixture was stirred for 10 minutes then irradiated for 1 hour at 150 °C. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography using the indicated solvent system.

General procedures Ci and Cii for the racemic and enantioselective Michael additions of α -aryl triketopiperazines (2a-q)

General procedure Ci for the racemic Michael additions of α -aryl triketopiperazines (2a-q)

To a solution of triketopiperazine **1a-j** (1 eq.) in CH_2Cl_2 (0.1 M) was added triethylamine (1 eq.) followed by the Michael acceptor (2.5 eq.) at room temperature. The mixture was left to react until the starting material was consumed. The reaction was directly purified by flash column chromatography using the indicated solvent system.

General procedure Cii for the enantioselective Michael additions of α -aryl triketopiperazines (2a-q)

To a mixture of triketopiperazine **1a-j** (1 eq.) and catalyst **3** (10 mol%) in CH_2Cl_2 (0.1 M) at -78 °C, the Michael acceptor (2.5 eq.) was added neat. The reaction mixture was allowed to warm to 3 °C and left to react. After the starting material was consumed the reaction was directly purified by flash column chromatography using the indicated solvent system.

General procedure D for the synthesis of diazabicycles (4a-m)

To a solution of triketopiperazine **2a-k**, **2n and 2q** (1 eq.) in THF (0.2 M) was added ethanolamine (0.2 M). The reaction mixture was heated under reflux for 1 hour. The reaction mixture was concentrated under reduced pressure and directly purified by flash column chromatography using the indicated solvent system.

Synthesis of Amino Amides (S4-S10)

N-benzyl-2-(benzylamino)-2-phenylacetamide S4

To a microwave vial containing a solution of benzylamine (0.55 mL, 5 mmol) in MeCN (4 mL) was added α -chlorophenylacetyl chloride (0.16 mL, 1 mmol) dropwise at 0 °C. TBAI (185 mg, 0.5 mmol) dissolved in MeCN (1 mL) was added and the reaction mixture was irradiated for 1 hour in the microwave at 150 °C. The reaction mixture was filtered, washed with MeCN (5 mL) and the filtrate concentrated under reduced pressure. The resulting oil was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (1:0) to (2:1)) to afford **S4** (307 mg, 93%) as an orange oil.

IR v_{max}/cm^{-1} 3302, 3061, 3028, 2845, 1657, 1515, 1453, 1028, 730, 694; ¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.19 (m, 16H), 4.46 (d, *J* = 5.9 Hz, 2H), 4.30 (s, 1H), 3.77 (s, 2H), 2.05 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 139.3, 139.2, 138.5, 129.0, 128.8, 128.7, 128.3, 127.8, 127.6, 127.5, 127.5, 67.1, 52.7, 43.4; *m/z* (ES HRMS) C₂₂H₂₃N₂O requires 331.1810, found [MH]⁺ 331.1813.

N-benzyl-2-(benzylamino)-2-(4-methoxyphenyl)acetamide S5

To a 2-necked round bottomed flask containing 4-methoxyphenylacetic acid (1.81 g, 10 mmol), NBS (1.87 g, 10.5 mmol) and AIBN (330 mg, 2 mmol) was added CCl₄ (15 mL). The reaction mixture was heated under reflux for 16 hours then allowed to cool to room temperature, filtered, washed with CCl₄ and concentrated under reduced pressure. To the resulting oil was added thionyl chloride (15 mL) and the reaction mixture was heated under reflux for 1 hour. The solvent was removed under reduced pressure to give crude 2-bromo-2-(4-methoxyphenyl)acetyl chloride as an orange oil. The crude product was diluted with MeCN (5 mL) and added dropwise to a solution of benzylamine (5.4 mL, 50 mmol) in MeCN

(50 mL) at 0 °C and stirred for 16 hours at room temperature. The reaction mixture was filtered, washed with MeCN (10 mL) and the filtrate was concentrated under reduced pressure. The resulting oil was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (1:1)) to afford **S5** (1.79 g, 50%) as an orange oil.

IR v_{max}/cm^{-1} 3289, 3030, 2931, 2838, 1511, 1453, 1251, 1177, 1026, 751, 694; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (br s, 1H), 7.35 – 7.18 (m, 12H), 6.87 (d, *J* = 8.4 Hz, 2H), 4.46 (d, *J* = 5.9 Hz, 2H), 4.25 (s, 1H), 3.80 (s, 3H), 3.75 (d, *J* = 3.5 Hz, 2H) 1.80 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 159.6, 139.4, 138.5, 131.5, 128.8, 128.7, 128.6, 128.3, 127.8, 127.6, 127.5, 114.4, 66.5, 55.5, 52.6, 43.4; *m/z* (ESI HRMS) C₂₃H₂₄N₂O₂Na requires 383.1735, found [MNa]⁺ 383.1732.

N-benzyl-2-(benzylamino)-2-(4-nitrophenyl)acetamide S6

Following procedure **A** using 4-nitrophenylacetic acid (1.81 g, 10 mmol), NBS (2.67 g, 15 mmol), HBr (3 drops) and benzylamine (5.4 mL, 50 mmol). The resulting oil was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (1:0) to (2:1)) to afford **S6** (1.85 g, 68%) as an orange oil.

IR v_{max}/cm^{-1} 3347, 3258, 3033, 2933, 2846, 1668, 1519, 1452, 1343, 750, 734, 689; ¹H NMR (300 MHz, CDCl₃) δ 8.23 – 8.16 (m, 2H), 7.57 – 7.53 (m, 2H), 7.45 (br s, 1H), 7.37 – 7.19 (m, 10H), 4.45 (d, *J* = 5.9 Hz, 2H), 4.40 (s, 1H), 3.77 (s, 2H), 2.06 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 147.8, 146.3, 138.6, 138.0, 128.9, 128.8, 128.4, 128.3, 127.8, 124.1, 66.3, 52.4, 43.5; *m/z* (ES HRMS) C₂₂H₂₂N₃O₃ requires 376.1661, found [MH]⁺ 376.1665.

N-benzyl-2-(benzylamino)-2-(4-bromophenyl)acetamide S7

Following general procedure **A** using 4-bromophenylacetic acid (860 mg, 4 mmol), NBS (1 g, 6 mmol), HBr (3 drops) and benzylamine (2.2 mL, 20 mmol). The resulting oil was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **S7** (708 mg, 45%) as an orange oil.

IR ν_{max}/cm^{-1} 3299, 3062, 3028, 2924, 2848, 1652, 1517, 1486, 1453, 1071, 1010, 907, 727, 696; ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.46 (m, 3H), 7.38 – 7.22 (m, 12H), 4.46 (d, *J* = 6.0 Hz, 2H), 4.27 (s, 1H), 3.77 (s, 2H), 2.06 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 139.0, 138.3, 132.0, 129.1, 128.8, 128.7, 128.2, 127.7, 127.6, 127.5, 122.2, 66.3, 52.4, 43.3; *m/z* (ES HRMS) C₂₂H₂₂N₂OBr requires 409.0916, found [MH]⁺ 409.0924.

N-benzyl-2-(benzylamino)-2-(2-bromophenyl)acetamide \$8

Following general procedure **A** using 2-bromophenylacetic acid (430 mg, 2 mmol), NBS (530 mg, 3 mmol), HBr (3 drops) and benzylamine (1.1 mL, 10 mmol). The resulting oil was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **S8** (474 mg, 58%) as an orange oil.

IR v_{max}/cm^{-1} 3315, 3061, 3027, 2922, 2844, 1658, 1514, 1453, 1080, 1025, 748, 697; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.49 (m, 2H), 7.38 – 7.22 (m, 12H), 7.20 – 7.14 (m, 1H), 4.69 (s, 1H), 4.51 (dd, *J* = 6.0, 2.1 Hz, 2H), 3.85 (d, *J* = 12.7 Hz, 1H), 3.71 (d, *J* = 12.7 Hz, 1H), 2.27 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 139.1, 138.5, 138.2, 133.4, 129.8, 129.6, 128.7, 128.6, 128.3, 127.9, 127.8, 127.5, 127.4, 124.3, 65.8, 52.6, 43.4; *m/z* (ES HRMS) C₂₂H₂₂N₂OBr requires 409.0916, found [MH]⁺ 409.0911.

N-benzyl-2-(benzylamino)-2-(furan-2-yl)acetamide S9

To a solution of glyoxylic acid monohydrate (460 mg, 5 mmol) in CH_2Cl_2 (33 mL) was added benzylamine (0.55 mL, 5 mmol) and 2-furylboronic acid (560 mg, 5 mmol). The flask was

purged with argon and stirred at room temperature for 4 hours. The resulting precipitate was filtered, dried under reduced pressure and used without further purification. To a round bottomed flask containing the crude amino acid was added CH_2Cl_2 (25 mL) and the reaction mixture was cooled to 0 °C, followed by the addition of PyBOP (2.8 g, 5.5 mmol), triethylamine (1.1 mL, 7.5 mmol) and benzylamine (1.4 mL, 12.5 mmol). The reaction mixture was allowed to warm to room temperature and was stirred for 16 hours. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **S9** (1.24 g, 78%) as an orange oil.

IR v_{max}/cm^{-1} 3304, 3061, 3028, 2924, 2849, 1657, 1520, 1496, 1453, 1147, 1073, 1010, 734, 697; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (br s, 1H), 7.38 (dd, *J* = 1.9, 0.9 Hz, 1H), 7.36 – 7.23 (m, 10H), 6.38 – 6.29 (m, 2H), 4.50 (d, *J* = 5.9 Hz, 2H), 4.40 (s, 1H), 3.82 (d, *J* = 13.1 Hz, 1H), 3.74 (d, *J* = 13.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 151.6, 142.6, 139.0, 138.3, 128.8, 128.7, 128.4, 127.8, 127.6, 127.6, 110.7, 108.5, 60.4, 52.4, 43.5; *m/z* (ES HRMS) C₂₀H₂₁N₂O₂ requires 321.1603, found [MH]⁺ 321.1604.

N-benzyl-2-(benzylamino)-2-(thiophen-2-yl)acetamide S10

To a solution of glyoxylic acid monohydrate (368 mg, 4 mmol) in CH_2Cl_2 (26 mL) was added benzylamine (0.44 mL, 4 mmol) and 2-thiopheneboronic acid (512 mg, 4 mmol). The flask was purged with argon and stirred at room temperature for 72 hours. The resulting precipitate was filtered, dried under reduced pressure and used without further purification. To a round bottomed flask containing the crude amino acid was added CH_2Cl_2 (20 mL) and the reaction mixture was cooled to 0 °C, followed by the addition of PyBOP (2.3 g, 4.4 mmol), triethylamine (0.84 mL, 6 mmol) and benzylamine (1.1 mL, 10 mmol). The reaction mixture was allowed to warm to room temperature and stirred for 16 hours. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **\$10** (749 mg, 56%) as an orange oil.

IR v_{max}/cm^{-1} 3318, 3061, 2922, 2851, 1654, 1517, 1452, 1359, 1234, 1078, 1028, 847, 731, 694; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.16 (m, 12H), 7.01 (d, *J* = 3.4 Hz, 1H), 6.92 (dd, *J* = 5.1, 3.5 Hz, 1H), 4.54 (s, 1H), 4.40 (d, *J* = 5.9 Hz, 2H), 3.77 (d, *J* = 13.2 Hz, 1H), 3.72 (d, *J* = 13.3 Hz, 1H), 2.27 (br s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 142.2, 139.0, 138.2, 128.7, 128.6,

128.3, 127.7, 127.5, 127.4, 126.9, 126.0, 125.5, 62.3, 52.3, 43.4; *m/z* (ES HRMS) C₂₀H₂₁N₂OS requires 337.1375, found [MH]⁺ 337.1372.

Synthesis of α -Aryl Triketopiperazines (1a-j)

1,4-dibenzyl-6-phenylpiperazine-2,3,5-trione 1a

Following general procedure **B** using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1H-benzotriazole (394 mg, 1.35 mmol) in THF (2 mL),*N*-benzyl-2-(benzylamino)-2-phenylacetamide**S4**(307 mg, 0.9 mmol) in THF (3 mL). The residue was purified by flash column chromatography on silica gel (CH₂Cl₂) to afford**1a**(247.9 mg, 72%) as a white solid.

m.p. 159 – 161 °C; **IR** v_{max}/cm^{-1} 3034, 1748, 1673, 1437, 1253, 1188, 720, 698; ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.18 (m, 15H), 5.57 (d, *J* = 14.5 Hz, 1H), 5.15 (s, 1H), 5.07 (d, *J* = 13.7 Hz, 1H), 4.89 (d, *J* = 13.7 Hz, 1H), 3.63 (d, *J* = 14.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 156.4, 153.0, 135.0, 134.1, 134.0, 130.0, 129.8, 129.3, 129.2, 128.9, 128.7, 128.2, 127.0, 63.8, 48.0, 44.7; *m/z* (ESI HRMS) C₂₄H₂₀N₂O₃Na requires 407.1372, found [MNa]⁺407.1370.

