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1. Materials

Solvent / Reagent Supplier Purity
DMF TCI Chem. (Shanghai) >99.5%
2-MeTHF TCI Chem. (Shanghai) >99.5%
THF TCI Chem. (Shanghai) >99.5%
hexane Scharlau (Spain) >99%
dimethyl ether Daojing Chem. (Dongguan) 99.8%
acetonitrile Alfa Aesar (China) >99.7%
NacCl Jiawei Chem. (Nanjing) >99.5%
methanol Lehua Chem. (Henan) 99.8%
phosphate buffer (pH=5.8) Xingyi Pharma. (Shanghai) AR
[2-HOM-MMIm][BArt 4] Lanzhou Institute of Chemistry 97%
2-phenylpropan-2-yl 2-((4,5-bis(2- UHN R&D (Shanghai) 98.5%
aminoethoxy)-2-nitrobenzyl)oxy)acetate

((4,5-bis(2-iodoethoxy)-2-nitrobenzyl)oxy) =~ UHN R&D (Shanghai) 98.2%,
(tert-butyl)diphenylsilane

2,2'-oxydiacetyl chloride TCI Chem. (Shanghai) >97.0%
BH;-THF (1.0 M) Shanghai Forxine Pharma. 97%

standard Fmoc-amino acids
N-Fmoc-2H,3H-2-carboxytryptophan
EDCI

OxymaPure®

PyBOP

DIPEA

DIC

DMAP
N-methylmorpholine
TAEA

TFA

TBAF

hydrazine

phenol

TIPS

sodium hydroxide

citric acid

native peptide BI-32169

GL Biochem. / Sigma-Aldrich (China)
Hanhong Chem.

Alfa Aesar (China)

Luxembourg Biotech.

Sigma-Aldrich (China)

Shanghai Ziye Chem. Eng.

Alfa Aesar (China)

Hanhong Chem.

Hanhong Chem.

Alfa Aesar (China)

TCI Chem. (Shanghai)

Alfa Aesar (China)

Sigma-Aldrich (China)

Sheshan Chem. (Shanghai)

Alfa Aesar (China)

Tianli Chem. (Shanghai)

Dongting Chem. (Hunan)

Hokkaido College of Pharmacy (Japan)

95%-98%
97%
98%
99.5%
98%
99.9%
98%
99%
99%
97%
>99.0%
98%
98%
>99.0%
>98.0%
98%
>99%
>99%
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2. Supplementary Methods

Fmoc-deprotection and coupling steps

Cryptand-imidazolium bounded peptide (2.0 mmol) was dissolved into 10.0 mL 2-MeTHF.
TAEA (3.0 mL, 2924.6 mg, 20.0 mmol) was slowly added under stirring. More 2-MeTHF might be
replenished if precipitation occurred. The solution was kept under stirring for 15 more minutes and
washed with a phosphate buffer (pH= 5.8, ~20.0 mLx3), 20%(m/v) NaCl aqueous solution (~20.0
mLx4) and deionized water (~20.0 mLx2), respectively. Fmoc-protected amino acid (2.2 mmol),
EDCI (742.1 mg, 3.0 mmol) and OxymaPure® (426.4 mg, 3.0 mmol) were mixed in 2-MeTHF (10.0
mL), allowed to stand for 15 minutes and added into the solution of cryptand-imidazolium bounded
peptide. After 1 hour stirring, the solution was washed with 20%(m/v) NaCl aqueous solution (~20.0
mLx4) and deionized water (~20.0 mLx2) in a separation funnel.

HPLC and MS

Purity of the peptides was confirmed by analytical reversed-phase HPLC on an Agilent 1200 SL
chromatograph with a Grace™ Vydac™ 208TP C8 (4.6 x 250mm, 5 pum particle size) and a mobile
phase system consisting of A: 0.1% TFA in water and B: 0.1% TFA in acetonitrile with a flow rate
of 1.0 mL/min. The UV-detection was at 220 nm. High resolution mass spectra analysis was
performed on a Shimadzu LCMS-8030. 1 uL of sample (0.2 mM in 90% v/v acetonitrile/H,O) was
injected onto a Kinetex® C18 column (2.1 x 100 mm, 1.7 um particle size). The MS analysis was
carried out with a gradient of 5-95% B (solvent A = H,0, 0.1% formic acid; B = acetonitrile, 0.1%
formic acid) in 40 minutes and a flow rate of 0.2 ml/min at a column temperature of 40 °C.

NMR

Proton magnetic resonance ('"H NMR) and carbon magnetic resonance ('*C NMR) spectra were
recorded on a Bruker ARX-400 equipped with a DCH cryoprobe. Chemical shifts (8) are expressed
in parts per million (ppm) relative to residual DMSO-d; as internal standards. "H NMR spectra were
recorded at either 400 MHz. 13C NMR spectra were recorded at 100 MHz. NMR acquisitions were
performed at 295 K unless otherwise noted. Abbreviations are: s, singlet; d, doublet; t, triplet; q,
quartet; br, broad, m, multiplet.

Circular dichroism

CD spectra were given on a Jasco J-810 spectropolarimeter (Japan) with a bandwidth at 1.0 nm
and response time of 0.5 s. All experiments were carried out at room temperature and examined in
far UV spectra region (190-250 nm). Peptide concentration was 100 M in 20 uM sodium phosphate
buffer at pH = 7.2. The blank buffer and peptide samples were each measured at 20°C using a 1 mm
path length. Each spectrum was the average of four scans.

Glucagon receptor antagonism
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Glucagon receptor antagonism assays were carried out using stably-transfected BHK cell lines
expressing the cloned human glucagon receptor as earlier described method!. The cDNA coding for
the human glucagon receptor, which was amplified from human liver mRNA by RT-PCR, was
subsequently cloned into pcDNA3.1(+) vector. Baby hamster kidney cells (BHK-21[C-13]) were
transfected with the expression construct for the human glucagon receptor and a stable transfected
cell population was selected by growth in G418 (Geneticin) medium. The transfected BHK cells
were preincubated in Krebs-Ringer bicarbonate HEPES (KRBH) buffer (10 mM Hepes, pH 7.4; 134
mM NaCl; 3.5 mM KCI; 1.2 mM KH,POy4; 0.5 mM MgSQOy; 1.5 mM CaCl,; 5 mM NaHCOs3; 0.1%
BSA; 11 mM glucose; 0.8 mM IBMX) in 96-well microtiter plates with various concentrations of
peptide samples for 10 minutes at 37 °C, and glucagon (at concentration of 30 pM) was then added
for 5 minutes. The reactions were quenched by adding 250 uL of 1.0 M HCI. cAMP concentrations
were determined by using [1251] RIA Kit.

