Supporting Information

Catalyst-Controlled Cascade Synthesis of Bridged Bicyclic Tetrahydrobenz[b]azepin-4-ones

Michelle A. Kroc, Maciej Markiewicz, Wiktoria H. Pace, Donald J. Wink, and Laura L. Anderson Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA

Contents:

I.	General Experimental Information	S-2
II.	Expanded Optimization Table 1 for the Synthesis of 6a from 4a and 5a	S-3
III.	Synthesis of Bicyclic Benz[b]azepin-4-ones 6 (Scheme 2)	S-4
IV.	Derivatization of Bicyclic Benz[b]azepin-4-ones 6 (Scheme 3).	S-11
V.	Mechanistic Experiments (Scheme 4).	S-13
VI.	Synthesis of Nitrones	S-16
VII.	References	S-23
Х.	Spectral Data for Benz[b]azepin-4-ones 6	S-24
XI.	Spectral Data for 9 and 10	S-59
XII.	Spectral Data for Nitrones 4	S-65
XIII.	Spectral Data for Diastereoenrichment of 6a in MeOH and Mechanistic	S-104
	Experiments	

I. General Experimental Information.

¹H NMR and ¹³C NMR spectra were recorded at ambient temperature using 500 MHz spectrometers. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. IR spectra were recorded at ambient temperature using ATR sampling. High resolution mass spectra were acquired on an LTQ FT spectrometer (ESI) or an VG 70-VSE spectrometer (EI), and were obtained by peak matching. Melting points are reported uncorrected. Analytical thin layer chromatography was performed on 0.25 mm extra hard silica gel plates with UV254 fluorescent indicator. Medium pressure liquid chromatography was performed using force flow of the indicated solvent system down columns packed with 60 Å (40 - 60 µm) mesh silica gel (SiO₂). Samples purified by medium pressure liquid chromatography were dry-loaded onto celite. Flash chromatography was performed using glass columns packed with 60 Å (40 – 60 µm) mesh silica gel (SiO₂). Samples purified by flash chromatography were also dry-loaded onto celite. Unless otherwise noted, all reagents and solvents were obtained from commercial sources and, where appropriate, purified prior to use. Unless otherwise noted, all reactions were performed under N₂ using standard Schlenk techniques. Toluene, THF, Et₂O, and MeCN were dried by filtration through alumina according to the procedure of Grubbs.¹ Nitrones 4a and 4i were prepared by known methods.^{2,3} Allenes **5a**,⁴ **5b**,^{4b} **5c**,⁵ and **5d**⁶ were prepared by known methods.

II. Expanded Optimization Table for the Synthesis of 6a from 4a and 5a.

Me				0	""CO ₂ Me	Ph
	Me Ph +	CO ₂ Me -	catalyst (5 mol %) conditions		Me Me Ph or	Me N CO ₂ Me
	4a	5a		Wie	6a	8a
Entry ^a	Catalyst	Solvent	t (h)	T °C	% Yield 6a (8a) ^b	dr ^c
1	7	C ₆ F ₆	18	60	74	1:1 ^d
2	quinine	C ₆ F ₆	18	60	70	1:1 ^d
3	quinine	toluene	18	60	73	2:1 ^d
4	DABCO	toluene	18	60	57	1:1
5	DABCO	toluene	3	60	83	3:2
6	DABCO	DCE	3	60	80	3:2
7	DABCO	<i>i</i> -PrOAc	3	60	68	1:1
8	DABCO	MeOH	3	60	(68)	
9	DABCO	THF	3	60	83	3:2
10	DABCO	MeCN	3	60	73	1:1
11	DABCO	toluene	3	80	66	1:1
12	DABCO	toluene	3	40	75	3:2
13	DABCO	toluene	3	25	50	3:2
14	DBU	toluene	3	60	56	1:1
15	quinuclidine	toluene	3	60	92	1:1
16	DMAP	toluene	3	60	68	1:1
17	morpholine	toluene	3	60	52	20:1 ^e
18	imidazole	toluene	3	60	56	2:1

^a Conditions: **4a** (1 equiv), **5a** (3 equiv), 0.12 M. ^b ¹H NMR spectral data for **8a** matched literature values.² ^c dr determined by ¹H NMR spectroscopy. ^d % ee = trace. ^e Purification of the crude **6a** on silica gel gave **6a** as a 3:2 mixture of diastereomers.

S-3

III. Synthesis of Bicyclic Benz[b]azepin-4-ones 6 (Scheme 2).

General Procedure A: A 5 mL conical vial was charged with nitrone **4** (1.0 equiv) and DABCO (5 mol %). A solution of allenoate **5** (3 equiv) in toluene (0.120 mM) was then added to these solids via syringe and the vial was capped with Teflon-lined screw cap. The reaction mixture in the closed vial was then stirred at 60 °C for 3 h. At this time, the reaction mixture was concentrated under vacuum, the residue was dry-loaded onto celite (~300 mg) using CH₂Cl₂ (~2 mL), and the crude material was purified by medium pressure chromatography (0 – 5% acetone, 2% NEt₃, 2% benzene, in petroleum ether) to give bicyclic benzazepinone **6**. The addition of 2% benzene to the column chromatography conditions for the purification of **6** resulted in complete separation of **6** from trace amounts of **8**. The removal of benzene from the purification conditions results in partial contamination of **6** by **8** and diminished yields. No solvents, such as CCl₄, were used that could affect the purity of compounds **6** without being noticeably present in the ¹H NMR spectra.