1,4-dibenzyl-6-(4-methoxyphenyl)piperazine-2,3,5-trione 1b

Following general procedure **B** using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1*H*-benzotriazole (438 mg, 1.5 mmol) in THF (2 mL), *N*-benzyl-2-(benzylamino)-2-(4-methoxyphenyl)acetamide **S5** (360 mg, 1.0 mmol) in THF (3 mL). The residue was purified by column chromatography on silica gel (gradient: CH_2Cl_2 :acetone = (1:0) to (95:5)) to afford **1b** (117.8 mg, 28%) as a white solid.

m.p. 184 – 186 °C; **IR** ν_{max}/cm⁻¹ 2966, 2842, 2358, 1749, 1674, 1515, 1352, 1251, 1176, 1022, 831, 728, 695; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 2H), 7.31 – 7.14 (m, 8H), 7.14 – 7.09 (m, 2H), 6.93 – 6.88 (m, 2H), 5.52 (d, J = 14.4 Hz, 1H), 5.08 – 4.99 (m, 2H), 4.85 (d, J = 13.7 Hz, 1H), 3.82 (s, 3H), 3.59 (d, J = 14.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 160.9, 156.5, 153.0, 135.1, 134.1, 129.3, 128.8, 128.7, 128.3, 128.2, 125.8, 115.2, 63.2, 55.6, 47.8, 44.7; *m/z* (ESI HRMS) C₂₅H₂₂N₂O₄Na requires 437.1477, found [MNa]⁺437.1482.

1,4-dibenzyl-6-(4-nitrophenyl)piperazine-2,3,5-trione 1c

Following general procedure **B** using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1H-benzotriazole (438 mg, 1.5 mmol) in THF (2 mL),*N*-benzyl-2-(benzylamino)-2-(4-nitrophenyl)acetamide**S6**(375 mg, 1.0 mmol) in THF (3 mL). The residue was purified by column chromatography on silica gel (CH₂Cl₂) to afford**1c**(163 mg, 38%) as a white solid.

m.p. 167 – 169 °C; **IR** v_{max}/cm^{-1} 3089, 3030, 1754, 1684, 1518, 1346, 1254, 976, 727, 702; ¹**H NMR** (300 MHz, CDCl₃) δ 8.27 – 8.20 (m, 2H), 7.43 – 7.10 (m, 12H), 5.51 (d, *J* = 14.5 Hz, 1H), 5.23 (s, 1H), 5.02 (d, *J* = 13.6 Hz, 1H), 4.87 (d, *J* = 13.6 Hz, 1H), 3.66 (d, *J* = 14.5 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 165.6, 155.8, 152.8, 148.9, 140.9, 134.7, 133.3, 129.5, 129.3, 129.2, 129.2, 128.8, 128.5, 128.2, 124.9, 63.3, 48.6, 45.0; *m/z* (ESI HRMS) C₂₄H₁₉N₃O₅Na requires 452.1222, found [MNa]⁺ 452.1219.

1,4-dibenzyl-6-(4-bromophenyl)piperazine-2,3,5-trione 1d

Following general procedure **B** using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1*H*-benzotriazole (86 mg, 0.30 mmol) in THF (1 mL), *N*-benzyl-2-(benzylamino)-2-(4-bromophenyl)acetamide **S7** (100 mg, 0.25 mmol) in THF (1 mL). The residue was purified by column chromatography on silica gel (CH_2Cl_2) to afford **1d** (23 mg, 21%) as an off white solid.

m.p. 159 – 162 °C; **IR** v_{max}/cm⁻¹ 3028, 2918, 1744, 1676, 1491, 1451, 1434, 1365, 1251, 1188, 1072, 1010, 823, 741, 695; ¹H **NMR** (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 2H), 7.37 – 7.31 (m, 3H), 7.28 – 7.20 (m, 5H), 7.19 – 7.12 (m, 2H), 7.10 – 7.05 (m, 2H), 5.51 (d, J = 14.5 Hz, 1H), 5.07 (s, 1H), 5.02 (d, J = 13.7 Hz, 1H), 4.85 (d, J = 13.7 Hz, 1H), 3.60 (d, J = 14.5 Hz, 1H); ¹³C **NMR** (101 MHz, CDCl₃) δ 166.3, 156.2, 152.9, 134.9, 133.7, 133.1, 133.0, 129.3, 129.2, 129.0, 128.7, 128.6, 128.4, 124.3, 63.3, 48.1, 44.8; *m/z* (ES HRMS) C₂₄H₁₉N₂O₃BrNa requires 485.0477, found [MNa]⁺ 485.0476.

1,4-dibenzyl-6-(furan-2-yl)piperazine-2,3,5-trione 1e

Following general procedure **B** using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1H-benzotriazole (225 mg, 0.77 mmol) in THF (2 mL),*N*-benzyl-2-(benzylamino)-2-(furan-2-yl)acetamide**S9**(204 mg, 0.64 mmol) in THF (2 mL). The residue was purified by column chromatography on silica gel (CH₂Cl₂) to afford**1e**(94.2 mg, 40%) as an off white solid.

m.p. 144 – 146 °C; **IR** v_{max}/cm^{-1} 3062, 3033, 2925, 1748, 1688, 1496, 1430, 1361, 1255, 1208, 1013, 730, 699; ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.11 (m, 11H), 6.34 (dd, *J* = 3.4, 0.8 Hz, 1H), 6.30 (dd, *J* = 3.3, 1.8 Hz, 1H), 5.33 (d, *J* = 14.6 Hz, 1H), 5.10 (s, 1H), 4.99 (d, *J* = 13.9 Hz, 1H), 4.87 (d, *J* = 13.9 Hz, 1H), 3.72 (d, *J* = 14.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 156.4, 153.0, 145.8, 144.3, 135.0, 133.9, 129.2, 129.1, 129.1, 128.8, 128.7, 128.2, 111.6, 111.2, 57.8, 48.0, 44.9; *m/z* (ES HRMS) C₂₂H₁₈N₂O₄Na requires 397.1164, found [MNa]⁺ 397.1166.

1,4-dibenzyl-6-(thiophen-2-yl)piperazine-2,3,5-trione 1f

Following general procedure **B** using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1*H*-benzotriazole (105 mg, 0.36 mmol) in THF (1 mL), *N*-benzyl-2-(benzylamino)-2-(thiophen-2-yl)acetamide **S10** (100 mg, 0.30 mmol) in THF (1 mL). The residue was purified by column chromatography on silica gel (CH₂Cl₂) to afford **1f** (40 mg, 34%) as an off white solid.

m.p. 135 – 137 °C; **IR** ν_{max}/cm⁻¹ 3033, 2923, 2853, 1747, 1688, 1495, 1431, 1361, 1253, 1207, 1087, 971, 729, 700; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.23 (m, 11H), 7.06 – 7.02 (m, 2H), 5.56 (d, J = 14.6 Hz, 1H), 5.37 (s, 1H), 5.05 (d, J = 13.7 Hz, 1H), 4.91 (d, J = 13.7 Hz, 1H), 3.81 (d, J = 14.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 156.1, 152.5, 136.9, 134.9, 133.9, 129.3, 129.3, 129.2, 128.9, 128.7, 128.3, 127.9, 127.6, 59.4, 48.0, 44.9; *m/z* (ES HRMS) C₂₂H₁₈N₂O₃SNa requires 413.0936, found [MNa]⁺ 413.0926.

1,4-dibenzyl-6-(2-bromophenyl)piperazine-2,3,5-trione 1g

Following general procedure **B** using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1*H*-benzotriazole (85 mg, 0.30 mmol) in THF (1 mL), *N*-benzyl-2-(benzylamino)-2-(2-bromophenyl)acetamide **S8** (100 mg, 0.25 mmol) in THF (1 mL). The residue was purified by column chromatography on silica gel (CH_2Cl_2) to afford **1g** (43 mg, 38%) as an off white solid.

m.p. 153 – 155 °C; **IR** v_{max}/cm⁻¹ 3062, 3032, 2932, 1744, 1682, 1494, 1429, 1363, 1257, 1190, 1027, 908, 728, 698; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 7.7, 1.6 Hz, 1H), 7.40 – 7.23 (m, 10H), 7.21 – 7.15 (m, 2H), 7.07 (dd, J = 7.4, 1.9 Hz, 1H), 5.64 (br s, 1H), 5.36 (d, J = 14.6 Hz, 1H), 5.07 (d, J = 13.6 Hz, 1H), 4.93 (d, J = 13.6 Hz, 1H), 3.59 (d, J = 14.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 156.3, 153.1, 134.9, 134.6, 134.0, 133.5, 131.4, 129.7, 129.3, 129.1, 128.7, 128.4, 128.3, 124.0, 63.8, 48.2, 44.8; *m/z* (ES HRMS) C₂₄H₁₉N₂O₃BrNa requires 485.0477, found [MNa]⁺ 485.0474.

1,4-dibenzyl-6-(1-methyl-1H-pyrrol-2-yl)piperazine-2,3,5-trione **1h** and 1,4-dibenzyl-6-(1-methyl-1H-pyrrol-3-yl)piperazine-2,3,5-trione **1i**

To a round bottomed flask containing triketopiperazine **S11** (100 mg, 0.32 mmol), NBS (87 mg, 0.49 mmol) and AIBN (11 mg, 65 μ mol, 20 mol%) was added diethylcarbonate (1.6 mL)

and the reaction mixture was heated under reflux for 1 hour. The reaction mixture was allowed to cool to room temperature, filtered, washed with diethylcarbonate (3 x 2 mL) and the filtrate concentrated under reduced pressure. The crude α -bromo triketopiperazine was then used without further purification. To the crude residue was added diethylcarbonate (2 mL) and *N*-methyl pyrrole (58 μ L, 0.65 mmol) and the reaction mixture was stirred for 7 days at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **1h** (66.6 mg, 52%) as a colourless waxy solid and **1i** (10.4 mg, 8%) as a colourless waxy solid.

1,4-dibenzyl-6-(1-methyl-1H-pyrrol-2-yl)piperazine-2,3,5-trione 1h

IR v_{max}/cm^{-1} 3062, 3032, 2944, 1745, 1684, 1493, 1427, 1359, 1301, 1251, 1207, 1089, 908, 723, 698; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.22 (m, 8H), 7.15 – 7.08 (m, 2H), 6.62 (dd, J = 2.7, 1.8 Hz, 1H), 6.13 (dd, J = 3.8, 2.7 Hz, 1H), 6.06 (dd, J = 3.9, 1.7 Hz, 1H), 5.47 (d, J = 14.4 Hz, 1H), 5.12 (s, 1H), 5.03 (d, J = 13.8 Hz, 1H), 4.86 (d, J = 13.9 Hz, 1H), 3.84 (d, J = 14.4 Hz, 1H), 3.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 156.2, 153.1, 135.1, 133.8, 129.4, 129.2, 129.1, 128.8, 128.7, 128.2, 125.3, 124.1, 109.0, 108.3, 56.5, 48.1, 44.6, 34.2; *m/z* (ES HRMS) C₂₃H₂₁N₃O₃Na requires 410.1481, found [MNa]⁺ 410.1489.

1,4-dibenzyl-6-(1-methyl-1H-pyrrol-3-yl)piperazine-2,3,5-trione 1i

IR v_{max}/cm^{-1} 3062, 3031, 2942, 1745, 1683, 1495, 1429, 1357, 1253, 1207, 1155, 1088, 1029, 909, 726, 698; ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 5H), 7.28 – 7.21 (m, 5H), 6.55 (t, *J* = 2.5 Hz, 1H), 6.52 (t, *J* = 2.1 Hz, 1H), 5.92 (dd, *J* = 2.8, 1.9 Hz, 1H), 5.48 (d, *J* = 14.5 Hz, 1H), 5.06 – 5.01 (m, 2H), 4.87 (d, *J* = 13.8 Hz, 1H), 3.81 (d, *J* = 14.5 Hz, 1H), 3.60 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 156.9, 153.1, 135.3, 134.6, 129.5, 129.3, 129.2, 128.7, 128.6, 128.1, 123.5, 120.7, 117.5, 106.6, 58.2, 47.6, 44.6, 36.6; *m/z* (ES HRMS) C₂₃H₂₁N₃O₃Na requires 410.1481, found [MNa]⁺ 410.1484.

1,4-dibenzyl-6-(1H-indol-3-yl)piperazine-2,3,5-trione 1j

To a round bottomed flask containing triketopiperazine **S11** (308 mg, 1.0 mmol), NBS (267 mg, 1.5 mmol) and AIBN (30 mg, 0.20 mmol, 20 mol%) was added diethylcarbonate (5 mL) and the reaction mixture was heated under reflux for 1 hour. The reaction mixture was allowed to cool to room temperature, filtered, washed with diethylcarbonate (3 x 3 mL) and

the filtrate concentrated under reduced pressure. The crude α -bromo triketopiperazine was then used without further purification. To the crude residue was added DMF (5 mL) and indole (177 mg, 1.5 mmol) and the reaction mixture was stirred for 24 hours at room temperature. The reaction mixture was diluted with EtOAc (5 mL), washed with water (5 × 10 mL) and brine (10 mL) and the organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (1:0) to (1:1)) to afford **1**j (329 mg, 78%) as a white solid.

m.p. 178 – 180 °C; **IR** v_{max}/cm^{-1} 3270, 3059, 1747, 1691, 1661, 1548, 1494, 1425, 1360, 1272, 1201, 1147, 1100, 1077, 970, 735, 695; ¹**H NMR** (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.46 – 7.37 (m, 2H), 7.36 – 7.08 (m, 13H), 5.54 (d, *J* = 14.5 Hz, 1H), 5.45 (s, 1H), 5.08 (d, *J* = 13.7 Hz, 1H), 4.88 (d, *J* = 13.7 Hz, 1H), 3.79 (d, *J* = 14.5 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 167.1, 156.8, 153.1, 136.7, 135.1, 134.5, 129.4, 129.2, 129.2, 128.7, 128.6, 128.2, 124.9, 124.0, 123.5, 121.2, 118.7, 112.0, 109.8, 57.6, 47.8, 44.8; *m/z* (ES HRMS) C₂₆H₂₁N₃O₃Na requires 446.1481, found [MNa]⁺446.1480.