Serum stability assay

Peptide stabilities were assayed in diluted serum as previously described’> with minor
modifications. 2.0 mL of 25% human serum from adult male (Sigma-Aldrich) was centrifuged at
13,000 rpm for 10 minutes. The supernatant was then collected and incubated at 37°C for 15
minutes. The test peptides (final concentration of 100 pM) were incubated in serum at 37 °C. 80 pL
aliquots of samples were collected for the following time points: 0, 2, 4, 8, 16, 24 and 36 hours. The
aliquots were mixed with 80 pL of 15% TFA and incubated at 4°C for 15 minutes to precipitate
serum proteins. The supernatant was collected for each sample after centrifugation at 13,000 rpm for
10 minutes and stored at -20°C. These assays were performed in triplicate. 40 uL of the collected
samples were analyzed by HPLC using a Phenomenex™ Luna® C18 column (4.6 x 150 mm, 5 um
particle size) with a linear acetonitrile gradient (0-50% solvent B, 50 minutes).

3. Supplementary Procedure

Validation of complexation ability of synthesized cryptands with imidazolium salt

Cryptand assembly 2 and 16 were prepared using the method described earlier’*. A solution of
((4,5-bis(2-iodoethoxy)-2-nitrobenzyl)oxy) (tert-butyl)diphenylsilane (365.76 mg, 0.50 mmol),
Li,CO5 (209.11 mg, 2.83 mmol), Lil (44.17 mg, 0.33 mmol) in acetonitrile (30.0 mL) was refluxed
with stirring for 1 hour at 40 °C. To the reaction mixture 2-phenylpropan-2-yl 2-((4,5-bis(2-
aminoethoxy)-2-nitrobenzyl)oxy)acetate (212.26 mg, 0.49 mmol) was added with stirring, and the
resulting mixture was refluxed for 2 days. The reaction mixture was cooled gradually to room
temperature and then filtered. The filtrate was concentrated in vacuo, and the residue thereby
obtained was purified via flash chromatography on neutral alumina (200-230 mesh) by eluting with
20% ethyl acetate/hexane. The dibenzo diazacrown analog (315.53 mg) was obtained and then mixed
with 2,2'-oxydiacetyl chloride (59.84 mg, 0.35 mmol) in borane THF complex solution (1.0 M, 30.0

mL). The resulting mixture was refluxed for 24 hours. The mixture was cooled gradually to room
S6



temperature and then filtered. The filtrate was concentrated in vacuo, and the residue thereby
obtained was purified via flash chromatography on silica gel by eluting with 10% methanol/DCM.
After aqueous extraction, the cryptand assembly (173.86 mg) was obtained and separated by chiral
HPLC using CHIROBIOTIC V (250%4.6 mm inner diameter) with a mobile phase of THF/H,O/TEA
(2:8:0.01) at 10 °C (controlled by a Peltier heating/cooling HPLC column thermostat). The overall
yields of (+)-/(-)-cryptands were 15.70% (75.4 mg, 0.077 mmol) and 19.54% (93.8 mg, 0.096
mmol). The chirality establishment is described in next chapter.

Imidazolium salt 1 (5.1 mg, 5.0 pmol) was methylated with the treatment of NH3/MeOH (0.4
mL, 4.0 M) overnight. The solution was evaporated under reduced pressure and then mixed with (+)-
/(-)-cryptand (4.9 mg, 5.0 pmol) to form a (+)-/(-)-cryptand-imidazolium complex in
acetonitrile/water (5.0 mL, 80%). The resulting substance was washed with deionized water and
hexane and evaporated to yield a light-yellow solid (9.9 mg). The methylated analogue of complex

was used for study of the interactions between cryptand and imidazolium cation in next chapter.
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Figure S1. Synthesis of cryptand-imidazolium complex and chiral HPLC chromatogram of cryptand
separation.
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Figure S2. "H NMR spectrum of dibenzo diazacrown analog (400 MHz, DMSO-d,, 0.3 mM, 22 °C),
ESI-MS calculated for C49HsgN4O,S1 [M+Li]*: 929.3975; Found: 929.3272.
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Figure S4. "H NMR spectrum of cryptand assembly 2 (400 MHz, DMSO-ds, 0.3 mM, 22 °C), ESI-
MS calculated for Cs3HgsN4O;3S1 [M+H]": 992.4239; Found: 992.4235.
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Figure S5. 13C NMR spectrum of cryptand assembly 2 (100 MHz, DMSO-ds, 0.3 mM, 22 °C).
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Figure S9. 3C NMR spectrum of methylated analogue of cryptand-imidazolium complex (100 MHz,
DMSO-dg, 0.3 mM, 22 °C).

Characterization of cryptand-imidazolium complex

The resonance signal of protons H; in imidazolium assembly moved obviously to lower field
(higher frequency) after complexation. This deshielding effect showed that the imidazolium cation
should be transferred into the cavity of cryptand assembly and formed strong hydrogen bonds. The
resonance signals of protons H, and Hy, in benzyl rings of cryptand assembly were changed towards
higher filed (lower frequency) probably due to the shielding effect of n-m sandwich stacking between
imidazolium cation and benzyl rings. Furthermore, variable temperature NMR measurement showed

that the cryptand-imidazolium complex is still stable at 40°C.
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Figure S10. Left: The complexation between cryptand 2 (blue) and cation of imidazolium salt 1 (red).
The interactions (hydrogen bonds and n-n stacking) were shown in purple. Right: '"H NMR spectra of
A) imidazolium salt 1, B) equimolar mixture of 2 and 1 and C) cryptand 2 at 22 °C.

Establishment of R/S configuration of cryptands

To distinguish between the R and S configurations of separated cryptands, L-aspartic acid
attached imidazolium was introduced as a chiral auxiliary. Fmoc-L-aspartic acid(Dmab) (4.0 mg, 6.0
umol) was attached to imidazolium salt 1 (5.1 mg, 5.0 pumol) using EDCI (2.88 mg, 15.0
umol)/OxymaPure® (2.1 mg, 15.0 umol) in 2-MeTHF (5.0 mL, 1.0 mM). After washing with
20%(m/v) NaCl solution and deionized water, the Fmoc and Dmab groups of attached imidazolium
were removed by 10.0 eq. TAEA (7.5 pL, 7.3 mg, 50.0 umol) and hydrazine (0.1 mL, 102.1 mg, 3.2
mmol, 2% in solution), respectively. The resulting L-aspartic acid attached imidazolium salt was
mixed (1:1) with (+)-/(-)-cryptand (4.9 mg, 5.0 pmol) in 2-MeTHF (5.0 mL). 2-3 drops of TFA (0.1-
0.2 mL) were added to cleave the Ph’Pr group of cryptand assembly. The deprotected carboxyl group
generated an amide linkage with o-amino group of L-aspartic acid attached imidazolium. The
TBDPS group of cryptand assembly was then removed by 3.0 eq. TBAF (3.9 mg, 15.0 umol). The
free hydroxyl group of 2 connected with the side chain of L-aspartic acid via an ester bond at 40°C
using EDCI/OxymaPure®, while the esterification of hydroxyl group of 16 is spatially hindered.
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Figure S12. '"H NMR spectra evolution as a function of time for esterification of cryptand 2 complex
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Figure S13. 'H NMR spectrum of L-aspartic acid attached [2-HOM-MMIm][BArf,;] (400 MHz,
DMSO-dg, 0.3 mM, 22 °C), ESI-MS calculated for C,oH ;N304 [M]*: 242.1135; Found: 242.1132.
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Figure S14. 3C NMR spectrum of L-aspartic acid attached [2-HOM-MMIm][BArf,;] (100 MHz,
DMSO-d;, 0.3 mM, 22 °C).
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Figure S15. '"H NMR spectrum of L-aspartic acid attached cryptand-imidazolium complex (400 MHz,
DMSO-ds, 0.3 mM, 22 °C), ESI-MS calculated for CgHggN,O(7Si [M]*: 1234.5374; Found:
1234.5370.
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Figure S16. *C NMR spectrum of L-aspartic acid attached cryptand-imidazolium complex (100
MHz, DMSO-dg, 0.3 mM, 22 °C).
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Figure S17. '"H NMR spectrum of L-aspartic acid attached cryptand-imidazolium complex analogue
(after condensation reaction) (400 MHz, DMSO-ds, 0.3 mM, 22 °C), ESI-MS calculated for
C38H50N7016 [M]+I 8603309, Found: 860.3305.
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Figure S18. 13C NMR spectrum of L-aspartic acid attached cryptand-imidazolium complex analogue
(after condensation reaction) (100 MHz, DMSO-dg, 0.3 mM, 22 °C).
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(after esterification reaction) (400 MHz, DMSO-ds;, 0.3 mM, 22 °C), ESI-MS calculated for
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Nem @ Moo
mmmmm