Bicyclic Benzazepinone 6a: Bicyclic benzazepinone **6a** was prepared by general procedure **A**. Nitrone **4a** (0.0300 g, 0.120 mmol) was treated with allenoate **5a** (0.0440 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. Chromatography (5% acetone, 2% NEt₃, 2% benzene, in petroleum ether) afforded **6a** as a light yellow amorphous solid (0.0314 g, 77%, d.r. = 3:2). ¹H NMR (500 MHz, CDCl₃) (*major diastereomer*): δ 7.34-7.31 (m, 2H), 7.25-7.23 (m, 2H), 7.18-7.17 (m, 1H), 6.89-6.87 (m, 1H), 6.69-6.67 (m, 1H), 6.50-6.49 (m, 1H), 4.11- 4.09 (m, 1H), 3.94-3.87 (m, 1H), 3.79 (s, 3H), 3.49 (s, 1H), 3.38 (s, 1H), 2.51-2.46 (m, 1H), 2.41-2.37 (m, 1H), 2.17 (s, 3H), 1.36 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (minor diastereomer, diagnostic peaks): δ 4.06 (s, 1H), 3.58 (s, 1H), 3.47 (s, 3H), 2.64-2.58 (m, 1H), 1.81-1.76 (m, 1H), 1.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (*major diastereomer*): δ 205.1, 169.6, 145.5, 141.5, 130.5, 129.5, 129.0, 128.4, 127.0, 126.7, 121.2, 116.5, 64.8, 61.5, 55.7, 52.2, 47.4, 44.0, 26.9, 20.2; ¹³C NMR (125 MHz, CDCl₃) (minor diastereomer, diagnostic peaks): δ 203.1, 167.9, 142.4, 116.7, 65.5, 61.0, 45.8, 28.6; IR (thin film) 3390, 3026, 2949, 2922, 2858, 1737, 1706, 1504, 1285, 1149; HRMS (ESI) *m*/z calcd. for C₂₂H₂₄NO₃ (M+H)⁺ 350.1756, found 350.1743. Major diastereomer assigned in analogy to **6i** and via ¹H-¹H nOe experiments using the diastereoenriched sample discussed below.

Solvent Effect on Diastereomeric Ratio of 6a

A diastereomeric mixture of bicyclic benazepinone **6a** was observed to favor a single diastereomer in protic solvents with concomitant formation of dihydrocarbazole **8a**.

Bicyclic benzazepinone **6a** (0.0150 g, 0.0430 mmol) was dissolved in MeOH (0.50 mL, 0.86 M). The solution was allowed to stir at 25 °C for 1 h. After 1 h, MeOH was removed under vacuum to give the crude product as a yellow amorphous solid, which was identified by ¹H NMR spectroscopy as a mixture of **6a** (55%, dr = 20:1) and **8a** (33%). Yields were determined using CH₂Br₂ (7.0 µL, 0.1 mmol) as an ¹H NMR reference. ¹H NMR (500 MHz, CDCl₃) (diagnostic peaks for **6a**): δ 3.79 (s, 3H), 3.49-3.47 (m, 1H), 2.51-2.46 (m, 1H), 2.17 (s, 3H), 1.36 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (diagnostic peaks for **6a**): δ 3.79 (m, 1H), 2.28-2.27 (m, 6H).²

Bicyclic Benzazepinone 6b: Bicyclic benzazepinone **6b** was prepared by general procedure **A**. Nitrone **4b** (0.0327 g, 0.120 mmol) was treated with allenoate **5a** (0.0440 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. Chromatography (5% acetone, 2% NEt₃, 2% benzene, in petroleum ether) afforded **6b** as a light yellow amorphous solid (0.0295 g, 52%, d.r = 1:1). ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.30 (m, 2H), 7.23-7.22 (m, 2H), 7.16-7.12 (m, 2H), 7.00-6.97 (m, 1H), 6.46-6.44 (m, 1H), 4.24 (s, 1H), 4.03 (s, 1H), 3.91-3.84 (m, 1H), 3.79 (s, 3H), 3.44 (s, 1H), 2.53-2.48 (m, 1H), 2.44-2.39 (m, 1H), 1.37 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (*second diastereomer, diagnostic peaks*): δ 4.18 (s, 1H), 3.55 (s, 1H), 3.52 (s, 3H), 3.39 (s, 1H), 2.65-2.61 (m, 1H), 1.83-1.78 (m, 1H), 1.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 204.3, 169.2, 144.9, 132.3, 131.5, 129.1, 127.0, 126.9, 126.5, 123.0, 117.9, 110.2, 65.0, 60.5, 55.8, 52.3, 47.2, 43.8, 28.5; ¹³C NMR (125 MHz, CDCl₃): δ (*second diastereomer, diagnostic peaks*): 202.4, 167.7, 144.0, 65.7, 61.0, 55.5, 45.7, 26.9; IR (thin film) 3391, 3060, 3028, 2949, 2928, 2854, 1737, 1708, 1481, 1304; HRMS (ESI) *m/z* calcd. for C₂₁H₂₁NO₃Br (M+H)⁺ 414.0705, found 414.0690.

Bicyclic benzazepinone **6b** was dissolved in CH₂Cl₂, layered with pentane, and placed in a -40 °C freezer. After 48 h, single crystals had formed. The supernatant was decanted and X-ray crystallography analysis confirmed the structure illustrated above.

Bicyclic Benzazepinone 6c: Bicyclic benzazepinone **6c** was prepared by general procedure **A**. Nitrone **4c** (0.0329 g, 0.120 mmol) was treated with allenoate **5a** (0.0440 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. Chromatography (8% acetone, 2% NEt₃, 2% benzene, in petroleum ether) afforded **6c** as a light yellow amorphous solid (0.0300 g, 69%, d.r = 1:1). ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.31 (m, 2H), 7.26-7.22 (m, 2H), 7.16-7.15 (m, 1H), 7.02-6.99 (m, 1H), 6.86-6.83 (m, 1H), 6.51-6.49 (m, 1H), 4.25 (s, 1H), 4.04 (s, 1H), 3.91-3.86 (m, 1H), 3.79 (s, 3H), 3.44 (s, 1H), 2.53-2.58 (m, 1H), 2.44-2.39 (m, 1H), 1.37 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (*second diastereomer, diagnostic peaks*): δ 4.18 (s, 1H), 3.55 (s, 1H), 3.51 (s, 3H), 2.65-2.60 (m, 1H), 1.81-1.78 (m, 1H), 1.51 (s, 3H), ¹³C NMR (125 MHz, CDCl₃): δ 204.4, 169.2, 144.9, 143.5, 129.5, 129.1, 128.7, 127.0, 126.9, 123.3, 122.5, 117.6, 65.0, 61.1, 55.8, 52.3, 47.2, 43.8, 26.9; ¹³C NMR (125 MHz, CDCl₃) (*second diastereomer, diagnostic peaks*): δ 202.4, 167.7, 145.0, 122.8, 117.5, 65.7, 60.6, 55.5, 26.9; IR (thin film) 3402, 3055, 3029, 2952, 1738, 1712, 1485, 1305, 1264, 1147; HRMS (ESI) *m/z* calcd. for C₂₁H₂₁NO₃Cl (M+H)⁺ 370.1210, found 370.1209.