Asymmetric Michael Additions (2a-q)

1,4-dibenzyl-6-(3-oxobutyl)-6-phenylpiperazine-2,3,5-trione 2a

Following general procedure **Cii** using triketopiperazine **1a** (38 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 µmol, 10 mol%), CH_2Cl_2 (1 mL) and methyl vinyl ketone (µL, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2a** (44.6 mg, 98%) as a colourless oil in 8:92 er as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, 50:50, 1.0 ml/min, λ 220 nm, t(minor) = 20.5 min, t(major) = 22.4 min].

IR $v_{max}/cm^{-1}3067$, 3035, 1744, 1682, 1495, 1419, 1358, 1266, 1144, 1074, 1029, 707, 693; ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.18 (m, 15H), 5.22 (d, *J* = 14.8 Hz, 1H), 5.09 (d, *J* = 13.6 Hz, 1H), 4.93 (d, *J* = 13.6 Hz, 1H), 3.64 (d, *J* = 14.8 Hz, 1H), 3.04 – 2.93 (m, 1H), 2.40 (ddd, *J* = 14.8, 9.2, 6.0 Hz, 1H), 1.84 – 1.76 (m, 2H), 1.60 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 205.1, 169.1, 155.8, 155.1, 138.0, 136.6, 135.1, 129.7, 129.6, 129.2, 129.2, 128.9, 128.7, 128.3,

128.2, 126.3, 72.8, 48.9, 44.7, 37.1, 30.1, 29.4; m/z (ESI HRMS) $C_{28}H_{26}N_2O_4Na$ requires 477.1790, found [MNa]⁺ 477.1792; $[\alpha]_D^{20} = -23.4$ (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(4-methoxyphenyl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2b

Following general procedure **Cii** using triketopiperazine **1b** (41 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 µmol, 10 mol%), CH₂Cl₂ (1 mL) and methyl vinyl ketone (20 µL, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2b** (40.0 mg, 83%) as a colourless oil in 7:93 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 50:50, 1.0 ml/min, λ 230 nm, t(minor) = 13.9 min, t(major) = 16.9 min].

IR v_{max}/cm^{-1} 3036, 2959, 1739, 1683, 1512, 1420, 1358, 1260, 1229, 1184, 1077, 1031, 824, 698; ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.21 (m, 12H), 6.95 – 6.89 (m, 2H), 5.22 (d, *J* = 14.7 Hz, 1H), 5.11 (d, *J* = 13.6 Hz, 1H), 4.95 (d, *J* = 13.6 Hz, 1H), 3.84 (s, 3H), 3.70 (d, *J* = 14.8 Hz, 1H), 3.02 – 2.91 (m, 1H), 2.38 (ddd, *J* = 14.8, 9.2, 6.1 Hz, 1H), 1.84 – 1.76 (m, 2H), 1.62 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 205.2, 169.4, 160.4, 155.9, 155.1, 136.8, 135.2, 129.8, 129.3, 129.2, 128.9, 128.7, 128.3, 128.2, 127.6, 115.0, 72.4, 55.6, 48.8, 44.7, 37.2, 30.2, 29.4; *m/z* (ES HRMS) C₂₉H₂₈N₂O₅Na requires 507.1896, found [MNa]⁺ 507.1898; [α]²⁰_D = -18.5 (c 1.0, CHCl₃).

1,4-dibenzyl-6-(4-nitrophenyl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2c

Following general procedure **Cii** using triketopiperazine **1c** (43 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 µmol, 10 mol%), CH₂Cl₂ (1 mL) and methyl vinyl ketone (20 µL, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2c** (34.6 mg, 70%) as a colourless oil in 5:95 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 45:55, 1.0 ml/min, λ 220 nm, t(minor) = 23.2 min, t(major) = 27.1 min].

IR v_{max}/cm^{-1} 3080, 3003, 2939, 1751, 1680, 1517, 1417, 1345, 1229, 1109, 1079, 1030, 854, 730, 703; ¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.23 (m, 2H), 7.63 – 7.57 (m, 2H), 7.40 – 7.22 (m, 10H), 5.20 – 5.11 (m, 2H), 5.02 (d, *J* = 13.6 Hz, 1H), 3.86 (d, *J* = 14.8 Hz, 1H), 3.03 (ddd, *J* = 14.4, 10.7, 5.8 Hz, 1H), 2.56 (ddd, *J* = 14.7, 10.8, 4.3 Hz, 1H), 1.99 – 1.82 (m, 2H), 1.73 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.7, 168.2, 155.4, 154.7, 148.4, 144.6, 136.1, 134.8, 129.4, 129.1, 129.0, 128.8, 128.6, 128.4, 127.9, 124.5, 72.3, 49.0, 45.0, 36.9, 30.5, 29.5; *m/z* (ES HRMS) C₂₈H₂₅N₃O₆Na requires 522.1641, found [MNa]⁺ 522.1638; [α]²⁰_D = -7.5 (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(4-bromophenyl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2d

Following general procedure **Cii** using triketopiperazine **1d** (46 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 µmol, 10 mol%), CH₂Cl₂ (1 mL) and methyl vinyl ketone (20 µL, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2d** (46.7 mg, 88%) as a colourless oil in 9:91 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 50:50, 1.0 ml/min, λ 230 nm, t(minor) = 21.6 min, t(major) = 24.3 min].

IR v_{max}/cm^{-1} 3063, 3032, 1743, 1716, 1680, 1491, 1360, 1228, 1077, 908, 727, 701; ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.49 (m, 2H), 7.30 – 7.16 (m, 12H), 5.16 (d, *J* = 14.7 Hz, 1H), 5.08 (d, *J* = 13.6 Hz, 1H), 4.93 (d, *J* = 13.5 Hz, 1H), 3.69 (d, *J* = 14.8 Hz, 1H), 2.91 (ddd, *J* = 14.4, 10.0, 6.8 Hz, 1H), 2.38 (ddd, *J* = 14.8, 9.8, 5.4 Hz, 1H), 1.86 – 1.70 (m, 2H), 1.61 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.9, 168.8, 155.6, 155.0, 137.1, 136.4, 135.0, 132.8, 129.3, 129.2, 128.9, 128.8, 128.5, 128.3, 128.1, 124.1, 72.4, 48.9, 44.9, 37.0, 30.2, 29.4; *m/z* (ES HRMS) C₂₈H₂₅N₂O₄NaBr requires 555.0895, found [MNa]⁺ 555.0900; [α]²⁰_D = -4.7 (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(furan-2-yl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2e

Following general procedure **Cii** using triketopiperazine **1e** (37 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 µmol, 10 mol%), CH₂Cl₂ (1 mL) and methyl vinyl ketone (20 µL, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2e** (44 mg, 99%) as a colourless oil in 94:6 er as determined by HPLC analysis [Phenomenex Lux Cellulose-3, MeCN:water, 35:65, 1.0 ml/min, λ 220 nm, t(major) = 24.4 min, t(minor) = 27.8 min].

IR v_{max}/cm^{-1} 3036, 2935, 1746, 1684, 1495, 1415, 1365, 1342, 1231, 1147, 1015, 908, 731, 700; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.17 (m, 11H), 6.57 (dd, *J* = 3.4, 0.8 Hz, 1H), 6.36 (dd, *J* = 3.4, 1.9 Hz, 1H), 5.12 (d, *J* = 13.7 Hz, 1H), 5.05 – 4.97 (m, 2H), 3.92 (d, *J* = 14.9 Hz, 1H), 2.74 (ddd, *J* = 14.7, 10.4, 6.5 Hz, 1H), 2.44 (ddd, *J* = 14.9, 10.0, 5.1 Hz, 1H), 1.89 – 1.81 (m, 2H), 1.67 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 205.0, 167.1, 155.8, 154.9, 149.8, 143.7, 136.3, 135.1, 129.2, 128.8, 128.8, 128.7, 128.3, 128.0, 111.1, 110.7, 68.5, 47.7, 44.9, 36.6, 29.5, 28.6; *m/z* (ES HRMS) C₂₆H₂₄N₂O₅Na requires 467.1583, found [MNa]⁺ 467.1590; [α]²⁰_D = -12.1 (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(3-oxobutyl)-6-(thiophen-2-yl)piperazine-2,3,5-trione 2f

Following general procedure **Cii** using triketopiperazine **1f** (39 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 µmol, 10 mol%), CH₂Cl₂ (1 mL) and methyl vinyl ketone (20 µL, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2f** (42.7 mg, 93%) as a colourless oil in 6:94 er as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, 50:50, 1.0 ml/min, λ 230 nm, t(minor) = 21.4 min, t(major) = 23.4 min].

IR v_{max}/cm^{-1} 2924, 1742, 1687, 1495, 1416, 1363, 1227, 1079, 1028, 701; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.34 – 7.21 (m, 10H), 7.06 (dd, *J* = 3.7, 1.3 Hz, 1H), 7.01 (dd, *J* = 5.1, 3.7 Hz, 1H), 5.37 (d, *J* = 14.8 Hz, 1H), 5.08 (d, *J* = 13.7 Hz, 1H), 4.95 (d, *J* = 13.7 Hz, 1H), 3.84 (d, *J* = 14.9 Hz, 1H), 2.96 (ddd, *J* = 14.6, 11.6, 5.3 Hz, 1H), 2.48 (ddd, *J* = 14.8, 11.5, 3.5 Hz, 1H), 1.83 (ddd, *J* = 17.1, 11.5, 5.3 Hz, 1H), 1.72 (ddd, *J* = 17.8, 11.6, 3.5 Hz, 1H), 1.58 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.9, 167.9, 155.4, 154.8, 142.8, 136.7, 135.0, 129.1, 129.1, 129.0, 128.7, 128.3, 128.3, 127.8, 127.6, 126.9, 70.8, 48.8, 44.9, 37.3, 31.6, 29.3; *m/z* (ES HRMS) C₂₆H₂₄N₂O₄NaS requires 483.1354, found [MNa]⁺ 483.1353; [α]²⁰_D = -33.5 (c 1.0, CHCl₃).

1,4-dibenzyl-6-(2-bromophenyl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2g

Following general procedure **Cii** using triketopiperazine **1g** (46 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 µmol, 10 mol%), CH₂Cl₂ (1 mL) and methyl vinyl ketone (20 µL, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2g** (47.1 mg, 88%) as a colourless oil in 45:55 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 50:50, 1.0 ml/min, λ 230 nm, t(minor) = 19.4 min, t(major) = 23.5 min].

IR v_{max}/cm^{-1} 3064, 3033, 1741, 1717, 1680, 1494, 1419, 1361, 1262, 1227, 1075, 1027, 908, 727, 700; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.53 – 7.40 (m, 4H), 7.32 – 7.23 (m, 4H), 7.18 – 7.07 (m, 3H), 7.04 – 6.98 (m, 2H), 5.18 (d, *J* = 13.3 Hz, 1H), 5.03 (d, *J* = 13.3 Hz, 1H), 4.69 (d, *J* = 14.7 Hz, 1H), 3.96 (d, *J* = 14.7 Hz, 1H), 2.55 (ddd, *J* = 14.0, 11.4, 4.2 Hz, 1H), 2.44 (ddd, *J* = 14.1, 11.0, 5.2 Hz, 1H), 1.90 (ddd, *J* = 17.6, 11.0, 4.2 Hz, 1H), 1.73 – 1.60 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 204.6, 169.3, 156.5, 155.0, 136.2, 135.9, 135.3, 134.9, 131.2, 130.4, 129.8, 129.0, 128.7, 128.6, 128.5, 128.1, 128.0, 124.5, 71.7, 47.7, 44.6, 36.4, 33.0, 29.7; *m/z* (ES HRMS) C₂₈H₂₅N₂O₄BrNa requires 555.0895, found [MNa]⁺ 555.0898; [α]²⁰_P = 1.9 (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(1-methyl-1H-pyrrol-2-yl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2h

Following general procedure **Cii** using triketopiperazine **1h** (39 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 µmol, 10 mol%), CH₂Cl₂ (1 mL) and methyl vinyl ketone (20 µL, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2h** (45.0 mg, 99%) as a colourless oil in 49:51 er as determined by HPLC analysis [Phenomenex Lux Cellulose-3, MeCN:water, 40:60, 1.0 ml/min, λ 220 nm, t(minor) = 15.9 min, t(major) = 18.3 min].

IR v_{max}/cm^{-1} 3063, 3033, 2947, 1742, 1717, 1681, 1491, 1416, 1358, 1306, 1261, 1222, 1074, 908, 724, 699; ¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.41 (m, 2H), 7.30 – 7.23 (m, 3H), 7.19 – 7.09 (m, 3H), 6.91 – 6.86 (m, 2H), 6.46 (dd, *J* = 3.8, 1.8 Hz, 1H), 6.39 (dd, *J* = 2.8, 1.8 Hz, 1H), 6.14 (dd, *J* = 3.8, 2.8 Hz, 1H), 5.10 (d, *J* = 13.3 Hz, 1H), 5.05 (d, *J* = 13.3 Hz, 1H), 4.55 (d, *J* = 13.9 Hz, 1H), 4.32 (d, *J* = 13.9 Hz, 1H), 2.70 – 2.60 (m, 4H), 2.52 (ddd, *J* = 14.5, 9.9, 5.6 Hz, 1H), 2.15 – 1.93 (m, 2H), 1.86 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 204.9, 168.8, 156.1, 154.2, 135.8, 135.0, 130.1, 129.7, 128.7, 128.6, 128.3, 128.0, 126.9, 125.4, 112.2, 107.4, 67.6, 47.5, 44.9, 37.0, 34.0, 33.2, 29.9; *m/z* (ES HRMS) C₂₇H₂₇N₃O₄Na requires 480.1899, found [MNa]⁺ 480.1904; [*α*]²⁰_{*D*} = 5.7 (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(1-methyl-1H-pyrrol-3-yl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2i

Following general procedure **Cii** using triketopiperazine **1i** (34 mg, 90 μ mol), chiral catalyst **3** (3.5 mg, 9 μ mol 10 mol%), CH₂Cl₂ (1 mL) and methyl vinyl ketone (18 μ L, 0.21 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2i** (25.1 mg, 63%) as a colourless oil in 77:23 er as determined by HPLC analysis [Phenomenex Lux Cellulose-3, MeCN:water, 35:65, 1.0 ml/min, λ 220 nm, t(major) = 19.5 min, t(minor) = 21.1 min].