_-17038
1703

159.3
—1522

@
~ @ DN GC
= TI® ® NN

1

1

d

1

1

1

1

1

123

122

1

i

1

1

6

546

54.0

54.0
—495

395
3638

e

<

P

/

A

e

<

N

~
<
_—
T
L6
-6t
~6
/

A

<L 364
~343

¥
o7
\m Q
o
=
-
=}
&

L-aspartic acid attached cryptand-
imidazolium complex analogue
(after esterification reaction)

*C NMR 100 MHz, DMSO-d, i

170 160 150 140 130 120 110 100

90 80 70 60 50 40 30 20 10
Chemical shift (ppm)

Figure S20. 3C NMR spectrum of L-aspartic acid attached cryptand-imidazolium complex analogue
(after esterification reaction) (100 MHz, DMSO-dg, 0.3 mM, 22 °C).

Photolytic conversion of 1-nitroveratryloxycarbonyl(NVOC) protected-2H,3H-
tryptophan into tryptophan

The N-Fmoc-1-NVOC protected 2H,3 H-tryptophan (65.4 mg, 0.1 mmol) was first dissolved in
2-MeTHF (5.0 ml) to give a clear solution, which was placed in a 3.5 mL glass cuvette and exposed
under ultraviolet irradiation for 45 minutes using a 150W Xe lamp (SCHOTT AG, Germany) with a
330-nm filter. The solution was evaporated under reduced pressure, washed with ether and dissolved
in DCM (5.0 mL). Polymer-based piperazine (1.0 g, 1.0 mmol, 200-400 mesh, 1.0-2.0 mmol/g
loading, 2% cross-linked with divinylbenzene) was added. The reaction mixture was stirred for 30
minutes and filtered. The filtrate was lyophilized to yield a white powder (43.8 mg, 99%). After
lyophilization, the crude 1-NVOC protected 2H,3 H-tryptophan was dissolved in water/acetonitrile
(50:50) and purified by reversed-phase HPLC (gradient: 0-40% acetonitrile in water + 0.1% TFA, in
120 minutes). Fractions of 500 pL were examined by MS (ESI-MS calculated for C;H;3N,O
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[M+H]": 205.0976; Found 205.0973) and NMR (Fig. S21). The results showed that the 1-NVOC
protected 2H,3 H-tryptophan has been converted into tryptophan instead of 2H,3 H-tryptophan during
the photolytic release of protecting group NVOC. Considering the photolytic mechanisms of NVOC
and 1-acyl-7-nitroindolines>®, a provisional mechanism is given below, in which UV light leads to
the radical decarboxylation of NVOC group and the cleavage of resulting 1,3-
dihydrobenzo[c]isoxazole group promoted the dehydrogenation of indoline.
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Figure S21. Postulated mechanism of photolytic conversion of 1-NVOC protected 2H,3 H-tryptophan
assembly and NMR spectra of the product tryptophan (DMSO-d;, 0.6 mM, 22 °C).

Synthesis of unthreaded peptide topoisomer

Linear peptide GILPWGCPSDIPGWNTPWAC! was prepared by stepwise Fmoc-SPPS on an
Advanced ChemTech (ACT-396) automated peptide synthesizer on 2-chlorotrityl chloride resin
(300.0 mg, 100-200 mesh, 1.06 mmol/g) with in sifu activation protocols to couple Fmoc-protected
amino acid (1.3 mmol, 4.0 eq. to resin loading) to the resin using PyBOP (676.5 mg, 1.3 mmol) as
coupling reagent in the presence of N-methylmorpholine (0.29 mL, 263.0 mg, 2.6 mmol). The Fmoc
group was deprotected with 20% piperidine/DMF. The side chain ODmab of residue D° was
selectively removed using 2% hydrazine in DMF. The cyclization via isopeptide bond between G!
and D’ was carried out using PyBOP (676.5 mg, 1.3 mmol) and N-methylmorpholine (0.29 mL,
263.0 mg, 2.6 mmol). Cyclized peptide was cleaved from the resin at room temperature in
TFA/phenol/water/TIPS (88:5:5:2) for 3 hours. Cold diethyl ether was then added to the filtered
cleavage mixture and the peptide precipitated out. Pure peptide (0.2 mM) was oxidized by stirring at
room temperature in 0.1 M NH;OAc/ DMF for 12 hours after washing with further cold diethyl
ether. The oxidized peptide was purified by semipreparative reversed-phase HPLC equipped with a
Waters XBridgeTM BEH3000 C18 column (4.6 X 150 mm) at a flow rate of 10.0 ml/min in 0-50%
acetonitrile/0.1% TFA gradient and then lyophilized overnight.
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Figure S22. Synthesis of unthreaded topoisomer of BI-32169 (ESI-MS calculated for
C95H125N23024SZ [M+2H]2+Z 10189433, Found 10189429)
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Figure S23. 'H NMR spectrum of unthreaded topoisomer of BI-32169 (400 MHz, DMSO-dg, 0.2
mM, 40 °C).
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Figure S24. 3C NMR spectrum of unthreaded topoisomer of BI-32169 (100 MHz, DMSO-d,, 0.2
mM, 40 °C).

Synthesis of 5 (first anchoring)

Fmoc-L-cysteine('Bu)-OH (87.89 mg, 0.22 mmol), EDCI (46.58 mg, 0.30 mmol) and
OxymaPure® (42.64 mg, 0.30 mmol) were first mixed in 2-MeTHF (10.0 mL) and allowed to stand
for 15 minutes. Imidazolium salt 1 (198.08 mg, 0.20 mmol) and further 10.0 mL 2-MeTHF were
added to give a clear solution. More 2-MeTHF might be replenished if precipitation occurred. The
solution was stirred for 4 hours and washed with 20%(m/v) NaCl aqueous solution (~20.0 mLx4)
and deionized water (~20.0 mLx2) in a separation funnel. The solution was concentrated under
reduced pressure to give crude 5 (brown oil, 246.19 mg) (ESI-MS calculated for C,3H34N304S [M]*:
508.2270; Found 508.2263).
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Figure S25. 'TH NMR spectrum of 5 (400 MHz, DMSO-dj, 0.4 mM, 40 °C).
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Figure S26. 3C NMR spectrum of 5 (100 MHz, DMSO-d,, 0.4 mM, 40 °C).