Bicyclic Benzazepinone 6d: Bicyclic benzazepinone **6d** was prepared by general procedure **A**. Nitrone **4d** (0.0328 g, 0.120 mmol) was treated with allenoate **5a** (0.0440 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. Chromatography (8% acetone, 2% NEt₃, 2% benzene, in petroleum ether) afforded **6d** as a light yellow amorphous solid (0.0309 g, 68%, d.r = 3:2). ¹H NMR (500 MHz, CDCl₃) (*major diastereomer*): δ 7.17-7.15 (m, 2H), 7.10-7.08 (m, 1H), 6.88-6.84 (m, 2H), 6.68-6.66 (m, 1H), 6.49 (m, 1H), 4.09-4.04 (m, 1H), 3.86-3.83 (m, 1H), 3.79 (s, 6H), 3.48 (s, 1H), 3.41 (s, 1H), 2.48-2.43 (m, 1H), 2.38-2.34 (m, 1H), 2.16 (s, 3H), 1.35 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (*minor diastereomer*): δ 3.53 (s, 1H), 3.35 (s, 1H), 2.60-2.55 (m, 1H), 1.78-1.75 (m, 1H), 1.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 205.2, 169.7, 158.4, 141.4, 137.9, 130.5, 129.5, 128.1, 127.6, 121.4, 116.7, 114.2, 64.8, 62.0, 55.4, 55.0, 52.2, 46.6, 44.1, 26.9, 20.1; ¹³C NMR (125 MHz, CDCl₃) (*minor diastereomer*): δ 203.3, 167.9, 142.4, 65.4, 61.4, 55.6, 47.5, 45.1, 28.6; IR (thin film) 3389, 2996, 2950, 2924, 2855, 2836, 1737, 1707 1512, 1305; HRMS (ESI) *m/z* calcd. for C₂₃H₂₆NO₄ (M+H)⁺ 380.1862, found 380.1847. Major diastereomer assigned in analogy to **6i** and **6a**.

Bicyclic Benzazepinone 6e: Bicyclic benzazepinone **6e** was prepared by general procedure **A**. Nitrone **4e** (0.0322 g, 0.120 mmol) was treated with allenoate **5a** (0.0440 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. Chromatography (8% acetone, 2% NEt₃ 2% benzene, in petroleum ether) afforded **6e** as a light yellow amorphous solid (0.0298 g, 68%, d.r = 3:2). ¹H NMR (500 MHz, CDCl₃) (*major diastereomer*): δ 7.21-7.19 (m, 1H), 7.14-7.12 (m, 1H), 7.01-6.98 (m, 2H), 6.89-6.86 (m, 1H), 6.68-6.66 (m, 1H), 6.50-6.48 (m, 1H), 4.11-4.05 (m, 2H), 3.93-3.85 (m, 1H), 3.78 (s, 3H), 3.40 (s, 1H). 2.46-2.35 (m, 2H), 2.16 (s, 3H), 1.35 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (*minor diastereomer*): δ 3.52 (s, 1H), 3.47 (s, 3H), 2.60-2.55 (m, 1H), 1.74-1.71 (m, 1H), 1.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (*major diastereomer*): δ 205.0, 169.7, 161.6 (d, *J*_{C-F} = 250.0 Hz), 141.4, 130.5, 129.6, 128.6, 128.5 (d, *J*_{C-F} = 12.5 Hz), 128.2 (d, *J*_{C-F} = 12.5 Hz), 120.9, 116.5, 115.7 (d, *J*_{C-F} = 25.0 Hz), 64.8, 61.7, 55.5, 52.1, 46.5, 44.0, 26.9, 20.1; ¹³C NMR (125 MHz, CDCl₃) (*minor diastereomer*): δ 203.2, 167.8, 167.8, 142.4, 121.2, 65.3, 61.1, 55.6, 52.1, 47.6, 45.2, 28.6, 20.2; IR (thin film) 3390, 2950, 2922, 2872, 1736, 1705, 1504, 1308, 1222, 1131; HRMS (ESI) *m/z* calcd. for C₂₂H₂₃NO₃F (M+H)⁺ 368.1651, found 368.1662. Major diastereomer assigned in analogy to **6i** and **6a**.

Bicyclic Benzazepinone 6f: Bicyclic benzazepinone **6f** was prepared by general procedure **A** with modified chromatography conditions. Nitrone **4f** (0.0410 g, 0.120 mmol) was treated with allenoate **5a** (0.0440 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. Chromatography (5% EtOAc in hexanes, 2% TEA) afforded **6f** as a light yellow amorphous solid (0.0344 g, 65%, d.r = 2:1). ¹H NMR (500 MHz, CDCl₃): δ 7.56-7.54 (m, 2H), 7.43-7.38 (m, 4H), 7.35-7.32 (m, 3H), 7.26-7.25 (m, 1H), 6.94-6.93 (m, 1H), 6.79 (s, 1H), 6.54-6.45 (m, 1H), 6.48-6.45 (m, 1H), 6.33-6.28 (m, 1H), 4.53 (s, 1H), 4.42 (s, 1H), 3.68-3.65 (m, 1H), 3.45 (s, 1H), 3.27 (s, 3H), 2.91-2.90 (m, 2H), 2.23 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (*second diastereomer, diagnostic peaks*): δ 7.62-7.60 (m, 1H), 6.97-6.96 (m, 1H), 6.85 (s, 1H), 6.73-6.72 (m, 1H), 6.25-6.20 (m, 1H), 4.72 (s, 1H), 4.33 (s, 1H), 3.55 (s, 3H), 2.84-2.79 (m, 2H), 2.25 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 204.6, 168.5, 145.4, 141.3, 136.9, 132.3, 130.6, 129.8, 129.7, 129.3, 128.6, 128.3, 127.5, 126.4, 126.2, 124.8, 119.4, 116.6, 66.2, 60.3, 60.2, 59.7, 51.8, 44.7, 39.1, 20.2; ¹³C NMR (125 MHz, CDCl₃) (*second diastereomer, diagnostic peaks*): δ 202.5, 168.4, 64.4, 61.5, 52.2, 44.8, 42.3, 20.3; IR (thin film) 3395, 3056, 3024, 2998, 2949, 2921, 1738, 1708,

1651, 1503; HRMS (ESI) m/z calcd. for C₂₉H₂₈NO₃ (M+H)⁺ 438.2069, found 438.2065. Major diastereomer assigned in analogy to **6i** and **6a**.