IR v_{max}/cm^{-1} 3062, 3031, 1741, 1714, 1682, 1495, 1419, 1362, 1227, 1166, 1080, 911, 729, 701; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.20 (m, 10H), 6.59 (t, *J* = 2.1 Hz, 1H), 6.55 (t, *J* = 2.5 Hz, 1H), 5.90 (dd, *J* = 2.9, 1.9 Hz, 1H), 5.29 (d, *J* = 14.9 Hz, 1H), 5.08 (d, *J* = 13.7 Hz, 1H), 4.95 (d, *J* = 13.7 Hz, 1H), 3.91 (d, *J* = 14.8 Hz, 1H), 3.61 (s, 3H), 2.81 (ddd, *J* = 14.8, 11.8, 5.3 Hz, 1H), 2.30 (ddd, *J* = 14.9, 11.6, 3.4 Hz, 1H), 1.82 (ddd, *J* = 17.1, 11.7, 5.3 Hz, 1H), 1.70 (ddd, *J* = 17.9, 11.8, 3.4 Hz, 1H), 1.57 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 205.7, 169.7, 156.1, 155.3, 137.4, 135.4, 129.2, 129.1, 128.8, 128.6, 128.1, 128.0, 123.3, 122.9, 120.4, 106.5, 69.5, 48.3, 44.7, 37.4, 36.7, 30.4, 29.4; *m/z* (ES HRMS) C₂₇H₂₈N₃O₄ requires 458.2080, found [MH]⁺ 458.2082; [α]²⁰_{*D*} = -21.2 (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(1H-indol-3-yl)-6-(3-oxobutyl)piperazine-2,3,5-trione 2j

Following general procedure **Cii** using triketopiperazine **1j** (12 mg, 30 μ mol), chiral catalyst **3** (1 mg, 3 μ mol, 10 mol%), CH₂Cl₂ (1 mL) and methyl vinyl ketone (6 μ L, 80 μ mol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2j** (12.5 mg, 91%) as a colourless oil in 27:73 er as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, 60:40, 1.0 ml/min, λ 220 nm, t(minor) = 5.8 min, t(major) = 9.9 min].

IR v_{max}/cm^{-1} 3343, 1739, 1715, 1676, 1496, 1416, 1362, 1225, 1166, 1017, 980, 909, 728, 699; ¹H NMR (400 MHz, CDCl₃) δ 8.84 – 8.76 (m, 1H), 7.43 – 7.34 (m, 4H), 7.25 – 7.13 (m, 9H), 7.07 (d, *J* = 7.9 Hz, 1H), 7.01 – 6.96 (m, 1H), 5.23 – 5.14 (m, 2H), 5.00 (d, *J* = 13.5 Hz, 1H), 3.94 (d, *J* = 14.7 Hz, 1H), 2.83 (ddd, *J* = 14.4, 11.5, 5.1 Hz, 1H), 2.50 – 2.41 (m, 1H), 1.90 (ddd, *J* = 17.6, 11.5, 3.7 Hz, 1H), 1.77 (ddd, *J* = 17.3, 11.7, 5.2 Hz, 1H), 1.66 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 205.3, 169.6, 156.4, 154.8, 136.9, 136.8, 135.2, 129.6, 129.1, 128.7, 128.4, 128.0, 124.8, 124.1, 123.3, 121.2, 118.4, 114.1, 112.2, 69.4, 48.0, 44.9, 36.7, 31.9, 29.6; *m/z* (ES HRMS) C₃₀H₂₇N₃O₄Na requires 516.1899, found [MNa]⁺ 516.1901; [α]²⁰_D = -14.5 (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(3-oxopentyl)-6-phenylpiperazine-2,3,5-trione 2k

Following general procedure **Cii** using triketopiperazine **1a** (38 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 μ mol, 10 mol%), CH₂Cl₂ (1 mL) and ethyl vinyl ketone (25 μ L, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2k** (41.3 mg, 91%) as a colourless oil in 4:96 er as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, 50:50, 1.0 ml/min, λ 230 nm, t(minor) = 28.1 min, t(major) = 30.6 min].

IR v_{max}/cm^{-1} 2938, 1743, 1680, 1495, 1416, 1362, 1261, 1222, 1144, 1077, 1030, 782, 697; ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.17 (m, 15H), 5.21 (d, *J* = 14.8 Hz, 1H), 5.09 (d, *J* = 13.6 Hz, 1H), 4.93 (d, *J* = 13.6 Hz, 1H), 3.64 (d, *J* = 14.8 Hz, 1H), 3.06 – 2.94 (m, 1H), 2.48 – 2.37 (m, 1H), 1.93 – 1.81 (m, 1H), 1.81 – 1.65 (m, 3H), 0.76 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 207.9, 169.2, 155.9, 155.2, 138.0, 136.7, 135.1, 129.7, 129.6, 129.2, 128.8, 128.7, 128.3, 128.1, 126.3, 72.8, 48.9, 44.7, 35.8, 35.4, 30.1, 7.7; *m/z* (ES HRMS) C₂₉H₂₈N₂O₄Na requires 491.1947, found [MNa]⁺ 491.1949; [α]²⁰_D = -23.9 (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(4-methoxyphenyl)-6-(3-oxopentyl)piperazine-2,3,5-trione 2l

Following general procedure **Cii** using triketopiperazine **1b** (41 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 μ mol, 10 mol%), CH₂Cl₂ (1 mL) and ethyl vinyl ketone (25 μ L, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2l** (37 mg, 75%) as a colourless oil in 3:97 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 50:50, 1.0 ml/min, λ 220 nm, t(minor) = 22.1 min, t(major) = 27.4 min].

IR v_{max}/cm^{-1} 2970, 2936, 1742, 1681, 1605, 1511, 1416, 1362, 1256, 1222, 1183, 1078, 1031, 910, 832, 728, 700; ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.18 (m, 12H), 6.94 – 6.89 (m, 2H), 5.21 (d, *J* = 14.8 Hz, 1H), 5.11 (d, *J* = 13.6 Hz, 1H), 4.94 (d, *J* = 13.6 Hz, 1H), 3.84 (s, 3H), 3.69 (d, *J* = 14.7 Hz, 1H), 2.97 (ddd, *J* = 14.4, 9.2, 7.6 Hz, 1H), 2.46 – 2.33 (m, 1H), 1.88 (dq, *J* = 17.6, 7.4 Hz, 1H), 1.80 – 1.66 (m, 3H), 0.78 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 208.0, 169.4, 160.4, 156.0, 155.2, 136.8, 135.2, 129.8, 129.3, 129.3, 128.8, 128.7, 128.3, 128.1, 127.7, 115.0, 72.5, 55.6, 48.8, 44.7, 35.9, 35.5, 30.2, 7.7; *m/z* (ES HRMS) C₃₀H₃₀N₂O₅Na requires 521.2052, found [MNa]⁺ 521.2048; [α]²⁰ = -4.8 (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(4-nitrophenyl)-6-(3-oxopentyl)piperazine-2,3,5-trione 2m

Following general procedure **Cii** using triketopiperazine **1c** (43 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 µmol, 10 mol%), CH_2Cl_2 (1 mL) and ethyl vinyl ketone (25 µL, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2m** (31.5 mg, 63%) as a colourless oil in 3:97 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 50:50, 1.0 ml/min, λ 230 nm, t(minor) = 19.3 min, t(major) = 22.7 min].

IR v_{max}/cm^{-1} 2980, 2933, 1744, 1682, 1608, 1525, 1495, 1415, 1349, 1221, 1113, 1078, 1030, 852, 729, 700; ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.16 (m, 2H), 7.56 – 7.49 (m, 2H), 7.32 – 7.14 (m, 10H), 5.13 – 5.04 (m, 2H), 4.94 (d, *J* = 13.5 Hz, 1H), 3.79 (d, *J* = 14.8 Hz, 1H), 2.98 (ddd, *J* = 14.4, 10.2, 6.4 Hz, 1H), 2.51 (ddd, *J* = 14.7, 10.2, 5.1 Hz, 1H), 1.91 (dq, *J* = 17.6, 7.4 Hz, 1H), 1.84 – 1.72 (m, 3H), 0.79 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 207.5, 168.3, 155.4, 154.7, 148.4, 144.7, 136.1, 134.8, 129.4, 129.1, 128.9, 128.8, 128.6, 128.3, 127.9, 124.5, 72.4, 49.0, 45.0, 35.5, 30.6, 7.7; *m/z* (ES HRMS) C₂₉H₂₇N₃O₆Na requires 536.1798, found [MNa]⁺536.1800; [α]²⁰_{*D*} = -7.2 (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(3-oxo-3-phenylpropyl)-6-phenylpiperazine-2,3,5-trione 2n

Following general procedure **Cii** using triketopiperazine **1a** (38 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 μ mol, 10 mol%), CH₂Cl₂ (1 mL) and phenyl vinyl ketone (33 mg, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2n** (46 mg, 90%) as a colourless oil in 85:15 er as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, 50:50, 1.0 ml/min, λ 230 nm, t(major) = 61.3 min, t(minor) = 70.3 min].

IR v_{max}/cm^{-1} 3064, 3029, 1742, 1678, 1597, 1494, 1415, 1361, 1262, 1228, 1138, 1073, 1002, 746, 690; ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.29 (m, 12H), 7.25 – 7.17 (m, 5H), 7.06 – 6.99 (m, 2H), 6.96 – 6.89 (m, 1H), 5.23 (d, *J* = 14.8 Hz, 1H), 5.13 (d, *J* = 13.5 Hz, 1H), 4.98 (d, *J* = 13.6 Hz, 1H), 3.73 (d, *J* = 14.8 Hz, 1H), 3.18 (ddd, *J* = 14.4, 9.9, 6.6 Hz, 1H), 2.63 (ddd, *J* = 14.7, 9.4, 5.6 Hz, 1H), 2.41 – 2.25 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 169.3, 155.9, 155.2, 138.1, 136.4, 136.1, 135.2, 133.2, 129.7, 129.6, 129.3, 128.9, 128.8, 128.4, 128.3, 128.0, 127.7, 126.4, 72.9, 49.0, 44.7, 32.5, 30.6; *m/z* (ES HRMS) C₂₃H₂₈N₂O₄Na requires 539.1947, found [MNa]⁺ 539.1957; [α]²⁰ = -12.5 (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(4-methoxyphenyl)-6-(3-oxo-3-phenylpropyl)piperazine-2,3,5-trione 20

Following general procedure **Cii** using triketopiperazine **1b** (41 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 µmol, 10 mol%), CH_2Cl_2 (1 mL) and phenyl vinyl ketone (33 mg, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2o** (52 mg, 95%) as a colourless oil in 87:13 er as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, 60:40, 1.0 ml/min, λ 220 nm, t(major) = 22.1 min, t(minor) = 26.0 min].

IR v_{max}/cm^{-1} 3061, 2958, 1741, 1678, 1603, 1511, 1447, 1415, 1362, 1256, 1227, 1182, 1077, 1030, 832, 733, 697; ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.46 (m, 1H), 7.38 – 7.27 (m, 8H), 7.25 – 7.18 (m, 5H), 7.07 – 6.98 (m, 2H), 6.96 – 6.89 (m, 3H), 5.21 (d, *J* = 14.8 Hz, 1H), 5.13 (d, *J* = 13.5 Hz, 1H), 4.97 (d, *J* = 13.6 Hz, 1H), 3.83 (s, 3H), 3.76 (d, *J* = 14.8 Hz, 1H), 3.14 (ddd, *J* = 14.4, 9.9, 6.5 Hz, 1H), 2.58 (ddd, *J* = 14.6, 9.4, 5.6 Hz, 1H), 2.39 – 2.23 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 169.5, 160.4, 156.0, 155.2, 136.5, 136.1, 135.3, 133.2, 129.9, 129.4, 128.9, 128.8, 128.4, 128.3, 128.0, 127.7, 115.0, 72.6, 55.6, 48.8, 44.7, 32.5, 30.7; *m/z* (ES HRMS) C₃₄H₃₀N₂O₅Na requires 569.2052, found [MNa]⁺ 569.2048; [α]²⁰_D = -7.9 (*c* 1.0, CHCl₃).

1,4-dibenzyl-6-(4-nitrophenyl)-6-(3-oxo-3-phenylpropyl)piperazine-2,3,5-trione 2p

Following general procedure **Cii** using triketopiperazine **1c** (43 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 μ mol, 10 mol%), CH₂Cl₂ (1 mL) and phenyl vinyl ketone (33 mg, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (2:1)) to afford **2p** (49.5 mg, 88%) as a colourless oil in 4:96 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 50:50, 1.0 ml/min, λ 230 nm, t(minor) = 42.8 min, t(major) = 50.2 min].