Synthesis of 7
Compound 5 was dissolved into 12.0 mL 2-MeTHF. TAEA (3.0 mL, 2924.6 mg, 20.0 mmol)

was slowly added under stirring. The solution was kept under stirring for 15 more minutes and
washed with a phosphate buffer (pH= 5.8, ~20.0 mLx2), 20%(m/v) NaCl aqueous solution (~20.0
mLx4) and deionized water (~20.0 mLx2). Fmoc-L-alanine-OH (68.50 mg, 0.22 mmol), EDCI
(46.58 mg, 0.30 mmol) and OxymaPure® (42.64 mg, 0.30 mmol) were mixed in 2-MeTHF (10.0 mL)
and allowed to stand for 15 minutes. The mixed reagents were then added into the solution. After 4
hours stirring, the solution was washed with 20%(m/v) NaCl aqueous solution (~20.0 mLx4) and
deionized water (~20.0 mLx2) in a separation funnel. The solution was concentrated under reduced
pressure to give crude 7 (brown oil, 245.96 mg) (ESI-MS calculated for C;;H3oN4OsS [M]*:
579.2641; Found 579.2635).
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Figure S27. '"H NMR spectrum of 7 (400 MHz, DMSO-dj, 0.4 mM, 40 °C).
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Figure S28. 13C NMR spectrum of 7 (100 MHz, DMSO-d,, 0.4 mM, 40 °C).

Preparation of 8 (complexation of 7 with 2)

7 and cryptand 2 (203.60 mg, 0.21 mmol) were mixed in 20.0 mL 2-MeTHF under stirring. The
solution was concentrated to 6.0-7.0 mL under reduced pressure and dropped slowly into 50.0 mL
cold hexane. The resulting precipitate was filtered off, washed with cold hexane (~50.0 mLx4) and
deionized water (~50.0 mL) and concentrated under reduced pressure to yield 8 (brown solid, 414.62
mg) (ESI-MS calculated for Cg4H;03N30;gSSi [M]": 1571.6880; Found 1571.6861).
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Figure S29. 'H NMR spectrum of 8 (400 MHz, DMSO-d,, 0.2 mM, 40 °C).
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Figure S30. 3C NMR spectrum of 8 (100 MHz, DMSO-d,, 0.2 mM, 40 °C).

Synthesis of 10 (second anchoring)

Compound 9 was accomplished by sequential coupling of following protected amino acids:
Fmoc-L-tryptophan(Boc)-OH (115.85 mg, 0.22 mmol), Fmoc-L-proline-OH (74.22 mg, 0.22 mmol),
Fmoc-L-threonine(‘Bu)-OH (87.44 mg, 0.22 mmol), Fmoc-L-asparagine(Trt)-OH (131.27 mg, 0.22
mmol), Fmoc-L-tryptophan-OH (93.82 mg, 0.22 mmol), Fmoc-L-glycine-OH (65.41 mg, 0.22
mmol), Fmoc-L-proline-OH (74.22 mg, 0.22 mmol), Fmoc-L-isoleucine-OH (77.75 mg, 0.22 mmol),
Fmoc-L-aspartic acid(Dmab)-OH (146.69 mg, 0.22 mmol) and Fmoc-L-serine(Trt)-OH (125.34 mg,
0.22 mmol). 2% TFA/2-MeTHF solution (30.0 mL) was added into the resulting solution at 0 °C.
The reaction mixture was kept under stirring for 5 minutes at 0 °C and washed with 20%(m/v) NaCl
aqueous solution (20.0 mL), 1.0 mM sodium hydroxide solution (~20.0 mLx2), 20%(m/v) NaCl
aqueous solution (~20.0 mLx4) and deionized water (~20.0 mLx2). EDCI (93.16 mg, 6.0 mmol) and
OxymaPure® (85.28 mg, 6.0 mmol) were added after washing. The solution was stirred for 12 hours,
then washed with 1.0 mM calcium hydroxide solution (~20.0 mLx2) and centrifuged. The precipitate
was filtered off, washed with 20%(m/v) NaCl aqueous solution (~20.0 mLx6) and deionized water
(~20.0 mLx2) and concentrated under reduced pressure to yield 10 (brown solid, 307.81 mg) (ESI-
MS calculated for C;g3H»5N»,035SSi [M+H]?*: 1700.2934; Found 1700.2932).
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Figure S31. 'H NMR spectrum of 10 (400 MHz, DMSO-d;, 0.2 mM, 40 °C).
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Figure S32. 3C NMR spectrum of 10 (400 MHz, DMSO-d;, 0.2 mM, 40 °C).
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Figure S33. NMR spectra of compound 10 (400 MHz, DMSO-ds, 0.2 mM, 40 °C). Top: TOCSY
spectrum (100 ms). Amino acid spin systems are labeled. Botfom: Fingerprint region of the NOESY
spectrum (150 ms) showing sequential connectivity between the residues.

Synthesis of 12 (third anchoring)

Compound 11 was accomplished by sequential coupling of following protected amino acids:
Fmoc-L-proline-OH (74.22 mg, 0.22 mmol), Fmoc-L-cysteine(‘Bu)-OH (87.89 mg, 0.22 mmol),
Fmoc-L-glycine-OH (65.41 mg, 0.22 mmol) and Fmoc-L-2H,3H-1-carboxytryptophan(pNB)-OH
(130.15 mg, 0.22 mmol). TBAF trihydrate (1893.0 mg, 6.0 mmol) in 2.0 mL 2-MeTHF was added
dropwise into the resulting solution. The reaction mixture was kept under stirring for 8 hours. 5.0 g
Dowex® 50WX8 (hydrogen form, 200-400 mesh), 1.6 g calcium carbonate and further 10.0 mL 2-
MeTHF were added into the reaction mixture. The resulting suspension was stirred for 1 hour and
then filtered. The organic phase was washed with a phosphate buffer (pH= 5.8, ~20.0 mLx3),
20%(m/v) NaCl aqueous solution (~20.0 mLx4) and deionized water (~20.0 mLx2). The attempt to
join the free side chain of W'* with the free linker of support using EDCI/OxymaPure® offered only
a low crude yield of esterification (27% of 12). Switching to other common combination of coupling
reagents, such as N N'-diisopropylcarbodiimide (DIC)/4-dimethylaminopyridine (DMAP) or
benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP)/N,N-
diisopropylethylamine (DIPEA), did not alleviate this problem as well. The anchoring was then
achieved by increasing the temperature to 37°C and conducting esterification twice as
following described. EDCI (93.16 mg, 0.60 mmol) and OxymaPure® (85.28 mg, 0.60 mmol) were
added. The reaction mixture was stirred for 12 hours at 37 °C, then washed with 1.0 mM calcium
hydroxide solution (~20.0 mLx2) and centrifuged. The precipitate was filtered off and washed with
20%(m/v) NaCl aqueous solution (~20.0 mLx6) and deionized water (~20.0 mLx2). These
anchoring and washing operations were repeated one more time. The solution was concentrated
under reduced pressure to yield 12 (brown solid, 166.98 mg) (ESI-MS calculated for
C195H246N27041S, [M+H]?*: 1844.3750; Found 1844.37438).
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Figure S34. '"H NMR spectrum of 12 (400 MHz, DMSO-dy, 0.2 mM, 40 °C).