Bicyclic Benzazepinone 6g: Bicyclic benzazepinone **6g** was prepared by general procedure **A**. Nitrone **4g** (0.0263 g, 0.120 mmol) was treated with allenoate **5a** (0.0440 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. Chromatography (8% acetone, 2% NEt₃, 2% benzene, in petroleum ether) afforded **6g** as a light yellow amorphous solid (0.0190 g, 50%, d.r = 1:1). ¹H NMR (500 MHz, CDCl₃): δ 6.87-6.84 (m, 1H), 6.71-6.69 (m, 1H), 6.46-6.44 (m, 1H), 4.03 (s, 1H), 3.95 (s, 1H), 3.77 (s, 3H), 3.21-3.19 (m, 1H), 2.67-2.62 (m, 1H), 2.40-2.35 (m, 1H), 2.19 (s, 3H), 2.02-1.99 (m, 1H), 1.47(s, 3H), 1.41-1.33 (m, 4H), 0.93-0.90 (m, 3H); ¹H NMR (500 MHz, CDCl₃) (*second diastereomer, diagnostic peaks*): δ 3.50 (s, 3H), 3.26 (s, 1H), 1.33 (s, 3H), ¹³C NMR (125 MHz, CDCl₃): δ 203.9, 169.5, 142.3, 130.4, 129.2, 128.0, 121.8, 116.6, 65.4, 60.8, 55.9, 52.1, 44.7, 41.9, 39.7, 29.0, 20.2, 19.9, 13.9; ¹³C NMR (125 MHz, CDCl₃) (*second diastereomer*): δ 205.9, 168.1, 141.5, 121.5, 116.2, 55.5, 52.0, 40.7, 27.2; IR (thin film) 3395, 2954, 2929, 2871, 1738, 1711, 1505, 1310, 1259, 1139; HRMS (ESI) *m*/z calcd. for C₁₉H₂₆NO₃ (M+H)⁺ 316.1913, found 316.1908.

6h (dr = 1:1)

Bicyclic Benzazepinone 6h: Bicyclic benzazepinone **6h** was prepared by general procedure **A**. Nitrone **4h** (0.0352 g, 0.120 mmol) was treated with allenoate **5a** (0.0440 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. Chromatography (8% acetone, 2% NEt₃, 2% benzene, in petroleum ether) afforded **6h** as a light yellow amorphous solid (0.0305 g, 65%, d.r = 1:1). ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.30 (m, 2H), 7.25-7.23 (m, 2H), 7.19-7.18 (m, 1H), 6.90-6.87 (m, 1H), 6.70-6.67 (m, 1H), 6.53-6.50 (m, 1H), 4.13 (s, 1H), 3.98 (s, 1H), 3.93-3.86 (m, 1H), 3.79 (s, 3H), 2.45-2.43 (m, 2H), 2.18-2.17 (s, 3H), 1.78-1.70 (m, 3H), 1.46-1.27 (m, 3H), 0.97-0.90 (m, 3H); ¹H NMR (500 MHz, CDCl₃) (*second diastereomer, diagnostic peaks*): δ 4.08 (m, 1H), 3.49 (s, 3H), 3.60 (s, 1H), 2.58-2.53 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 205.6, 169.7, 145.6, 141.6, 130.3, 129.4, 128.3, 128.2, 127.0, 126.6, 121.2, 116.4, 63.8, 61.5, 58.4, 52.2, 47.2, 44.1, 38.9, 25.0, 23.0, 20.2, 14.1; ¹³C NMR (125 MHz, CDCl₃): δ 203.4, 168.0, 145.6, 142.5, 63.3, 60.9, 58.1, 52.1, 20.2, 13.9; IR (thin film) 3399, 3059, 3025, 2952, 2929, 2861, 1737, 1707, 1504, 1307; HRMS (ESI) *m/z* calcd. for C₂₅H₃₀NO₃ (M+H)⁺ 392.2226, found 392.2218.

Bicyclic Benzazepinone 6i: Bicyclic benzazepinone **6i** was prepared by general procedure **A** with modified chromatography conditions. Nitrone **4i** (0.0473 g, 0.120 mmol) was treated with allenoate **5a** (0.0440 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. Chromatography (0 – 5% EtOAc, 2% NEt₃ in hexane) afforded **6i** as a light yellow amorphous solid (0.0305 g, 58%, dr = 20:1). ¹H NMR (500 MHz, CDCl₃): δ 7.45-7.43 (m, 2H), 7.37-7.35 (m, 2H), 7.32-7.31 (m, 2H), 7.28-7.26 (m, 1H), 6.94-6.88 (m, 3H), 6.72 (s, 1H), 6.57-6.55 (m, 1H), 4.53 (s, 1H), 4.43 (s, 1H), 4.02-4.00 (t, *J*= 10.0 Hz, 1H), 3.81 (s, 3H), 3.55 (s, 1H), 3.31 (s, 3H), 3.11-3.06 (m, 1H), 2.97-2.95 (m, 1H), 2.20 (s, 3H). Spectral data for this compound were consistent with those previously reported in the literature.³