IR v_{max}/cm⁻¹ 3064, 3034, 1744, 1679, 1597, 1521, 1495, 1417, 1348, 1263, 1227, 1140, 1077, 907, 851, 727, 702; ¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.18 (m, 2H), 7.60 – 7.56 (m, 2H), 7.55 – 7.50 (m, 1H), 7.41 – 7.31 (m, 6H), 7.24 – 7.19 (m, 3H), 7.19 – 7.14 (m, 2H), 7.05 – 6.98 (m, 2H), 6.98 – 6.93 (m, 1H), 5.16 – 5.05 (m, 2H), 4.99 (d, *J* = 13.5 Hz, 1H), 3.90 (d, *J* = 14.8 Hz, 1H), 3.22 – 3.12 (m, 1H), 2.78 – 2.69 (m, 1H), 2.45 – 2.31 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 196.4, 168.4, 155.5, 154.8, 148.4, 144.8, 135.9, 134.9, 133.5, 129.5, 128.9, 128.8, 128.6, 128.6, 128.3, 127.9, 127.8, 124.5, 72.5, 49.0, 45.0, 32.2, 31.0; *m/z* (ES HRMS) $C_{33}H_{27}N_3O_6Na$ requires 584.1798, found [MNa]⁺ 584.1803; [*α*]²⁰_D = -5.5 (*c* 1.0, CHCl₃).

3-(1,4-dibenzyl-3,5,6-trioxo-2-phenylpiperazin-2-yl)propanal 2q

Following general procedure **Cii** using triketopiperazine **1a** (38 mg, 0.10 mmol), chiral catalyst **3** (4 mg, 10 μ mol, 10 mol%), CH₂Cl₂ (1 mL) and acrolein (17 μ L, 0.25 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (1:1)) to afford **2q** (37.2 mg, 85%) as a colourless oil.

IR v_{max}/cm^{-1} 3035, 2943, 1738, 1711, 1680, 1495, 1418, 1361, 1303, 1265, 1148, 1072, 911, 754, 692; ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 7.47 – 7.17 (m, 15H), 5.29 (d, *J* = 14.8 Hz, 1H), 5.07 (d, *J* = 13.6 Hz, 1H), 4.93 (d, *J* = 13.6 Hz, 1H), 3.64 (d, *J* = 14.8 Hz, 1H), 3.05 (ddd, *J* = 14.4, 11.2, 5.3 Hz, 1H), 2.45 (ddd, *J* = 14.7, 11.1, 3.8 Hz, 1H), 1.97 – 1.75 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 198.2, 169.0, 155.7, 155.2, 137.8, 136.6, 135.0, 129.8, 129.7, 129.1, 129.1, 129.0, 128.7, 128.3, 126.2, 72.8, 49.0, 44.9, 38.1, 28.5; *m/z* (ES HRMS) C₂₇H₂₄N₂O₄Na requires 463.1634, found [MNa]⁺ 463.1631.

6-(2-(1,3-dioxolan-2-yl)ethyl)-1,4-dibenzyl-6-phenylpiperazine-2,3,5-trione S12

To a vial containing aldehyde **2q** (37 mg, 85 μ mol) was added 2-ethyl-2-methyl-1,3dioxolane (0.25 mL) and PTSA (5 mg) and the reaction mixture was stirred for 16 hours at room temperature. The solvent was removed under reduced pressure and the reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (1:1)) to afford **S12** (40 mg, 98%) as a colourless oil in 42:58 er as determined by HPLC analysis [Phenomenex Lux Cellulose-1, MeCN:water, 50:50, 1.0 ml/min, λ 230 nm, t(minor) = 25.7 min, t(major) = 28.1 min].

IR v_{max}/cm^{-1} 3062, 2951, 2885, 1742, 1683, 1494, 1418, 1363, 1263, 1234, 1128, 1076, 1029, 732, 698; ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.20 (m, 15H), 5.15 (d, *J* = 13.6 Hz, 1H), 5.07 –

4.98 (m, 2H), 4.35 (t, J = 4.9 Hz, 1H), 3.95 (d, J = 14.8 Hz, 1H), 3.81 – 3.67 (m, 4H), 2.93 (ddd, J = 13.8, 11.6, 5.1 Hz, 1H), 2.30 (ddd, J = 13.8, 11.7, 4.2 Hz, 1H), 1.35 – 1.13 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 156.0, 154.9, 138.5, 136.5, 135.1, 129.5, 129.4, 129.3, 128.6, 128.6, 128.2, 127.9, 126.4, 103.1, 73.1, 64.8, 64.8, 48.8, 44.7, 30.7, 28.6; *m/z* (ES HRMS) C₂₉H₂₈N₂O₄Na requires 507.1896, found [MNa]⁺ 507.1897.

2,7-Diazabicyclo[2.2.1]heptanes (4a-m)

2,7-dibenzyl-1-methyl-4-phenyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4a

Following general procedure **D** using triketopiperazine **2a** (19 mg, 40 μ mol), THF (0.1 mL) and ethanolamine (0.1 mL). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4a** (13.9 mg, 87%) as a colourless oil in 92:8 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 70:30, 1.0 ml/min, λ 220 nm, t(major) = 8.1 min, t(minor) = 9.8 min].

IR v_{max}/cm^{-1} 3060, 3028, 2979, 2943, 1692, 1494, 1453, 1405, 1318, 1182, 955, 700; ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.99 (m, 2H), 7.41 – 7.24 (m, 8H), 7.24 – 7.09 (m, 5H), 4.58 (d, *J* = 15.2 Hz, 1H), 4.30 (d, *J* = 15.2 Hz, 1H), 3.46 (d, *J* = 15.6 Hz, 1H), 3.37 (d, *J* = 15.6 Hz, 1H), 2.29 – 2.16 (m, 1H), 1.98 – 1.86 (m, 2H), 1.60 – 1.49 (m, 1H), 1.12 (s, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 140.8, 138.6, 136.5, 128.8, 128.5, 128.2, 128.2, 127.9, 127.8, 127.7, 127.6, 126.5, 84.1, 75.3, 46.8, 43.7, 35.3, 35.2, 18.2 ; *m/z* (ES HRMS) C₂₆H₂₇N₂O requires 383.2123, found [MH]⁺ 383.2121; [α]²⁰ = 15.4 (*c* 1.0, CHCl₃).

2,7-dibenzyl-4-(4-methoxyphenyl)-1-methyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4b

Following general procedure **D** using triketopiperazine **2b** (26 mg, 53 μ mol), THF (0.14 mL) and ethanolamine (0.14 mL). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4b** (11.2 mg, 51%) as a colourless oil.

IR v_{max}/cm^{-1} 2979, 2940, 2837, 1689, 1514, 1494, 1454, 1404, 1319, 1246, 1177, 1028, 831, 728, 699; ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.90 (m, 2H), 7.41 – 7.26 (m, 5H), 7.22 – 7.10 (m, 5H), 6.93 – 6.87 (m, 2H), 4.57 (d, *J* = 15.2 Hz, 1H), 4.29 (d, *J* = 15.2 Hz, 1H), 3.80 (s, 3H), 3.43 (d, *J* = 15.6 Hz, 1H), 3.35 (d, *J* = 15.5 Hz, 1H), 2.27 – 2.16 (m, 1H), 1.95 – 1.84 (m, 2H), 1.57 – 1.48 (m, 1H), 1.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.8, 159.2, 140.8, 138.6, 129.3, 128.7, 128.3, 128.2, 128.1, 127.7, 127.6, 126.5, 113.9, 84.0, 75.0, 55.4, 46.7, 43.7, 35.2, 34.9, 18.2; *m/z* (ES HRMS) C₂₇H₂₉N₂O₂ requires 413.2229, found [MH]⁺ 413.2231.

2,7-dibenzyl-1-methyl-4-(4-nitrophenyl)-2,7-diazabicyclo[2.2.1]heptan-3-one 4c

Following general procedure **D** using triketopiperazine **2c** (25 mg, 50 μ mol), THF (125 μ L) and ethanolamine (125 μ L). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4c** (13.1 mg, 61%) as a colourless oil.

IR v_{max}/cm^{-1} 2940, 2925, 2853, 1692, 1601, 1517, 1494, 1406, 1347, 1317, 1182, 1028, 956, 909, 852, 729, 698; ¹H NMR (400 MHz, CDCl₃) δ 8.26 – 8.15 (m, 4H), 7.39 – 7.28 (m, 5H), 7.24 – 7.13 (m, 5H), 4.56 (d, *J* = 15.2 Hz, 1H), 4.35 (d, *J* = 15.2 Hz, 1H), 3.45 (d, *J* = 15.7 Hz, 1H), 3.36 (d, *J* = 15.7 Hz, 1H), 2.19 – 2.10 (m, 1H), 2.01 – 1.91 (m, 2H), 1.62 – 1.54 (m, 1H),

1.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 147.4, 144.2, 139.8, 138.1, 128.9, 128.4, 128.2, 127.8, 127.5, 126.9, 123.6, 84.4, 74.9, 47.2, 43.9, 35.8, 35.5, 18.0; *m/z* (ES HRMS) C₂₆H₂₆N₃O₃ requires 428.1974, found [MH]⁺ 428.1975.

2,7-dibenzyl-4-(4-bromophenyl)-1-methyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4d

Following general procedure **D** using triketopiperazine **2d** (45 mg, 85 μ mol), THF (215 μ L) and ethanolamine (215 μ L). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4d** (23.1 mg, 60%) as a colourless oil.

IR v_{max}/cm^{-1} 3030, 2923, 2850, 1693, 1493, 1405, 1318, 1182, 1011, 955, 823, 703; ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.88 (m, 2H), 7.50 – 7.45 (m, 2H), 7.38 – 7.27 (m, 5H), 7.23 – 7.11 (m, 5H), 4.55 (d, *J* = 15.2 Hz, 1H), 4.30 (d, *J* = 15.2 Hz, 1H), 3.38 (s, 2H), 2.19 – 2.10 (m, 1H), 1.95 – 1.86 (m, 2H), 1.55 – 1.49 (m, 1H), 1.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 140.4, 138.4, 135.6, 131.6, 129.8, 128.8, 128.3, 128.2, 127.7, 127.6, 126.6, 122.0, 84.1, 74.9, 46.9, 43.8, 35.3, 18.1; *m/z* (ES HRMS) C₂₆H₂₆N₂OBr requires 461.1229, found [MH]⁺ 461.1226.

2,7-dibenzyl-4-(furan-2-yl)-1-methyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4e

Following general procedure **D** using triketopiperazine **2e** (59 mg, 0.13 mmol), THF (325 μ L) and ethanolamine (325 μ L). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4e** (36.6 mg, 75%) as a colourless oil.

IR v_{max}/cm^{-1} 3028, 2945, 1697, 1494, 1454, 1405, 1312, 1185, 1006, 910, 729, 697; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 6H), 7.19 – 7.13 (m, 2H), 7.13 – 7.08 (m, 3H), 6.92 (dd, *J* = 3.3, 0.9 Hz, 1H), 6.34 (dd, *J* = 3.3, 1.8 Hz, 1H), 4.52 (d, *J* = 15.2 Hz, 1H), 4.35 (d, *J* = 15.2 Hz, 1H), 3.49 – 3.36 (m, 2H), 2.57 (ddd, *J* = 12.1, 10.4, 4.1 Hz, 1H), 1.88 (ddd, *J* = 11.5, 10.4, 4.2 Hz, 1H), 1.74 (ddd, *J* = 12.1, 9.2, 4.3 Hz, 1H), 1.49 (ddd, *J* = 11.4, 9.2, 4.2 Hz, 1H), 1.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 148.1, 142.9, 140.1, 138.3, 128.8, 128.2, 128.0, 127.7, 126.4, 111.8, 110.4, 84.3, 72.7, 47.1, 43.8, 35.1, 30.0, 17.9; *m/z* (ES HRMS) C₂₄H₂₅N₂O₂ requires 373.1916, found [MH]⁺ 373.1919.

2,7-dibenzyl-1-methyl-4-(thiophen-2-yl)-2,7-diazabicyclo[2.2.1]heptan-3-one 4f

Following general procedure **D** using triketopiperazine **2f** (12 mg, 26 μ mol), THF (65 μ L) and ethanolamine (65 μ L). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4f** (5 mg, 50%) as a colourless oil in 93:7 er as determined by HPLC analysis [Phenomenex Lux Amylose-2, MeCN:water, 70:30, 1.0 ml/min, λ 220 nm, t(major) = 7.8 min, t(minor) = 9.4 min].

IR v_{max}/cm^{-1} 3062, 2928, 2851, 1699, 1484, 1454, 1405, 1296, 1182, 1028, 842, 700; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 3.6, 1.2 Hz, 1H), 7.38 – 7.28 (m, 6H), 7.22 – 7.10 (m, 5H), 7.02 (dd, J = 5.1, 3.6 Hz, 1H), 4.53 (d, J = 15.2 Hz, 1H), 4.35 (d, J = 15.2 Hz, 1H), 3.49 (d, J = 15.4 Hz, 1H), 3.34 (d, J = 15.3 Hz, 1H), 2.30 (ddd, J = 12.2, 10.3, 4.2 Hz, 1H), 1.98 (ddd, J = 12.2, 9.1, 4.3 Hz, 1H), 1.90 (ddd, J = 11.6, 10.3, 4.3 Hz, 1H), 1.49 (ddd, J = 11.6, 9.2, 4.3 Hz, 1H), 1.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 140.6, 138.3, 128.8, 128.3, 128.1, 127.9, 127.7, 126.9, 126.5, 126.2, 84.5, 73.9, 46.7, 43.9, 36.0, 35.2, 18.2; m/z (ES HRMS) $C_{24}H_{25}N_2OS$ requires 389.1688, found [MH]⁺ 389.1685; $[\alpha]_D^{20} = -7.3$ (c 1.0, CHCl₃). 2,7-dibenzyl-4-(2-bromophenyl)-1-methyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4g

Following general procedure **D** using triketopiperazine **2g** (36 mg, 68 μ mol), THF (175 μ L) and ethanolamine (175 μ L). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4g** (9 mg, 29%) as a colourless oil.