S23



-t

12

*C NMR 100 MHz, DMSO-d,

160 150 140 130 120 110 100 920 80 70 60 50 40 30 20 10

170

Chemical shift (ppm)

Figure S35. 3C NMR spectrum of 12 (400 MHz, DMSO-d;, 0.2 mM, 40 °C).
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Figure S36. NMR spectra of compound 12 (400 MHz, DMSO-ds, 0.2 mM, 40 °C). Top: TOCSY
spectrum (100 ms). Amino acid spin systems are labeled. Botfom: Fingerprint region of the NOESY
spectrum (150 ms) showing sequential connectivity between the residues.

Synthesis of 14

Compound 13 was accomplished by sequential coupling of following protected amino acids:
Fmoc-L-proline-OH (74.22 mg, 0.22 mmol), Fmoc-L-leucine-OH (77.75 mg, 0.22 mmol) and Fmoc-
L-glycine-OH (65.41, 0.22 mmol). 0.6 mL hydrazine (61.26 mg, 1.91 mmol) in 2.0 mL 2-MeTHF
was added into the resulting solution. The reaction mixture was kept under stirring for 15 minutes
and washed with a phosphate buffer (pH= 5.8, ~20.0 mLx3), 20%(m/v) NaCl aqueous solution
(~20.0 mLx4), deionized water (~20.0 mLx2) and cold hexane (~50.0 mLx3). EDCI (93.16 mg, 0.60
mmol) and OxymaPure® (85.28 mg, 0.60 mmol) were then added. The reaction mixture was stirred
for 12 hours and washed with 20%(m/v) NaCl aqueous solution (~20.0 mLx6) and deionized water
(~20.0 mLx2). The solution was concentrated under reduced pressure to yield 14 (brown solid,
109.11 mg) (ESI-MS calculated for C7;H24N2904;S, [M+H]?*: 1702.7903; Found 1702.7901).
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Figure S37. 'H NMR spectrum of 14 (400 MHz, DMSO-dy, 0.2 mM, 40 °C).
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Figure S38. 3C NMR spectrum of 14 (400 MHz, DMSO-d,, 0.2 mM, 40 °C).
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Figure S39. NMR spectra of compound 14 (400 MHz, DMSO-d;, 0.2 mM, 40 °C). Top: TOCSY
spectrum (100 ms). Amino acid spin systems are labeled. Botfom: Fingerprint region of the NOESY
spectrum (150 ms) showing sequential connectivity between the residues.
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Peptide-liberation

Compound 14 was dissolved in 2-MeTHF (10.0 ml) and prewarmed to ~30°C to give a clear
solution, which was placed in a 14.0 ml ES quartz glass cuvette (45mm x 42.5mm X 12.5mm) and
exposed under ultraviolet irradiation in a 30°C water bath for 45 minutes using a 150W Xe lamp
(SCHOTT AG, Germany) with a 330-nm filter. The solution was evaporated under reduced pressure

and washed with cold hexane (~50.0 mLx4). The washed residue was then dissolved in 10.0 mL
$26



TFA/phenol/water/TIPS (88:5:5:2) under argon atmosphere. A certain amount of dichloromethane
might be added if the peptide was not fully dissolved. The reaction mixture was stirred for 15
minutes and dropped slowly into 100.0 mL cold hexane (50.0 mLx2). It should be noted that cold
ether is not applicable for separation due to its high dissolving capability for the compounds with
[BArt,] anion. The resulting precipitate was separated by centrifugation, washed with deionized
water (~50.0 mL) and cold hexane (~50.0 mLx6), and concentrated under reduced pressure to yield
15 (brown solid, 69.62 mg, ESI-MS calculated for C;;7H;46N29034S, [M]™: 2705.1594; Found
2705.1548). Compound 15 and sodium hydroxide (20.00 mg, 0.50 mmol) were dissolved in
THF/H,O (3:1, 5.0 mL). In this step, utilizing a higher concentration (1.0 M) solution of sodium
hydroxide could obviously shorten the liberation time, yet led to an undesirable opening of the N-
terminal ring and thus destroyed the lasso conformation. The mixture was then stirred under argon
atmosphere for 6 hours and then exposed to air for 12 hours. The solution was acidified to pH= ~6.0
with 0.1 M aqueous citric acid and evaporated under reduced pressure. The resulting substance was
washed with deionized water (50.0 mLx2) and ether (50.0 mLx6) to yield crude BI-32169 (42.81
mg). The characterization of purified synthetic BI-32169 (10.064 mg, 50 umol, 2.47%, white solid)

is described in next chapters.

Synthesis of D-enantiomer of BI-32169

The peptide D-enantiomer of BI-32169 was synthesized using cryptand 16 and corresponding D-
amino acids in the same manner as BI-32169 (Figure S40-S54). The characterization of D-BI-32169
is described in next chapters.
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Figure S40. '"H NMR spectrum of D-enantiomer of 5 (400 MHz, DMSO-ds, 0.4 mM, 40 °C); ESI-MS
calculated for CygH34N304S [M]": 508.2270; Found 508.2264.
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Figure S41. 3C NMR spectrum of D-enantiomer of 5 (400 MHz, DMSO-d;, 0.4 mM, 40 °C).
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Figure S44. '"H NMR spectrum of D-enantiomer of 8 (400 MHz, DMSO-dy, 0.2 mM, 40 °C), ESI-MS

calculated for Cg4H;03NgO3SS1 [M]": 1571.6880; Found 1571.6867.
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Figure S51. NMR spectra of D-enantiomer of compound 12 (400 MHz, DMSO-d;, 0.2 mM, 40 °C).
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Figure S52. 'H NMR spectrum of D-enantiomer of 14 (400 MHz, DMSO-d;, 0.2 mM, 40 °C), ESI-

MS calculated for Cy71H4N2904;S, [M+H]?*": 1702.7903; Found 1702.7900.
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Figure S53. 13C NMR spectrum of D-enantiomer of 14 (400 MHz, DMSO-ds, 0.2 mM, 40 °C).
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4. Supplementary Characterization of synthetic BI-32169 and its D-
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Figure S55. HPLC Chromatogram of crude synthesized BI-32169 (gradient: 0-40% acetonitrile in
water + 0.1% TFA, at 1.0 mL/min, in 40 minutes).
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Figure S56. HPLC Chromatogram and ESI-FT mass spectrum of purified synthesized BI-32169 (Tg=
21.7 minutes, gradient: 0-40% acetonitrile in water + 0.1% TFA, at 1.0 mL/min, in 40 minutes; ESI-
MS calculated for CosH;»5N»30,4S, [M+2H]?**: 1018.9433; Found 1018.9410).
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Figure S57. HPLC profiles of purified synthesized BI-32169 (gradient: 0-40% acetonitrile in water +
0.1% TFA, at 1.0 mL/min, in 40 minutes). The green line shows the co-injection of synthesized BI-
32169 and its native standard. The orange line shows the co-injection of synthesized BI-32169 and
its unthreaded topoisomer synthesized by SPPS method.