Bicyclic Benzazepinone 6j: Bicyclic benzazepinone **6j** was prepared by general procedure **A**. Nitrone **4a** (0.0309 g, 0.120 mmol) was treated with allenoate **5b** (0.0505 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. Chromatography (5% acetone, 2% NEt₃, 2% benzene, in petroleum ether) afforded **6j** as a light yellow amorphous solid (0.0376 g, 80%, d.r = 3:2). ¹H NMR (500 MHz, CDCl₃) (*major diastereomer*): δ 7.33-7.30 (m, 2H), 7.26-7.22 (m, 2H), 7.19-7.17 (m, 1H), 6.89-6.85 (m, 1H), 6.68-6.67 (m, 1H), 6.50-6.47 (m, 1H), 4.22 (s, 1H), 4.04 (s, 1H), 3.90-3.88 (m, 1H), 3.46 (s, 1H), 2.51-2.47 (m, 1H), 2.41-2.37 (m, 1H), 2.17 (s, 3H), 1.67-1.64 (m, 2H), 1.41-1.37 (m, 2H), 1.30-1.22 (m, 2H), 0.93 (t, *J* = 5.0 Hz, 3H); ¹H NMR (500 MHz, CDCl₃) (*minor diastereomer, diagnostic peaks*): δ 4.22-4.17 (m, 1H), 3.57 (s, 1H), 3.35 (s, 1H), 2.61-2.56 (m, 1H), 1.78-1.74 (m, 1H), 1.52 (s, 3H), 1.26-1.22 (m, 2H), 0.80 (t, *J* = 10.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) (*major diastereomer*): δ 205.1, 169.2, 145.5, 141.5, 130.5, 130.5, 129.4, 128.8, 127.0, 126.6, 121.3, 116.5, 65.2, 65.0, 61.6, 55.6, 47.3, 44.0, 30.5, 27.0, 20.2, 18.9, 13.7; ¹³C NMR (125 MHz, CDCl₃) (*minor diastereomer, diagnostic peaks*): δ 203.4, 167.4, 145.6, 65.7, 65.1, 61.0, 55.6, 47.6, 46.1, 30.2, 20.2, 19.2, 14.1; IR (thin film) 3390, 3057, 3027, 2958, 2931, 2871, 1731, 1710, 1614, 1504; HRMS (ESI) *m/z* calcd. for C₂₅H₃₀NO₃ (M+H)⁺ 392.2226, found 392.2217. Major diastereomer assigned in analogy to **6i** and **6a**.

Bicyclic Benzazepinone 6k: Bicyclic benzazepinone **6k** was prepared by general procedure **A**. Nitrone **4a** (0.0300 g, 0.120 mmol) was treated with allenoate **5c** (0.0620 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. Chromatography (2% acetone, 2% NEt₃, 2% benzene, in petroleum ether) afforded **6k** as a light yellow amorphous solid (0.0418 g, 82%, d.r = 3:2). ¹H NMR (500 MHz, CDCl₃) (*major diastereomer*): δ 7.37-7.32 (m, 3H), 7.30-7.26 (m, 2H), 7.22-7.20 (m, 3H), 7.18-7.16 (m, 1H), 7.10-7.05 (m, 1H), 6.88-6.87 (m, 1H), 6.67 (m, 1H), 6.48-6.47 (m, 1H), 5.24 (dd, *J* = 35.0 Hz, 10.0 Hz, 2H), 4.10-4.03 (m, 2H), 3.93-3.86 (m, 1H), 3.43 (s, 1H), 2.49- 2.45 (m, 1H), 2.39- 2.34 (m, 1H), 2.16 (s, 3H), 1.31 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (*minor diastereomer*): δ 6.82-6.81 (m, 1H), 6.41-6.39 (m, 1H), 4.95 (dd, *J* = 35.0 Hz, 10.0 Hz, 2H), 4.03 (s, 1H), 3.58 (s, 1H), 3.43 (s, 1H), 2.64-2.58 (m, 1H), 2.14 (s, 3H), 1.80-1.76 (m, 1H), 1.49 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (*major diastereomer*): δ 205.0, 168.9, 145.5, 141.4, 135.2, 130.5, 129.7, 129.2, 128.8, 128.6, 128.2, 128.0, 127.0, 126.5, 121.4, 116.5, 67.2, 64.9, 61.6, 55.8, 47.3, 44.0, 26.9, 20.2; ¹³C NMR (125 MHz, CDCl₃) (*minor diastereomer*): δ 202.8, 167.3, 142.3, 121.2, 116.7, 67.0, 65.8, 55.5, 28.6, 20.2; IR (thin film) 3389, 3061, 3029, 2922, 2858, 1732, 1708, 1503, 1302, 1258; HRMS (ESI) *m/z* calcd. for C₂₈H₂₈NO₃ (M+H)⁺ 426.2069, found 426.2064. Major diastereomer assigned in analogy to **6i** and **6a**.

Bicyclic Benzazepinone 6I: Bicyclic benzazepinone **6I** was prepared by general procedure **A**. Nitrone **4a** (0.0300 g, 0.120 mmol) was treated with allenoate **5d** (0.0500 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. Chromatography (8% acetone, 2% NEt₃, 2% benzene, in petroleum ether) afforded **6I** as a light yellow amorphous solid (0.0295 g, 63%, d.r = 1:1). ¹H NMR (500 MHz, CDCl₃): δ 7.32-7.29 (m, 2H), 7.26-7.17 (m, 3H), 6.87- 6.86 (m, 1H), 6.67-6.66 (m, 1H), 6.49-6.46 (m, 1H), 4.09 (br, 1H), 3.91-3.83 (m, 2H), 3.43 (s, 1H), 2.49-2.44 (m, 1H), 2.39-2.33 (m, 1H), 2.17-2.16 (m, 3H), 1.50 (s, 9H), 1.40 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (*second diastereomer, diagnostic peaks*): δ 3.53 (s, 1H), 3.25 (s, 1H), 2.57-2.52 (m, 1H), 1.75-1.71 (m, 1H), 1.53 (s, 3H), 1.17 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 205.3, 168.1, 141.5, 130.5, 129.4, 128.9, 128.8, 128.2, 127.1, 126.6, 121.5, 116.4, 82.2, 65.9, 61.6, 55.5, 47.3, 44.2, 28.1, 26.8, 20.2; ¹³C NMR (125 MHz, CDCl₃) (*second diastereomer, diagnostic peaks*): δ 204.0, 166.3, 145.5, 122.1, 82.0, 66.9, 61.0, 55.6, 28.7, 27.5, 20.3; IR (thin film) 3391, 3025, 2976, 2929, 2872, 1707, 1614, 1504, 1309, 1156; HRMS (ESI) *m/z* calcd. for C₂₅H₃₀NO₃ (M+H)⁺ 392.2226, found 392.2213.