IR v_{max}/cm^{-1} 2921, 2850, 1688, 1494, 1455, 1406, 1313, 1028, 755, 698; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.08 (m, 13H), 4.65 (br s, 1H), 4.27 (d, *J* = 15.5 Hz, 1H), 3.32 (d, *J* = 15.1 Hz, 1H), 3.23 (d, *J* = 15.5 Hz, 1H), 1.99 (ddd, *J* = 11.8, 10.2, 4.5 Hz, 1H), 1.85 (br s, 1H), 1.62 (br s, 2H), 1.10 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 175.1, 140.1, 138.5, 135.5, 133.9, 132.0, 129.9, 128.7, 128.4, 128.1, 128.0, 127.5, 127.2, 126.6, 84.0, 77.4, 48.0, 43.4, 34.8, 29.2, 18.2; *m/z* (ES HRMS) C₂₆H₂₆N₂OBr requires 461.1229, found [MH]⁺ 461.1233.

2,7-dibenzyl-1-methyl-4-(1-methyl-1H-pyrrol-2-yl)-2,7-diazabicyclo[2.2.1]heptan-3-one 4h

Following general procedure **D** using triketopiperazine **2h** (34.7 mg, 76 μ mol), THF (190 μ L) and ethanolamine (190 μ L). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4h** (7.5 mg, 26%) as a colourless oil.

IR v_{max}/cm^{-1} 3029, 2924, 2852, 1702, 1494, 1453, 1404, 1322, 1274, 1225, 1179, 1028, 950, 700; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.25 (m, 5H), 7.21 – 7.10 (m, 3H), 7.06 – 7.01 (m, 2H), 6.66 (s, 1H), 6.53 (dd, J = 2.7, 1.8 Hz, 1H), 6.09 (dd, J = 3.7, 2.7 Hz, 1H), 4.54 (d, J = 15.4 Hz, 1H), 4.39 (d, J = 15.4 Hz, 1H), 3.58 (s, 3H), 3.35 (d, J = 15.2 Hz, 1H), 3.23 (d, J = 15.2 Hz, 1H), 2.43 (ddd, J = 13.6, 10.4, 3.9 Hz, 1H), 1.92 – 1.80 (m, 2H), 1.57 – 1.50 (m, 1H), 1.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 140.0, 138.4, 128.8, 128.1, 127.9, 127.5, 126.5,

124.7, 112.1, 107.0, 84.0, 72.6, 47.4, 43.3, 35.2, 33.5, 29.4, 17.7; *m/z* (ES HRMS) C₂₅H₂₈N₃O requires 386.2232, found [MH]⁺ 386.2230.

2,7-dibenzyl-1-methyl-4-(1-methyl-1H-pyrrol-3-yl)-2,7-diazabicyclo[2.2.1]heptan-3-one 4i

Following general procedure **D** using triketopiperazine **2i** (16 mg, 35 μ mol), THF (100 μ L) and ethanolamine (100 μ L). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4i** (3.3 mg, 25%) as a colourless oil.

IR v_{max}/cm^{-1} 2922, 2852, 1693, 1494, 1453, 1410, 1272, 1207, 1079, 1028, 793, 733, 700; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.23 (m, 7H), 7.19 – 7.15 (m, 3H), 7.14 – 7.09 (m, 1H), 6.55 (t, *J* = 2.5 Hz, 1H), 6.27 (dd, *J* = 2.7, 1.7 Hz, 1H), 4.54 (d, *J* = 15.4 Hz, 1H), 4.27 (d, *J* = 15.2 Hz, 1H), 3.64 (s, 3H), 3.58 (d, *J* = 15.5 Hz, 1H), 3.27 (d, *J* = 15.3 Hz, 1H), 2.29 – 2.19 (m, 1H), 1.86 – 1.74 (m, 2H), 1.48 – 1.41 (m, 1H), 1.08 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 141.6, 138.8, 128.7, 128.2, 128.0, 128.0, 127.5, 126.2, 122.4, 122.0, 117.8, 107.8, 84.2, 72.9, 46.4, 43.8, 36.3, 35.1, 34.1, 18.3; *m/z* (ES HRMS) C₂₅H₂₈N₃O requires 386.2232, found [MH]⁺ 386.2233.

2,7-dibenzyl-4-(1H-indol-3-yl)-1-methyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4j

Following general procedure **D** using triketopiperazine **2j** (9.5 mg, 19 μ mol), THF (50 μ L) and ethanolamine (50 μ L). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4j** (2 mg, 21%) as a colourless oil.

IR v_{max}/cm^{-1} 3300, 2924, 2852, 1680, 1494, 1455, 1409, 1351, 1217, 1074, 942, 741, 700; ¹H NMR (500 MHz, CDCl₃) δ 8.28 – 8.19 (m, 2H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.40 – 7.31 (m, 5H), 7.31 – 7.26 (m, 1H), 7.19 – 7.09 (m, 6H), 7.07 – 7.03 (m, 1H), 4.56 (d, *J* = 15.2 Hz, 1H), 4.37 (d, *J* = 15.2 Hz, 1H), 3.46 (d, *J* = 15.2 Hz, 1H), 3.30 (d, *J* = 15.1 Hz, 1H), 2.72 (ddd, *J* = 12.4, 10.3, 4.0 Hz, 1H), 1.96 (ddd, *J* = 11.6, 10.3, 4.4 Hz, 1H), 1.73 (ddd, *J* = 12.4, 9.3, 4.4 Hz, 1H), 1.57 – 1.49 (m, 1H), 1.11 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.4, 140.9, 138.6, 136.4, 128.8, 128.2, 128.0, 128.0, 127.6, 126.3, 126.2, 125.4, 122.2, 120.9, 119.7, 111.3, 109.7, 84.2, 73.0, 47.2, 43.7, 35.5, 31.8, 18.6; *m/z* (ES HRMS) C₂₈H₂₈N₃O requires 422.2232, found [MH]⁺ 422.2235.

2,7-dibenzyl-1-ethyl-4-phenyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4k

Following general procedure **D** using triketopiperazine **2k** (24 mg, 50 μ mol), THF (125 μ L) and ethanolamine (125 μ L). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4k** (9.8 mg, 50%) as a colourless oil.

IR v_{max}/cm^{-1} 3030, 2931, 2850, 1692, 1494, 1453, 1399, 1314, 1074, 1028, 760, 734, 700; ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.99 (m, 2H), 7.42 – 7.21 (m, 8H), 7.17 – 7.07 (m, 5H), 4.63 (d, *J* = 15.4 Hz, 1H), 4.27 (d, *J* = 15.3 Hz, 1H), 3.37 (s, 2H), 2.28 – 2.19 (m, 1H), 2.10 (ddd, *J* = 11.7, 10.4, 4.0 Hz, 1H), 1.90 (ddd, *J* = 12.1, 9.3, 3.9 Hz, 1H), 1.71 (dq, *J* = 14.9, 7.5 Hz, 1H), 1.54 (dq, *J* = 14.7, 7.4 Hz, 1H), 1.44 – 1.35 (m, 1H), 0.55 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.3, 140.1, 138.8, 136.3, 128.7, 128.4, 128.3, 128.1, 128.0, 127.8, 127.5, 126.5, 88.1, 75.7, 47.1, 43.7, 34.2, 30.8, 23.0, 7.8; *m/z* (ES HRMS) C₂₇H₂₉N₂O requires 397.2280, found [MH]⁺ 397.2281.

2,7-dibenzyl-1,4-diphenyl-2,7-diazabicyclo[2.2.1]heptan-3-one 41

Following general procedure **D** using triketopiperazine **2n** (18 mg, 35 μ mol), THF (90 μ L) and ethanolamine (90 μ L). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4I** (13 mg, 84%) as a colourless oil.

IR v_{max}/cm^{-1} 3059, 3031, 2926, 1705, 1494, 1450, 1398, 1322, 1198, 1074, 1029, 951, 911, 752, 731, 695; ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.47 (m, 2H), 7.42 – 7.36 (m, 2H), 7.31 – 7.14 (m, 9H), 6.96 – 6.87 (m, 5H), 6.75 – 6.68 (m, 2H), 4.56 (d, *J* = 14.6 Hz, 1H), 3.82 (d, *J* = 14.7 Hz, 1H), 3.16 (d, *J* = 14.4 Hz, 1H), 3.07 (d, *J* = 14.4 Hz, 1H), 2.63 – 2.48 (m, 2H), 2.10 (ddd, *J* = 11.2, 8.7, 3.2 Hz, 1H), 1.87 (ddd, *J* = 11.9, 8.7, 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 139.4, 137.6, 134.6, 133.1, 130.3, 129.7, 129.5, 128.8, 128.7, 128.4, 128.2, 128.2, 127.5, 127.4, 126.1, 88.6, 77.5, 48.3, 44.2, 30.3, 26.5; *m/z* (ES HRMS) C₃₁H₂₉N₂O requires 445.2280, found [MH]⁺ 445.2281.

2,7-dibenzyl-4-phenyl-2,7-diazabicyclo[2.2.1]heptan-3-one 4m

Following general procedure **D** using triketopiperazine **2q** (19 mg, 44 μ mol), THF (110 μ L) and ethanolamine (110 μ L). After 1 hour the reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (9:1) to (2:1)) to afford **4m** (4.4 mg, 28%) as a colourless oil.

IR v_{max}/cm^{-1} 2916, 2854, 1694, 1494, 1451, 1411, 1330, 1249, 701; ¹**H NMR** (400 MHz, CDCl₃) δ 8.07 – 8.02 (m, 2H), 7.46 – 7.30 (m, 8H), 7.16 – 7.11 (m, 3H), 6.85 – 6.79 (m, 2H), 4.84 (d, J = 14.7 Hz, 1H), 4.26 (d, J = 2.4 Hz, 1H), 3.91 (d, J = 14.7 Hz, 1H), 3.33 (d, J = 13.0 Hz, 1H), 3.02 (d, J = 13.0 Hz, 1H), 2.26 – 2.17 (m, 1H), 2.00 – 1.91 (m, 2H), 1.65 – 1.59 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 174.0, 138.7, 137.0, 135.4, 129.0, 129.0, 128.8, 128.6, 128.3, 128.0, 127.9, 127.9, 127.1, 84.1, 73.9, 48.6, 44.8, 29.9, 28.0; *m/z* (ES HRMS) C₂₅H₂₅N₂O requires 369.1967, found [MH]⁺ 369.1966.

Reduction of 4a

N,1-dibenzyl-5-methyl-2-phenylpyrrolidine-2-carboxamide 5a and 5b

To a solution of diazabicycle **4a** (29 mg, 77 μ mol) in CH₂Cl₂ (0.5 mL) was added DIBAL (65 μ L, 77 μ mol) at -78 °C. After 1 hour a further equivalent of DIBAL (65 μ L, 77 μ mol) was added and the reaction mixture was allowed to warm to 0 °C over 1 hour. The reaction mixture was then diluted with CH₂Cl₂ (2 mL) followed by the addition of aqueous Rochelle's salt (3 mL, 20% w/w) and stirred vigorously for 1 hour. The reaction mixture was extracted with CH₂Cl₂ (3 x 3 mL) and the combined organic layers were washed with brine (5 mL), dried over MgSO₄, concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel (hexane:EtOAc = 9:1) to afford **5a** (11.4 mg, 39%) and **5b** (5.4 mg, 18%) as colourless oils.

Major (2R, 5S) or (2S, 5R) N,1-dibenzyl-5-methyl-2-phenylpyrrolidine-2-carboxamide 5a

IR v_{max}/cm^{-1} 3351, 3060, 3028, 2958, 2924, 2864, 1666, 1495, 1452, 1374, 1317, 1111, 1077, 1027, 748, 698; ¹**H NMR** (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.38 – 7.19 (m, 10H), 7.14 – 7.03 (m, 3H), 6.85 – 6.78 (m, 2H), 4.48 (dd, *J* = 14.6, 5.9 Hz, 1H), 4.36 (dd, *J* = 14.6, 5.7 Hz, 1H), 3.41 (d, *J* = 14.3 Hz, 1H), 3.23 – 3.12 (m, 2H), 2.69 (ddd, *J* = 13.1, 7.4, 2.4 Hz, 1H), 2.52 (ddd, *J* = 13.1, 11.4, 7.2 Hz, 1H), 2.08 (dddd, *J* = 13.0, 7.1, 6.0, 2.4 Hz, 1H), 1.48 (dddd, *J* = 12.5, 11.3, 10.0, 7.4 Hz, 1H), 0.98 (d, *J* = 6.0 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 175.8, 140.7, 139.4, 138.6, 129.3, 128.8, 128.7, 128.3, 128.2, 128.0, 127.7, 127.5, 126.9, 78.3, 63.3, 55.4, 43.8, 38.1, 33.1, 22.2; *m/z* (ES HRMS) C₂₆H₂₉N₂O requires 385.2280, found [MH]⁺ 385.2279.