NMR spectrum of synthetic BI-32169

4 S8

——

L2 T15 G1 G5 N14 110 W17 W13 D9 G12 A18 Cé C19
I
i
I
L}

e

w
N
w
-

T T T T T T
8.0 8.5 8.0 7.5 7.0 6.5 6.0
Chemical shift (ppm)

Figure S58. Amide proton region of 'H spectra of synthetic BI-32169 in DMSO-d, at variable
temperatures. The temperature dependence of chemical shifts is shown by dashed lines.
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Figure S59. '"H NMR spectra of synthetic BI-32169 and its native standard (400 MHz, DMSO-d;, 0.2

mM, 40 °C).
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Figure S61. NMR spectra of synthetic BI-32169 (400 MHz, DMSO-d;4, 0.2 mM, 40 °C). Top-right:
TOCSY spectrum (100 ms). Amino acid spin systems are labeled. Botfom-right: Fingerprint region
of the NOESY spectrum (150 ms) showing sequential connectivity between the residues (solid line)
and the isopeptide bond between G' and D° (dashed line). Left: Ha-Hp region of NOESY spectrum
(150 ms) showing the disulfide bond between C° and C'°.
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native BI-32169 (red). The apparent long-range NOEs between the amide protons of L? with N'4 and
C¢ with T of synthetic BI-32169 are indicated, showing the lasso configuration of BI-32169.
Bottom: the NH/NH region of NOESY spectrum of the unthreaded topoisomer of BI-32169.
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Figure S63. Superimposed TOCSY spectra (100 ms) of synthetic BI-32169 (blue) and native BI-
32169 (red).
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Figure S64. Fingerprint region of the 2D DQF-COSY spectrum of synthetic BI-32169 (400 MHz,
DMSO0-dg, 0.2 mM, 40 °C).
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Table S1. Comparison of assigned '"H NMR chemical shifts of synthetic and native BI-32169

AA

NH

aH

BH

vyH

Proton chemical shifts (synthetic/native, deviation), in DMSO-d, at 40°C (ppm)

others

Gl

LZ

P3

W4

GS

C6

P7

SS

D9

llO

Pll

G]Z

W13

N4

T15
P16

W17

Al8
C19

8.75/8.75, +0.00

9.07/9.08, -0.01

6.22/6.20, +0.02

8.73/8.73, +£0.00

7.07/7.07, £0.00

6.01/6.03, -0.02
7.75/7.76, -0.01

8.27/8.26, +0.01

7.59/7.57,+0.02

7.91/7.91, +£0.00

8.60/8.62, -0.02

8.89/8.89, +0.00

7.95/7.95, +0.00

7.18/7.18; £0.00
6.93/6.95; -0.02

3.39/3.39, +0.00
4.32/4.32,+0.00
4.59/4.59, £0.00
4.16/4.17,-0.01

4.83/4.83, +0.00

3.34/3.35,-0.01
3.82/3.82,+0.00
4.65/4.66, -0.01
4.88/4.88, +0.00
5.17/5.18,-0.01
4.62/4.62,+0.00

3.58/3.57,+0.01

4.32/4.32,+0.00
3.03/3.05, -0.02;

3.95/3.95, +0.00
4.49/4.49, +0.00

4.89/4.88, +0.01

4.87/4.86,+0.01
4.48/4.48, +0.00

4.01/4.01, £0.00

4.20/4.19,+0.01
4.36/4.36, +£0.00

1.65/1.67, -0.02
1.91/1.92,-0.01

1.61/1.61; £0.00
1.99/2.00; -0.01

3.09/3.09, +0.00
3.30/3.30, +0.00

2.19/2.19, +£0.00
3.14/3.13,+0.01

1.91/1.91, £0.00
2.32/2.32,+0.00

3.23/3.24,-0.01
3.70/3.70, £0.00

2.24/2.24, +0.00
3.19/3.21,-0.02

1.60/1.61, -0.01

1.66/1.66, +0.00
2.10/2.09, +0.01

2.38/2.40,-0.02
2.90/2.92,-0.02

1.50/1.49, +0.01
1.89/1.89, £0.00

4.60/4.60, £0.00

1.48/1.48, +0.00
2.25/2.25,+0.00

2.17/2.17,+0.00
3.19/3.20, -0.01

1.13/1.15,-0.02

2.59/2.58,+0.01
3.01/3.00, +0.01

1.83/1.82,+0.01

1.76/1.71, £0.00
1.87/1.86, +0.01

1.89/1.89, +0.00
2.04/2.03,+0.01

CHQ:

1.22/1.22,4£0.00
1.74/1.74, £0.00
CH3:

0.91/0.92, -0.01
1.79/1.79, £0.00
2.14/2.15,-0.01

1.20/1.19, +0.01

1.57/1.57,+0.00
1.71/1.71, £0.00

SH: 0.90/0.90, £0.00
SH: 0.99/0.99, +0.00

OH: 3.39/3.38, +0.01
OH: 3.58/3.58, £0.00

2H 01t 7.25/7.25, +0.00
NH;,40: 10.85/10.86, -0.01
4Hindole: 755/755, +0.00
SHindo[g: 705/705, +0.00
6H,400: 7.21/7.21, £0.00
THipaote: 7.42/7.41,+0.01

SH: 3.58/3.58, £0.00

SH: 0.91/0.90, +0.01

OH: 3.26/3.26, +0.00
OH: 3.87/3.88, -0.01

2H;nd01e: 6.96/6.95,+0.01
NH,dote: 10.80/10.80, £0.00
4H, 40102 7.12/7.12, £0.00
SH;ndore: ©.85/6.86, -0.01
6H,010: 7.14/7.15, +0.01
THindore: 7.38/7.38, +£0.00

SH: 3.70/3.70, £0.00
SH: 3.96/3.95,+0.01

2Hinore: 7-41/7.41, £0.00
NH,or: 11.14/11.12, +0.02
4H,i000: 7.66/7.66, +0.00
SHonore: 7.12/7.12, £0.00
6Hingore: 7-19/7.18, +0.01
THinaore: 7.40/7.41, -0.01

Table S2. J values and torsion angles of synthetic BI-32169 measured from DQF-COSY spectrum



AA peak position (ppm-ppm) assignment  Jvalue (Hz) backbone angle ¢ sidechain angles y1