IV. Derivatization of Bicyclic Benz[b]azepin-4-ones 6 (Scheme 3).

Reduction of Bicyclic Benazepinone 9: LiAlH₄ (0.0260 g, 0.684 mmol) was added to a flame-dried round bottom flask under nitrogen and diluted with THF (0.97 mL, 0.70M). Bicyclic benzazepinone **6a** (0.0400 g, 0.114 mmol) was dissolved in THF (0.88 mL, 0.13 M) and slowly added to the LiAlH₄ slurry. The reaction mixture was refluxed for 4 h, cooled to 25 °C, and then quenched with 20.0 µL H₂O and 20.0 µL 15% NaOH in H₂O. The resulting heterogeneous solution was then separated. The organic layer was washed with 0.10 mL H₂O, filtered through cotton with EtOAc (10.0 mL), and concentrated under vacuum. Chromatography (25% EtOAc in hexanes) afforded **9** as a light-yellow solid (0.0239 g, 65%). ¹H NMR (500 MHz, CDCl₃): δ 7.46-7.44 (m, 2H), 7.33-7.30 (m, 2H), 7.21-7.18 (m, 1H), 6.83-6.82 (m, 1H), 6.77-6.73 (m, 1H), 6.42-6.41 (m, 1H), 4.56-4.52 (m, 1H), 3.97-3.94 (m, 2H), 3.75-3.73 (m 1H), 3.05-3.04 (m, 1H), 2.66-2.61 (m, 1H), 2.37-2.27 (m, 2H), 2.22 (s, 3H), 2.17-2.07 (m, 2H), 1.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 146.6, 143.7, 129.8, 128.4, 128.2, 128.0, 127.2, 126.7, 125.9, 115.9, 75.5, 61.9, 54.4, 52.2, 46.5, 42.4, 41.0, 26.1, 20.3; IR (thin film) 3558, 3383, 3024, 2960, 2916, 1499,1 476, 1451, 1303, 1264 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₂₁H₂₆NO₂ (M+H)⁺ 324.1964, found 324.1951, mp: 169-174 °C.

Reduced bicyclic benzazepinone **9** was dissolved in CH₂Cl₂, layered with pentane, and placed in a -40 °C freezer. After 24 h, single crystals had formed. The supernatant was decanted and X-ray crystallography analysis confirmed the structure illustrated above.

Methylated Bicyclic Benzazepinone 10: A scintillation vial was charged with **6a** (0.0306 g, 0.0860 mmol), 18-crown-6 (0.0680 g, 0.258 mmol, 3.0 equiv), and K₂CO₃ (0.0360 g, 0.258 mmol, 3.0 equiv). These reagents were diluted with MeCN (0.860 mL, 0.1 M) and DMF (0.009 mL). Methyl iodide (0.011 mL, 0.172 mmol, 2.0 equiv) was then added to the flask and the reaction mixture was stirred at 25 °C for 18 h. At this time reaction mixture was filtered through celite with EtOAc (15 mL) and the filtrate was concentrated under vacuum. The crude compound was purified by flash chromatography (10% EtOAc in hexanes) to afford **10** (0.0222 g, 72%). ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.30 (m, 2H), 7.24-7.21 (m, 1H), 7.18-7.16 (m, 2H), 6.83-6.81 (m, 1H) 6.67 (br, 1H), 6.45-6.43 (m, 1H), 4.10 (br, 1H), 3.91-3.87 (m, 1H), 3.57 (s, 1H), 3.19 (s, 3H), 2.37-2.32 (m, 1H), 2.16 (s, 3H), 1.88-1.83 (m, 1H), 1.53-1.50 (m, 6H); ¹³C NMR (125 MHz, CDCl₃): δ

208.6, 172.2, 145.5, 142.2, 130.1, 128.9, 128.9, 128.0, 126.7, 126.6, 123.3, 116.2, 63.2, 61.0, 59.2, 51.9, 46.5, 44.6, 25.7, 20.2, 19.1; IR (thin film) 3390, 3025, 2992, 2946, 2855, 1727, 1711, 1503, 1452, 1379; HRMS (ESI) m/z calcd. for C₂₃H₂₅NO₃ (M+H)⁺, 364.1913 found 364.1912.

V. Mechanistic Experiments (Scheme 4).

Synthesis of Bicyclic Benz[b]azepin-4-one 6m and Dihydrocarbazole 8m: A mixture of bicyclic benazepinone 6m and dihydrocarbazole 8m was prepared by general procedure A with alternative chromatography conditions. Nitrone 4j (0.0321 g, 0.120 mmol) was treated with allenoate 5a (0.0440 g, 0.360 mmol) in the presence of DABCO (0.0007 g, 0.006 mmol) in toluene (1.00 mL, 0.120 M) for 3 h at 60 °C. The crude material was purified by medium pressure chromatography (8% acetone, 2% NEt₃, 2% benzene, in petroleum ether) to afford a 1:1 of mixture 6m and 8m (0.0231 g, 53%, 6m:8m = 1:1, dr for 6m = 1:1) as a light yellow amorphous solid. ¹H NMR (500 MHz, CDCl₃) (**6m**, first diastereomer): 7.34-7.18 (m, 5H), 6.70-6.67 (m, 1H), 6.55-6.52 (m, 1H), 6.45-6.43 (m, 1H), 4.06 (s, 1H), 3.94 (s, 3H), 3.79 (s, 3H), 3.46 (s, 1H), 3.37 (s, 1H), 2.52-2.45 (m, 1H), 2.40-2.36 (m, 1H), 1.36 (s, 3H), N-H was too broad to be observed; ¹H NMR (500 MHz, CDCl₃) (6m, second diastereomer, diagnostic peaks): δ 3.70 (s, 3H), 3.49 (s, 3H), 2.63-2.56 (m, 1H), 1.79-1.75 (m, 1H), 1.51 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (8m): δ 9.30 (br, 1H), 7.34-7.18 (m, 6H), 6.75-6.74 (m, 1H), 6.28-6.26 (m, 1H), 4.32-4.29 (m, 1H), 3.68 (s, 3H), 3.60 (s, 1H), 3.58 (s, 3H), 2.99-2.94 (m, 1H), 2.84-2.78 (m, 1H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (6m, first diastereomer): δ 205.0, 167.9, 145.4, 138.7, 128.9, 128.5, 127.9, 127.0, 126.8, 122.4, 118.1, 114.6, 64.7, 61.6, 55.7, 52.2, 47.3, 45.8, 44.3, 28.6; ¹³C NMR (125 MHz, CDCl₃) (6m, second diastereomer, diagnostic peaks): δ 203.0, 166.9, 152.9, 145.3, 117.7, 114.4, 65.2, 61.0; ¹³C NMR (125 MHz, CDCl₃) (8m): δ 169.7, 153.8, 149.2, 144.5, 132.3, 131.1, 128.8, 128.5, 127.9, 126.8, 126.7,115.5, 111.8, 111.6, 100.5 55.6, 51.8, 45.8, 38.0, 23.0; IR (thin film) 3437, 3390, 3058, 3027, 2950, 2832, 1736, 1705, 1495, 1452; HRMS (ESI) m/z calcd. for C₂₂H₂₂NO₃ (M+H)⁺ 348.1600, found 348.1593; HRMS (ESI) *m/z* calcd. for C₂₂H₂₄NO₄ (M+H)⁺ 366.1705, found 366.1696.