Minor (2R, 5R) or (2S, 5S) N,1-dibenzyl-5-methyl-2-phenylpyrrolidine-2-carboxamide 5b

IR v_{max}/cm^{-1} 3349, 3060, 3028, 2958, 2924, 2852, 1657, 1495, 1453, 1371, 1208, 1119, 1079, 1028, 751, 698; ¹H NMR (500 MHz, CDCl₃) δ 7.50 – 7.45 (m, 2H), 7.37 – 7.24 (m, 8H), 7.21 – 7.12 (m, 5H), 4.54 (dd, *J* = 14.6, 5.9 Hz, 1H), 4.45 (dd, *J* = 14.6, 5.5 Hz, 1H), 3.60 (d, *J* = 14.7 Hz, 1H), 3.46 (d, *J* = 14.7 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 2.70 (ddd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 4.9 (ddd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 2.70 (ddd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 2.70 (ddd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 6.5, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.6 Hz, 1H), 3.40 (pd, *J* = 12.9, 7.8, 3.8 Hz), 3.8 Hz (pd, J) = 12.9 (pd, J) = 12.

1H), 2.41 (ddd, J = 13.0, 10.0, 7.9 Hz, 1H), 2.15 – 2.06 (m, 1H), 1.64 – 1.51 (m, 1H), 0.96 (d, J = 6.4 Hz, 2H); ¹³**C NMR** (126 MHz, CDCl₃) δ 175.1, 141.5, 140.6, 138.5, 128.9, 128.5, 128.4, 128.4, 128.2, 128.0, 127.6, 127.4, 126.8, 77.6, 57.5, 52.4, 43.9, 38.2, 31.7, 19.4, 1.2; *m/z* (ES HRMS) C₂₆H₂₉N₂O requires 385.2280, found [MH]⁺ 385.2282.

Formation of Iminium 6

1-benzyl-2-(benzylcarbamoyl)-5-methyl-2-phenyl-3,4-dihydro-2H-pyrrol-1-ium chloride 6

To a round bottomed flask containing diazabicycle **4a** (39 mg, 0.1 mmol) was added HCl in dioxane (0.2 mL, 4 M) and the reaction mixture was stirred at room temperature for 1 hour. The solvent was removed under reduced pressure to afford **6** (quant.) as a colourless residue.

IR v_{max}/cm^{-1} 3169, 3030, 1666, 1530, 1496, 1452, 1359, 1271, 1127, 1079, 1028, 957, 729, 696; ¹H NMR (400 MHz, CDCl₃) δ 10.04 (t, *J* = 6.0 Hz, 1H), 7.50 – 7.43 (m, 2H), 7.42 – 7.33 (m, 2H), 7.31 – 7.15 (m, 6H), 7.14 – 7.03 (m, 3H), 6.66 – 6.58 (m, 2H), 5.31 (d, *J* = 16.2 Hz, 1H), 4.72 (d, *J* = 16.2 Hz, 1H), 4.55 – 4.43 (m, 2H), 3.80 – 3.67 (m, 1H), 3.27 (d, *J* = 14.1 Hz, 3H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 168.2, 138.6, 133.8, 131.2, 130.4, 129.2, 129.0, 128.7, 128.5, 127.3, 126.9, 89.0, 54.1, 44.1, 40.5, 33.4, 21.4; *m/z* (ES HRMS) C₂₆H₂₇N₂O requires 383.2123, found [M]⁺ 383.2124.

Synthesis of harmicine Amide 10

N-benzyl-2-chloro-2-phenylacetamide S13

To a solution of benzylamine (0.69 mL, 6.33 mmol) and triethylamine (1.06 mL, 7.60 mmol) in MeCN (30 mL) was added α -chlorophenylacetyl chloride (1.0 mL, 6.33 mmol) dropwise at 0 °C. The reaction mixture was allowed to warm to room temperature over 1 hour then filtered, washed with MeCN (3 x 5 mL) and the filtrate was concentrated under reduced pressure. The residue was diluted with CH₂Cl₂ (20 mL) and washed with 1 M HCl (20 mL), the organic layer was dried with MgSO₄, filtered and concentrated under reduced pressure to afford **\$13** as a pale yellow solid (1.55 g, 95%).

IR v_{max}/cm^{-1} 3289, 3064, 3031, 1659, 1530, 1496, 1454, 1213, 1029, 730, 695; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.05 (m, 10H), 6.91 (Br s, 1H), 5.33 (s, 1H), 4.42 (d, *J* = 5.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.5, 137.5, 137.2, 129.3, 129.1, 129.0, 127.9, 61.9, 44.3; *m/z* (ES) C₁₅H₁₄NOCINa requires 282.7, found [MNa]⁺ 282.3. Data is in agreement with literature.⁶

2-((2-(1H-indol-3-yl)ethyl)amino)-N-benzyl-2-phenylacetamide S14

To a solution of **\$13** (457 mg, 1.76 mmol) and triethylamine (0.98 mL, 7.04 mmol) in MeCN (9 mL) was added tryptamine (705 mg, 4.40 mmol) in one portion. The reaction mixture was stirred for 72 hours at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was diluted with CH_2Cl_2 (15 mL), washed with 1 M HCl (15 mL), and the organic layer was dried with MgSO₄, filtered and concentrated under reduced pressure. The residue was then purified by flash column chromatography (CH_2Cl_2 :Acetone = 9:1) to afford **\$14** (215 mg, 32%) as a brown oil.

IR v_{max}/cm^{-1} 3297, 3059, 2924, 2846, 1654, 1520, 1454, 1230, 908, 731; ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.57 – 7.50 (m, 1H), 7.35 – 7.24 (m, 8H), 7.17 (ddd, *J* = 8.2, 7.0, 1.2 Hz,

1H), 7.14 – 7.06 (m, 3H), 6.88 (d, J = 2.3 Hz, 1H), 4.36 (dd, J = 14.9, 6.2 Hz, 1H), 4.26 (s, 1H), 4.19 (dd, J = 14.9, 5.8 Hz, 1H), 3.05 – 2.87 (m, 4H), 1.99 (br s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 139.4, 138.5, 136.5, 128.9, 128.7, 128.2, 127.6, 127.4, 127.4, 122.2, 119.5, 118.9, 113.5, 111.4, 67.7, 48.8, 43.1, 25.9; *m/z* (ES HRMS) C₂₅H₂₆N₃O requires 384.2076, found [MH]⁺ 384.2084.

1-(2-(1H-indol-3-yl)ethyl)-4-benzyl-6-phenylpiperazine-2,3,5-trione 7

Following general procedure **B** using 1,1'-(1,2-dioxoethane-1,2-diyl)bis-1*H*-benzotriazole (171 mg, 0.59 mmol) in THF (1.5 mL), **S14** (187 mg, 0.49 mmol) in THF (2 mL). The residue was purified by flash column chromatography on silica gel (gradient: $CH_2Cl_2/MeOH = (1:0)$ to (99:1)) to afford **7** (67.5 mg, 32%) as a waxy yellow solid.

IR v_{max}/cm^{-1} 3332, 3057, 3034, 2937, 1744, 1683, 1454, 1428, 1362, 1198, 908, 732; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.44 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.40 – 7.27 (m, 4H), 7.25 (d, *J* = 8.9 Hz, 5H), 7.18 (ddd, *J* = 8.2, 7.1, 1.1 Hz, 1H), 7.11 – 7.04 (m, 2H), 7.05 – 6.93 (m, 2H), 4.99 (d, *J* = 13.8 Hz, 1H), 4.85 – 4.77 (m, 2H), 4.20 (ddd, *J* = 13.1, 7.8, 4.4 Hz, 1H), 3.19 (dt, *J* = 13.8, 7.9 Hz, 1H), 3.08 (dt, *J* = 13.2, 7.4 Hz, 1H), 2.96 (dddd, *J* = 13.6, 7.1, 4.5, 0.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 156.6, 153.0, 136.4, 135.2, 134.5, 129.8, 129.6, 129.2, 128.7, 128.2, 127.1, 126.9, 122.6, 122.3, 119.9, 118.4, 112.0, 111.6, 66.3, 47.1, 44.6, 23.0; *m/z* (ES HRMS) C₂₇H₂₃N₃O₃Na requires 460.1637, found [MNa]⁺ 460.1635.

1-(2-(1H-indol-3-yl)ethyl)-4-benzyl-6-(3-oxobutyl)-6-phenylpiperazine-2,3,5-trione 8

Following general procedure **Cii** using triketopiperazine **7** (66 mg, 0.15 mmol), triethylamine (20 μ L, 0.15 mmol), CH₂Cl₂ (1.5 mL) and methyl vinyl ketone (30 μ L, 0.375 mmol). The reaction mixture was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (1:1)) to afford **8** (75 mg, 99%) as a yellow oil.

IR v_{max}/cm^{-1} 3339, 2950, 1741, 1712, 1677, 1419, 1362, 1227, 907, 726; ¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (br s, 1H), 7.47 (d, *J* = 7.9 Hz, 1H), 7.42 – 7.36 (m, 5H), 7.35 – 7.28 (m, 6H), 7.15 (ddd, *J* = 8.2, 7.0, 1.2 Hz, 1H), 7.07 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 6.89 (d, *J* = 2.4 Hz, 1H), 5.20 (d, *J* = 13.5 Hz, 1H), 4.98 (d, *J* = 13.5 Hz, 1H), 3.49 (ddd, *J* = 13.5, 11.5, 4.7 Hz, 1H), 3.16 (ddd, *J* = 13.4, 11.4, 5.6 Hz, 1H), 3.01 – 2.75 (m, 3H), 2.61 (ddd, *J* = 14.3, 11.8, 3.6 Hz, 1H), 2.23 (ddd, *J* = 17.7, 11.5, 3.6 Hz, 1H), 2.04 (ddd, *J* = 17.3, 11.8, 5.1 Hz, 1H), 1.96 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 205.4, 169.7, 156.0, 153.8, 138.0, 136.2, 135.3, 129.5, 128.8, 128.5, 127.0, 126.6, 122.4, 122.3, 119.7, 118.9, 112.1, 111.3, 71.7, 47.4, 44.7, 37.3, 30.1, 30.0, 23.3; *m/z* (ES HRMS) C₃₁H₂₉N₃O₄Na requires 530.2056, found [MNa]⁺ 530.2057.

7-(2-(1H-indol-3-yl)ethyl)-2-benzyl-1-methyl-4-phenyl-2,7-diazabicyclo[2.2.1]heptan-3-one 9

Following general procedure **D** using triketopiperazine **8** (54 mg, 0.11 mmol), THF (0.27 mL) and ethanolamine (0.27 mL). The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (1:1)) to afford **9** (24 mg, 52%) as a colourless oil.

IR v_{max}/cm^{-1} 3408, 3298, 3057, 2923, 2852, 1685, 1494, 1455, 1318, 1182, 961, 908, 739; ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.94 (m, 2H), 7.86 (br s, 1H), 7.43 – 7.37 (m, 2H), 7.36 – 7.24 (m, 7H), 7.15 – 7.08 (m, 2H), 6.97 (ddd, *J* = 8.0, 6.9, 1.0 Hz, 1H), 6.73 (d, *J* = 2.3 Hz, 1H), 4.54 (d, *J* = 15.3 Hz, 1H), 4.29 (d, *J* = 15.3 Hz, 1H), 2.69 – 2.45 (m, 4H), 2.25 – 2.16 (m, 1H), 1.95 – 1.81 (m, 2H), 1.59 – 1.54 (m, 1H), 1.52 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.0, 138.5, 136.5, 136.2, 128.8, 128.5, 128.4, 128.2, 127.9, 127.5, 127.4, 122.0, 121.4, 119.3, 119.0, 114.4, 111.1, 83.9, 76.0, 44.0, 43.8, 35.1, 34.1, 27.1, 17.7; *m/z* (ES HRMS) C₂₉H₃₀N₃O requires 436.2389, found [MH]⁺ 436.2392.

N-benzyl-11b-methyl-3-phenyl-2,3,5,6,11,11b-hexahydro-1H-indolizino[8,7-b]indole-3-carboxamide **10**

To a round bottomed flask containing **9** (16 mg, 38 μ mol) was added HCl in dioxane (0.5 ml) and the reaction mixture was heated at 90 °C for 16 hours. The reaction mixture was concentrated under reduced pressure and the resulting residue was taken up in CH₂Cl₂ (3 mL), washed with sat. aq. NaHCO₃ (5 mL), the aqueous layer was extracted with CH₂Cl₂ (2 x 3 mL), the organic layers were combined and washed with brine (5 mL), dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (gradient: hexane:EtOAc = (4:1) to (1:1)) to afford **10** (10.4 mg, 63%) as a pale yellow oil.

IR v_{max}/cm^{-1} 3284, 2960, 2922, 2852, 1651, 1499, 1449, 1331, 1275, 1117, 908, 732; ¹H NMR (400 MHz, CDCl₃) δ 8.80 (t, *J* = 6.0 Hz, 1H), 7.81 (br s, 1H), 7.41 (d, *J* = 4.3 Hz, 4H), 7.36 – 7.23 (m, 7H), 7.14 (ddd, *J* = 8.1, 7.0, 1.2 Hz, 1H), 7.05 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 4.70 (dd, *J* = 14.7, 6.6 Hz, 1H), 4.54 (dd, *J* = 14.7, 5.3 Hz, 1H), 3.17 (dd, *J* = 8.4, 2.8 Hz, 2H), 2.56 – 2.39 (m, 2H), 2.29 (ddd, *J* = 12.4, 6.1, 2.2 Hz, 1H), 1.99 – 1.89 (m, 2H), 1.68 – 1.55 (m, 2H), 1.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.0, 139.1, 139.0, 137.8, 135.7, 129.1, 128.9, 128.2, 128.1, 128.0, 127.7, 127.5, 121.9, 119.4, 118.3, 110.9, 109.9, 76.6, 62.5, 44.0, 39.9, 37.4, 33.6, 28.4, 19.4; *m/z* (ES HRMS) C₂₉H₃₀N₃O requires 436.2389, found [MH]⁺ 436.2388.