G! 8.75-4.32 3T HHA3 11.2 -

L? 9.07-4.59 ST 9.8 -120°+30° 60°+30°
4.59-1.91 3 HAHBS 9.8

W4 6.22-4.83 AT 9.8 -120°430° 60°+30°
4.83-3.30 3TyAHB3 6.6

G’ 8.73-3.82 3T HmA3 10.5 -

CSs  7.07-4.65 AT 10.5 -120°430° -30°+£30°
4.65-3.14 3T4AHB3 6.0

S8 6.01-5.17 ST 9.8 -120°+30° 60°+£30°
5.17-3.70 3 iuB3 5.6

D° 7.75-4.62 AT 10.8 -120°430° 60°+30°
4.62-3.19 3THAHB3 7.2

' 8.27-3.58 ST 5.5 -60°£30° -
3.58-1.60 3 HAnB 10.8

G2 7.59-3.95 3TuHas 13.0 -

W13 7.91-4.49 ST 10.5 -120°+30° -30°+£30°
4.49-2.90 3 HAHBS 5.5

N4 8.60-4.89 AT 10.0 -120°+30° 150°+30°
4.89-1.89 3T4AHB3 10.5

T;s 8.89-4.87 ST 8.0 -120°+30° -
4.87-4.60 3 HAnB 13.5

W17 7.95-4.01 3TyHa 7.5 -60°+30° -30°+£30°
4.01-3.19 3T4AHB3 5.7

A% 7.18-4.20 ST 9.5 -120°+30° -
4.20-1.13 3JaB 7.7

CP® 6.93-4.36 AT 8.0 -120°430° -30°+£30°
4.36-3.01 3T4AHB3 5.5

* Conversion of J values into the torsion angle constraints was solved by a Karplus equation®. The
information of y1 rotameric state was obtained from 3J-coupling constants and the NOE strengths

between NH and BHs!©.

MS? analysis of synthetic BI-32169
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To characterize the synthesized lasso-structured peptide, tandem mass spectrometry was applied
to identify the structure of synthetic BI-32169. According to the previous reports’®, the rigid cyclic
part of lasso peptides usually gave a weak overall fragmentation, while the exocyclic part produced
high intensities of some characteristic fragment ions.

The main fragmentation patterns are showed in the following figures upper marked by numbers.
Although the MS? fragmentation behaviors of the synthetic BI-32169 (Figure S49; e.g. weak
fragmentation, the most intense ion 10 (in red) resulted from the loss of I'°) matched the work of
Knappe et al. well, similar fragmentation behaviors could be also caused by the fact that two bond
breakages are required in unthreaded bicyclic peptide’. Thus, the tandem mass spectrometry studies
of reduced BI-32169 and its unthreaded topoisomer were performed. We found that the intensities of
the fragment ions resulting from peptide bond cleavages in internal sequence P''GWNTPW!7 of
reduced BI-32169 (Figure S50; ions 12, 13, 14, 15 in various colors) were significantly weaker than
those in unthreaded one (Figure S51; ions 11, 12, 13, 14, 15 in various colors).

13141516 17 18 1 15 17
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1415 17 18 13 14 1516
0 o 0
I I 1
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821.4 1067.3 1350.5 1481.6 1652.8 1753.9
1L g 17 1gheoas 17 17 15 13 13420 16
538.2 839.4 953.8 1085.3 1198.3 1368.5 1538.6 1678.9 1851.0
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Figure S65. MS? spectrum of oxidized BI-32169. Four series of fragment ions (singly and doubly
protonated fragments) and their corresponding peaks (marked with italic serial numbers) were
showed in green, red, blue and purple, respectively.
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Figure S66. MS? spectrum of reduced BI-32169. Three series of fragment ions (singly and doubly
protonated fragments) and their corresponding peaks (marked with italic serial numbers) were
showed in green, red and blue, respectively.
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Figure S67. MS? spectrum of reduced unthreaded topoisomer of BI-32169. Three series of fragment
ions (singly and doubly protonated fragments) and their corresponding peaks (marked with italic
serial numbers) were showed in green, red and blue, respectively.

HPLC and MS spectrum of synthetic D-BI-32169
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Figure S68. HPLC Chromatogram of crude synthesized D-BI-32169. (gradient: 0-40% acetonitrile in
water + 0.1% TFA, at 1.0 mL/min, in 40 minutes).
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Figure S69. HPLC Chromatogram and ESI-FT mass spectrum of purified synthesized D-BI-32169
(Tr= 21.7 minutes, gradient: 0-40% acetonitrile in water + 0.1% TFA, at 1.0 mL/min, in 40 minutes;
ESI-MS calculated for CosH,5N»3024S, [M+2H]?": 1018.9433; Found 1018.9419).

NMR spectrum of synthetic D-BI-32169

= 0o © o @0 ® O TOmONQ ©©  © = © o DYOONTO WWONTO 0O NOHENOWY NN 00ONNO
o 0 © o Lo o o Dl ol ol S ) © © © © 2] o< AR DOOOOO NN O N = ~- - O0O00O0O0O0
NN / R N e I A A B / (IR —Eee AN A A S A Vet —can
synthetic D-BI-32169
'H NMR 400 MHz, DMSO-d,
\
T T ord p il v il R o T L N A ) TR L3 LTI s s s o iy
2238 2 288RES 8 T os@ = 39 a2%Gs2y  $8%% S sE g %8 oIn
native BI-32169
"H NMR 400 MHz, DMSO-d;
T T sl A A DA R LT 7o T b el e e e C20-4 T (s ey i s ey i o
o o ¥ © © ©® O 0w © o o o < o © N ©oN~ ® o ~N O ®©wo ~ o < © o o 0 < o
- < oo S o ¥ a+¢ & © o S = < S < <<¥ o+« ¥ ® <« S 2 = 9~ @ N o @ o
9.0 8.5 8.0 75 7.0 6.5 6.0 55 5.0 4.5 4.0 35 3.0 25 2.0 1.5 1.0 0.5
Chemical shift (ppm)

Figure S70. '"H NMR spectra of synthetic D-BI-32169 and native BI-32169 (400 MHz, DMSO-d,
0.2 mM, 40 °C).
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Figure S71. 3C NMR spectra of synthetic D-BI-32169 and native BI-32169 (100 MHz, DMSO-d,
0.2 mM, 40 °C).
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Figure S72. NMR spectra of synthetic D-BI-32169 (400 MHz, DMSO-dg, 0.2 mM, 40 °C). Top-right:
TOCSY spectrum (100 ms). Amino acid spin systems are labeled. Botfom-right: Fingerprint region
of the NOESY spectrum (150 ms) showing sequential connectivity between the residues (solid line)
and the isopeptide bond between D-G' and D-D? (dashed line). Left: Ho-HP region of NOESY
spectrum (150 ms) showing the disulfide bond between D-C¢ and D-C'°.
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Figure S73. The NH/NH regions of NOESY spectra overlay of synthetic D-BI-32169 (blue) and
native BI-32169 (red). The apparent long-range NOEs between the amide protons of D-L? with D-N'4
and d-C° with D-T" of synthetic D-BI-32169 are indicated, showing the lasso configuration of D-BI-
32169.
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Figure S74. Superimposed TOCSY spectra (100 ms) of synthetic D-BI-32169 (blue) and native BI-
32169 (red).
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Figure S75. Fingerprint region of the 2D DQF-COSY spectrum of synthetic D-BI-32169 (400 MHz,
DMSO0-dg, 0.2 mM, 40 °C).
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Table S3. Comparison of assigned '"H NMR chemical shifts of synthetic D-BI-32169 and native BI-