Conversion of Bicyclic Benz[*b*]**azepin-4-one 6g to Dihydrocarbazole 8g:** A Teflon-sealed reaction flask was charged with silica gel (0.136 g), flushed onto a Schlenk line, and placed under N₂ with a needle and a septum. A scintillation vial was charged with bicyclic benzazepinone **6g** (0.0429 g, 0.136 mmol, 1.0 equiv) and placed under N₂ with a needle and a septum. The bicyclic benzazepinone mixture was then diluted with toluene to form a 0.1 M solution. This solution was transferred to the reaction flask via syringe, the reaction vessel was sealed with a Teflon cap, and stirred at 25 °C for 5 min. The reaction mixture was then heated to 80 °C for 18 h. At this time, the reaction mixture was concentrated under vacuum and the crude

product mixture was identified as **8g** and quantified by ¹H NMR spectroscopy using CH₂Br₂ as a reference (66%). ¹H NMR (500 MHz, CDCl₃): δ 9.16 (s, 1H), 7.28-7.22 (m, 2H), 6.95-6.94 (m, 1H), 3.92 (s, 3H), 3.06-3.05 (m, 1H), 2.88-2.83 (m, 1H), 2.45 (s, 3H), 2.31 (s, 3H), 1.59-1.56 (m, 1H), 1.47-1.44 (m, 2H), 1.32-1.27 (m, 2H), 0.91-0.88 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.9, 149.5, 134.0, 130.5, 128.6, 126.6, 122.9, 118.1, 118.0, 112.4, 110.8, 51.6, 40.8, 37.2, 30.3, 23.4, 21.6, 20.5, 14.4. Spectral data match the product of the independent synthesis of **6g** from **4g** described below.

Independent Synthesis of Dihydrocarbazole 8g from 4g:² A Teflon-sealed reaction flask was charged with silica gel (0.200 g), flushed onto a Schlenk line, and placed under N₂ with a needle and a septum. A scintillation vial was charged with nitrone **4g** (0.0435 g, 0.200 mmol, 1.0 equiv) and allene **5a** (0.100 g, 0.600 mmol, 3.0 equiv) and placed under N₂ with a needle and a septum. The mixture was then diluted with toluene to form a 0.1 M solution. This solution was transferred to the reaction flask via syringe, the reaction vessel was sealed with a Teflon cap, and the reaction mixture was stirred at 25 °C for 5 min. The reaction mixture was then heated to 80 °C for 18 h. At this time, the solvent was removed from the reaction mixture under vacuum and the crude reaction mixture was purified by medium pressure chromatography (10% EtOAc in hexanes) to give **8g** as a yellow oil (0.0139 g, 24%). ¹H NMR (500 MHz, CDCl₃): δ 9.16 (s, 1H), 7.31-7.28 (m, 1H), 7.24-7.22 (m, 1H), 6.95-6.94 (m, 1H), 3.92 (s, 3H), 3.06-3.05 (m, 1H), 2.88-2.82 (m, 1H), 2.45 (s, 3H), 2.31 (s, 3H), 1.59-1.54 (m, 1H), 1.48-1.39 (m, 2H), 1.31-1.29 (m, 2H), 0.91-0.88 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.9, 149.5, 134.0, 130.5, 128.6, 126.6, 122.9, 118.1, 118.0, 112.4, 110.8, 51.6, 40.8, 37.2, 30.3, 23.4, 21.6, 20.5, 14.4; IR (thin film) 3449, 2954, 2924, 2869, 1745, 1720, 1694, 1595, 1574, 1434; HRMS (ESI) *m/z* calcd. for C₁₉H₂₄NO₂ (M+H)⁺ 298.1807, found 298.1805.

Effect of Catalyst on Cascade Intermediates.

Formation of Intermediates 11 and 12:^{2,3} A Teflon-sealed reaction flask was charged with nitrone **4a** (0.0300 g, 0.120 mmol), allenoate **5a** (0.0440 g, 0.360 mmol), and toluene (1.0 mL). The mixture was stirred at 25 °C for 3 h. After 3 h, the reaction mixture was concentrated under vacuum to give a crude product

mixture, which was identified by ¹H NMR spectroscopy as a mixture of **11** (33%) and **12** (51%). Yields were determined by comparison to CH₂Br₂ (7.0 μ L, 0.1 mmol), which was added as a reference. ¹H NMR (500 MHz, *diagnostic peaks* for **11**) δ 7.59-7.57 (m, 2H), 3.69 (s, 3H), 3.51-3.50 (m, 2H), 2.36 (s, 3H), 2.35 (s, 3H), 2.09 (s, 3H); ¹H NMR (500 MHz, *diagnostic peaks* for **12**) δ 6.73-6.63 (m, 1H), 3.75 (s, 3H), 3.48 (s, 2H), 2.43 (s, 3H), 2.06 (s, 3H). This spectral data matched analogous spectra analyzed for different branches of the cascade reaction.^{2,3}