References

- 1 F. Wu, H. Li, R. Hong and L. Deng, *Angew. Chemie Int. Ed.*, 2006, **45**, 947–950.
- 2 H. Li, Y. Wang, L. Tang and L. Deng, J. Am. Chem. Soc., 2004, **126**, 9906–9907.
- A. Cabanillas, C. D. Davies, L. Male and N. S. Simpkins, *Chem. Sci.*, 2015, **6**, 1350–1354.
- 4 A. R. Katritzky, J. R. Levell and D. P. M. Pleynet, *Synthesis (Stuttg).*, 1998, **1998**, 153–156.
- 5 S. Chanthamath, S. Takaki, K. Shibatomi and S. Iwasa, *Angew. Chemie Int. Ed.*, 2013, **52**, 5818–5821.
- 6 D. Koszelewski, M. Cwiklak and R. Ostaszewski, *Tetrahedron Asymmetry*, 2012, **23**, 1256–1261.

Appendix

¹H and ¹³C NMR

90 80 70 60 50 40 30 20 10 0

-1

HPLC Traces

Racemic 2a

454.144

406.479

860.623

364.908

387.150

752.058

48.52

51.48

100.00

n.a.

n.a.

0.000

MB

Enantioenriched 2a

20.84

22.98

n.a.

n.a.

1

2

Total:

Total:

1637.693 1746.200

100.00

Racemic 2b

No.	Ret.Time	Pe	ak Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	13.80	n.a.		541.362	562.858	50.17	n.a.	BM
2	17.34	n.a.		403.063	559.055	49.83	n.a.	MB
Total:				944.425	1121.913	100.00	0.000	

Enantioenriched 2b

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	13.95	n.a.	140.291	142.204	6.75	n.a.	BM *
2	16.98	n.a.	1363.126	1964.114	93.25	n.a.	BMB*
Total:			1503.417	2106.317	100.00	0.000	

Racemic 2c

No.	Ret.Time		Peak Name	Height		Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	23.19	n.a.		130.978	187.560	50.09	n.a.	BMB*
2	27.80	n.a.		107.295	186.869	49.91	n.a.	BMB*
Total:				238.272	374.428	100.00	0.000	

Enantioenriched 2c

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	23.18	n.a.	54.700	76.651	5.18	n.a.	BM *
2	27.09	n.a.	733.882	1402.155	94.82	n.a.	MB*
Total:			788.582	1478.805	100.00	0.000	

Racemic 2d

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	21.85	n.a.	164.480	226.832	50.69	n.a.	BM
2	25.58	n.a.	136.763	220.650	49.31	n.a.	MB
Total:			301.243	447.481	100.00	0.000	

Enantioenriched 2d

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	21.61	n.a.	251.463	330.308	8.85	n.a.	BM *
2	24.35	n.a.	1726.188	3401.101	91.15	n.a.	M *
Total:			1977.651	3731.409	100.00	0.000	

Racemic 2e

No.	Ret.Time min		Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	24 64	n.a.		294 928	249 797	49.97	n.a.	BMB
2	27.87	n.a.		256.581	250.075	50.03	n.a.	BMB
Total:				551.509	499.872	100.00	0.000	

Enantioenriched 2e

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	24.47	n.a.	1397.277	1282.471	93.61	n.a.	BM *
2	27.80	n.a.	95.256	87.511	6.39	n.a.	BMB*
Total:			1492.533	1369.982	100.00	0.000	

Racemic 2f

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	21.41	n.a.	98.037	73.320	48.81	n.a.	BM *
2	23.89	n.a.	87.496	76.908	51.19	n.a.	MB*
Total:			185.533	150.228	100.00	0.000	

Enantioenriched 2f

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	21.42	n.a.	311.979	212.461	6.33	n.a.	BM *
2	23.43	n.a.	2529.509	3144.680	93.67	n.a.	MB*
Total:			2841.488	3357.141	100.00	0.000	

Racemic 2g

206.155

308.625

100.00

0.000

Total:

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	18.81	n.a.	1246.977	1888.738	44.52	n.a.	M *
2	22.86	n.a.	1163.774	2354.138	55.48	n.a.	MB*
Total:			2410.751	4242.876	100.00	0.000	

Racemic 2h

No.	Ret.Time min		Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	15.98	n.a.		958.754	607.956	50.14	n.a.	BM
2	18.47	n.a.		908.054	604.457	49.86	n.a.	MB
Total:				1866.807	1212.413	100.00	0.000	

Enantioenriched 2h

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	15.90	n.a.	1927.872	1316.173	49.44	n.a.	BM
2	18.35	n.a.	1862.252	1346.180	50.56	n.a.	MB
Total:			3790.124	2662.353	100.00	0.000	

Racemic 2i

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	19.55	n.a.	426.460	384.961	50.07	n.a.	BM *
2	21.10	n.a.	456.759	383.860	49.93	n.a.	MB*
Total:			883.219	768.822	100.00	0.000	

Enantioenriched 2i

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	19.50	n.a.	761.853	730.578	76.98	n.a.	BM
2	21.07	n.a.	253.055	218.440	23.02	n.a.	MB
Total:			1014.909	949.018	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	5.71	n.a.	39.245	13.113	51.85	n.a.	BMB*
2	9.84	n.a.	10.163	12.176	48.15	n.a.	BMB
Total:			49.409	25.289	100.00	0.000	

Enantioenriched **2j**

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	5.80	n.a.	386.569	125.565	26.97	n.a.	BMB*
2	9.92	n.a.	278.305	339.956	73.03	n.a.	BMB*
Total:			664.874	465.521	100.00	0.000	

Racemic 2k

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	27.99	n.a.	456.057	518.128	47.41	n.a.	BM *
2	30.78	n.a.	416.599	574.848	52.59	n.a.	MB*
Total:			872.656	1092.976	100.00	0.000	

Enantioenriched 2k

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	28.16	n.a.	54.747	53.896	4.28	n.a.	BM *
2	30.60	n.a.	828.738	1205.445	95.72	n.a.	MB*
Total:			883.485	1259.341	100.00	0.000	

Racemic 21

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	21.78	n.a.	228.350	356.991	56.96	n.a.	BMB
2	27.44	n.a.	135.520	269.763	43.04	n.a.	BMB
Total:			363.870	626.754	100.00	0.000	

Enantioenriched 2I

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	22.07	n.a.	14.675	19.493	3.45	n.a.	BMB*
2	27.45	n.a.	274.201	546.040	96.55	n.a.	BMB*
Total:			288.876	565.534	100.00	0.000	

Racemic **2m**

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	19.34	n.a.	68.582	85.180	50.35	n.a.	BMB
2	23.50	n.a.	55.127	83.995	49.65	n.a.	BMB*
Total:			123.708	169.175	100.00	0.000	

Enantioenriched 2m

No.	Ret.Time	Peak Name	e Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	19.27	n.a.	35.861	39.429	3.16	n.a.	BMB*
2	22.73	n.a.	725.399	1207.175	96.84	n.a.	BMB*
Total:			761.260	1246.603	100.00	0.000	

Racemic 2n

Enantioenriched 2n

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	61.33	n.a.	460.948	1277.125	84.82	n.a.	BM *
2	70.31	n.a.	74.566	228.631	15.18	n.a.	MB*
Total:			535.514	1505.755	100.00	0.000	

Racemic 20

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	22.41	n.a.	809.199	773.125	49.87	n.a.	BM
2	25.84	n.a.	581.731	777.194	50.13	n.a.	MB
Total:			1390.930	1550.319	100.00	0.000	

Enantioenriched 20

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	22.16	n.a.	2511.561	3130.746	86.65	n.a.	BM *
2	26.04	n.a.	392.916	482.445	13.35	n.a.	MB*
Total:			2904.477	3613.191	100.00	0.000	

Racemic **2p**

102.868

233.802

373.771

752.207

49.69

100.00

BMB*

n.a.

0.000

Enantioenriched 2p

51.54

n.a.

2

Total:

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	42.81	n.a.	21.362	54.970	3.93	n.a.	BMB*
2	50.24	n.a.	348.274	1343.057	96.07	n.a.	BMB*
Total:			369.636	1398.027	100.00	0.000	

Racemic **S12**

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	25.84	n.a.	923.568	905.571	46.59	n.a.	BM *
2	28.25	n.a.	876.679	1038.263	53.41	n.a.	M *
Total:			1800.247	1943.834	100.00	0.000	

Enantioenriched S12

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	25.71	n.a.	708.926	700.257	41.99	n.a.	BM
2	28.10	n.a.	795.741	967.366	58.01	n.a.	MB
Total:			1504.667	1667.623	100.00	0.000	

Racemic 4a

No.	Ret.Time		Peak Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	8.21	n.a.		156.872	56.766	50.82	n.a.	BMB
2	9.80	n.a.		112.994	54.941	49.18	n.a.	BMB
Total:				269.866	111.707	100.00	0.000	

Enantioenriched 4a

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	8.13	n.a.	641.599	267.022	91.89	n.a.	MB*
2	9.78	n.a.	49.709	23.556	8.11	n.a.	BMB
Total:			691.308	290.578	100.00	0.000	

Enantioenriched sample of ${\bf 2f}$ used to generate diazabicycle ${\bf 4f}$

No.	Ret.Time	Pea	k Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	21.29	n.a.		144.430	113.348	6.95	n.a.	BM *
2	23.57	n.a.		1426.436	1516.427	93.05	n.a.	MB*
Total:				1570.867	1629.776	100.00	0.000	

Racemic 4f

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	7.92	n.a.	455.326	168.503	50.97	n.a.	BM
2	9.49	n.a.	343.722	162.098	49.03	n.a.	MB
Total:			799.047	330.601	100.00	0.000	

Enantioenriched 4f

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	7.79	n.a.	1120.559	406.547	92.86	n.a.	BM *
2	9.40	n.a.	69.116	31.260	7.14	n.a.	MB*
Total:			1189.675	437.807	100.00	0.000	

X-ray Crystal Structures

The datasets were measured on an Agilent SuperNova diffractometer using an Atlas detector. The data collections were driven and processed and absorption corrections were applied using CrysAlisPro.^[S1] The structure of **2f** was solved using ShelXT^[S2] and that of **4a** was solved using ShelXS^[S3] and both structures were refined by a full-matrix least-squares procedure on F^2 in ShelXL.^[S4] All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were added at calculated positions and refined by use of a riding model with isotropic displacement parameters based on the equivalent isotropic displacement parameter (U_{eq}) of the parent atom. Figures and reports were produced using OLEX2.^[S5]

The structure of **2f** occupies a chiral space group and the absolute structure has been determined from the diffraction data, with the Flack parameter being -0.004 (6).

In **2f** the thiophene ring, C(7)-S(8)-C(9)-C(10)-C(11), (C(7')-S(8')-C(9')-C(10')-C(11')) is disordered over two positions at a refined percentage occupancy ratio of 63. 9(3) : 36.1 (3).

The structure of **4a** occupies a centrosymmetric space group. Thus in one molecule in the unit cell C(6) is *R* and C(9) is *S* while in the other molecule C(6) is *S* and C(9) is *R*. The relative stereochemistry is the same in all molecules.

The CIFs for the crystal structures of **2f** and **4a** have been deposited with the CCDC and have been given the deposition numbers: CCDC 1880502 and CCDC 1880503 respectively.

Crystal structure determination of **2f**:

Crystal Data for C₂₆H₂₄N₂O₄S (*M* =460.53 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 7.27000(10) Å, *b* = 11.16340(10) Å, *c* = 14.17310(10) Å, *b* = 96.9580(10)°, *V* = 1141.79(2) Å³, *Z* = 2, *T* = 100.01(10) K, μ (CuK α) = 1.556 mm⁻¹, *Dcalc* = 1.340 g/cm³, 21276 reflections measured (12.264° ≤ 2 Θ ≤ 144.218°), 4388 unique (R_{int} = 0.0209, R_{sigma} = 0.0147) which were used in all calculations. The final R_1 was 0.0227 (I > 2 σ (I)) and wR_2 was 0.0582 (all data). Flack = -0.004(6).

Crystal structure determination of 4a:

Crystal Data for $C_{26}H_{26}N_2O$ (*M* =382.49 g/mol): triclinic, space group P-1 (no. 2), *a* = 9.9803(5) Å, *b* = 10.7055(5) Å, *c* = 11.0770(7) Å, *α* = 76.953(5)°, *θ* = 64.440(6)°, *γ* = 72.474(4)°, *V* = 1011.80(11) Å³, *Z* = 2, *T* = 100.01(10) K, μ (MoK α) = 0.076 mm⁻¹, *Dcalc* = 1.255 g/cm³, 8126 reflections measured (7.212° ≤ 2 Θ ≤ 53.462°), 4266 unique (R_{int} = 0.0201, R_{sigma} = 0.0362) which were used in all calculations. The final R_1 was 0.0451 (I > 2 σ (I)) and *wR*₂ was 0.1063 (all data).

[S1] CrysAlisPro, Agilent Technologies, Version 1.171.36.28, 2013.

[S2] G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.

[S3] G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.

[S4] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.

[S5] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard J. A. K.; Puschmann, H. *J. Appl. Crystallogr.* **2009**, *42*, 339-341.