32169
D- Proton chemical shifts (synthetic/native, deviation), in DMSO-d, at 40°C (ppm)
AA NH oH BH yYH others
G' 8.76/8.75, +0.01 3.39/3.39, £0.00 - - -
4.32/4.32, £0.00
L2  9.08/9.08,+£0.00  4.60/4.59,+0.01 1.68/1.67,+0.01 1.84/1.82,+0.02  &H: 0.91/0.90, +0.01
1.92/1.92, +£0.00 6H: 1.00/0.99, +0.01
P - 4.17/4.17, £0.00 1.61/1.61; £0.00 1.76/1.71,£0.00  &H: 3.40/3.38, +0.02
2.00/2.00; £0.00 1.86/1.86, £0.00  SH: 3.58/3.58, +0.00
W+ 6.21/6.20,+0.01 4.83/4.83,+0.00  3.10/3.09, +0.01 - 2H,d000: 7.25/7.25, £0.00
3.30/3.30, £0.00 NH,,i0i.: 10.86/10.86, +£0.00
4H,,4010: 7.55/7.55, £0.00
SH;pa0ie: 7.06/7.05, 0.01
6H,000: 7.21/7.21, £0.00
THdore: 7.42/7.41, +0.01
G> 8.72/8.73,-0.01 3.36/3.35, +0.01 - - -
3.82/3.82, +0.00
C¢® 7.07/7.07,£0.00 4.65/4.66,-0.01 2.19/2.19, £0.00 - -
3.13/3.13, £0.00
P - 4.89/4.88,+0.01 1.92/1.91, +0.01 1.89/1.89, £0.00  &H: 3.58/3.58, +0.00
2.32/2.32,£0.00  2.03/2.03, +0.00
S8 6.03/6.03, £0.00 5.16/5.18, -0.02 3.22/3.24,-0.02 - -
3.70/3.70, £0.00
D°  7.76/7.76,£0.00  4.62/4.62,+£0.00  2.24/2.24,+0.00 - -
3.20/3.21,-0.01
10 8.26/8.26,£0.00 3.56/3.57,-0.01 1.62/1.61,+0.01 CH,: 6H: 0.90/0.90, +£0.00
1.23/1.22, +0.01
1.74/1.74, £0.00
CH}I
0.93/0.92, +0.01
Pt - 4.32/4.32, +£0.00 1.66/1.66, £0.00 1.79/1.79, £0.00  8H: 3.26/3.26, +0.00
2.10/2.09, +0.01 2.15/2.15,£0.00  S&H: 3.89/3.88,+0.01
G2 7.59/7.57,+0.02 3.04/3.05,-0.01; - - -
3.95/3.95, £0.00
W13 791/7.91,+0.00  4.50/4.49,+0.01 2.40/2.40, £0.00 - 2H;4000: 6.95/6.95, £0.00
2.91/2.92,-0.01 NH,,00.: 10.79/10.80, -0.01
4H,4000: 7.12/7.12, £0.00
SH;nd00: 6.86/6.86, £0.00
6H,,400: 7.15/7.15, £0.00
THna0re: 7.38/7.38, £0.00
N4 8.61/8.62,-0.01 4.88/4.88, +£0.00 1.49/1.49, £0.00 - -
1.91/1.89, +0.02
Tis 8.89/8.89,+0.00 4.86/4.86,+0.00  4.60/4.60, £0.00 1.19/1.19, £0.00 -
plo - 4.48/4.48, £0.00 1.48/1.48, +£0.00 1.58/1.57, +0.01 6H: 3.70/3.70, £0.00
2.25/2.25, £0.00 1.71/1.71, £0.00  8H: 3.96/3.95, +0.01
W17 7.96/7.95,+0.01 4.00/4.01, -0.01 2.16/2.17,-0.01 - 2H,400: 7.41/7.41, £0.00
3.20/3.20, £0.00 NH;i00: 11.13/11.12, +0.01
4H,,4010: 7.66/7.66, £0.00
SH;ndore: 7.13/7.12,+0.01
6H,,4000: 7.19/7.18,+0.01
THndore: 7.41/7.41, £0.00
A% 7.18/7.18;+£0.00  4.20/4.19, +0.01 1.15/1.15, £0.00 - -
CP 6.95/6.95;+£0.00 4.36/4.36,+0.00  2.58/2.58,+0.00 - -

3.01/3.00, +0.01
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Table S4. J values and torsion angles of synthetic D-BI-32169 measured from DQF-COSY spectrum

D-AA  peak position (ppm-ppm) assignment  Jvalue (Hz) backbone angle ¢ sidechain angles 1

G! 8.76-4.32 3T HHA3 11.1 -

L? 9.08-4.60 3T HA 9.8 -120°+£30° 60°+30°
4.60-1.92 3JHAHB3 9.8

W 6.21-4.83 AT 9.8 -120°+30° 60°+30°
4.83-3.30 3THAHB3 6.5

G’ 8.72-3.82 3T HA3 10.5 -

C¢ 7.07-4.65 AT 10.5 -120°+30° -30°£30°
4.65-3.13 3THAHB3 6.1

S8 6.03-5.16 3T HA 9.9 -120°+£30° 60°£30°
5.16-3.70 3 JmBs 5.6

D’ 7.76-4.62 3Tuna 10.8 -120°+30° 60°+30°
4.62-3.20 3THAHB3 7.2

I 8.26-3.56 3T HA 5.5 -60°+£30° -
3.56-1.62 3JHAnB 10.8

G? 7.59-3.95 3THHA3 13.0 -

Wi 7.91-4.50 3T HA 10.5 -120°+£30° -30°£30°
4.50-2.91 3JHAHB3 5.5

N4 8.61-4.88 3Tuna 10.0 -120°+£30° 150°+30°
4.88-1.91 3THAHB3 10.5

Ts 8.89-4.86 3T HA 8.0 -120°+£30° -
4.86-4.60 3JHAnB 13.5

w7 7.96-4.00 3Tuna 7.5 -60°+30° -30°£30°
4.00-3.20 3THAHB3 5.7

Al8 7.18-4.20 3T HA 9.5 -120°+£30° -
4.20-1.15 3JaB 7.6

cr 6.95-4.36 3Tuna 8.0 -120°+30° -30°£30°
4.36-3.01 3THAHB3 5.5

* Conversion of J values into the torsion angle constraints was solved by a Karplus equation®. The
information of y1 rotameric state was obtained from 3J-coupling constants and the NOE strengths

between NH and BHs!°.
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Figure S76. Circular dichroism spectra for synthetic BI-32169 (blue), synthetic D-BI-32169 (orange),
native BI-32169 (green) and unthreaded topoisomer of BI-32169 (black).
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