Conversion of Intermediates 11 and 12 to Bicyclic Benzazepinone 6a: A Teflon-sealed reaction flask was charged with crude product mixture described above (0.0768 mmol) and treated with DABCO (0.0004 g, 0.004 mmol) and toluene (0.76 mL). The reaction mixture was heated at 60 °C for 3 h. After 3 h, the reaction mixture was concentrated under vacuum to give a crude product, which was identified by ¹H NMR spectroscopy as 6a (82%, dr = 1:1). Yields were determined by comparison to CH₂Br₂ (7.0 μ L, 0.1 mmol), which was added as a reference. ¹H NMR (500 MHz, *major diastereomer, diagnostic peaks*): δ 7.34-7.31 (m, 2H), 7.25-7.23 (m, 2H), 7.18-7.17 (m, 1H), 6.89-6.87 (m, 1H), 6.69-6.67 (m, 1H), 6.50-6.49 (m, 1H), 4.11- 4.09 (m, 1H), 3.94-3.87 (m, 1H), 3.79 (s, 3H), 3.49 (s, 1H), 3.38 (s, 1H), 2.51-2.46 (m, 1H), 2.41-2.37 (m, 1H), 2.17 (s, 3H), 1.36 (s, 3H); ¹H NMR (500 MHz, CDCl₃) (minor diastereomer, diagnostic peaks): δ 4.06 (s, 1H), 3.58 (s, 1H), 3.47 (s, 1H), 2.64-2.58 (m, 1H), 1.81-1.76 (m, 1H), 1.50 (s, 3H). This spectral data matched the data described for **6a** above.

VI. Synthesis of Nitrones 4

Nitrones 4a, 4c, 4f, and 4i were prepared according to previously published procedures.^{2,3,7}

General Procedure B: This procedure was adapted from the literature.⁷ *N*-Allyl aniline **S-1** (1 equiv) was dissolved in a 1:4 mixture of THF:MeCN (0.54 M) and mixed with aqueous Na₂EDTA (0.14 equiv, 0.01 M). This mixture was then cooled to 0 °C and mixed with NaHCO₃ (5 equiv). Oxone® (2.70 equiv) was added to the aniline and EDTA mixture in 12 portions over 2 h. The reaction mixture was then stirred at 25 °C for an additional 20 min before CH_2Cl_2 (20.0 mL) was added. The organic layer was separated from the rest of the reaction mixture and the aqueous layer was extracted with CH_2Cl_2 (3 x 15.0 mL). The combined organic layers were washed with brine (10.0 mL), dried over anhydrous MgSO₄, and concentrated under vacuum. The crude product was wet loaded on to celite with CH_2Cl_2 and purified by medium pressure chromatography (5% MeOH in CH_2Cl_2).

Nitrone 4b: Nitrone **4b** was prepared by general procedure B using *N*-allyl aniline **S-1b** (1.725 g, 8.480 mmol), a 1:4 mixture of THF:MeCN (10.2 mL, 0.54 M), 0.01 M aq. Na₂EDTA (7.60 mL, 0.72 M), NaHCO₃ (2.290 g, 27.35 mmol), and oxone (4.540 g, 14.77 mmol). Chromatography (5% MeOH in CH₂Cl₂) afforded **XXb** as a yellow solid (0.398 g, 23%). ¹H NMR (500 MHz, CDCl₃) (*E*-isomer): δ 7.64-7.60 (m, 3H), 7.34-7.29 (m, 6H), 6.85-6.82 (m, 1H), 6.71-6.68 (m, 1H), 2.52 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (*E*-isomer): δ 144.4, 135.8, 133.4, 132.7, 129.1, 128.9, 127.7, 127.0, 126.2, 125.4, 120.6, 13.5; ¹H NMR (500 MHz, CDCl₃) (*Z*-isomer, diagnostic peaks): δ 8.02-7.99 (m, 1H), 7.42-7.31 (m, 7H), 7.16-7.12 (m, 2H), 2.08 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (*Z*-isomer, diagnostic peaks): δ 148.2, 138.3, 129.1, 125.4, 123.4, 120.2,

16.4; IR (thin film) 3170, 3080, 3055, 3023, 2974, 2922, 2852, 1488, 1474, 1304 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₁₆H₁₅NOBr (M+H)⁺ 316.0337, found 316.0338; m.p: 98-102 °C.

Nitrone 4d: Nitrone **4d** was prepared by general procedure B using *N*-allyl aniline **S-1d** (2.47, 9.24 mmol), a 1:4 mixture of THF:MeCN (17.0 mL, 0.54 M), 0.01 M aq. Na₂EDTA (12.8 mL, 0.72 M), NaHCO₃ (3.88 g, 46.2 mmol), and oxone (7.67 g, 24.9 mmol). Chromatography (5% MeOH in CH₂Cl₂) afforded **4d** as a solid (0.7466 g, 29%). ¹H NMR (500 MHz, CDCl₃) (*E*-isomer): δ 7.28-7.24 (m, 4H), 7.18-7.17 (m 2H), 6.81-6.79 (m, 2H), 6.75-6.72 (m, 1H), 6.62-6.59 (m, 1H), 3.77 (s, 3H), 2.49 (s, 3H), 2.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (*E*-isomer): δ 160.2, 147.7, 143.2, 139.4, 137.3, 132.1, 129.9, 128.3, 124.3, 119.2, 114.3, 55.3, 21.3, 13.4; ¹H NMR (500 MHz, CDCl₃) (*Z*-isomer, diagnostic peaks): δ 7.93-7.90 (m, 1H), 7.55-7.54 (m, 1H), 7.07-7.03 (m,1H), 6.90, 6.88 (m, 1H), 3.82 (s, 3H), 2.38 (s, 3H), 2.10 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (*Z*-isomer, diagnostic peaks): δ 7.03-7.90 (m, 1H), 7.55-7.54 (m, 1H), 7.07-7.03 (m,1H), 6.90, 6.88 (m, 1H), 3.82 (s, 3H), 2.38 (s, 3H), 2.10 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (*Z*-isomer, diagnostic peaks): δ 160.6, 144.7, 144.0, 139.2,129.1, 128.9, 123.5, 118.5, 55.0, 21.2, 16.3; IR (thin film) 3035, 2953, 2836, 1597, 1507, 1493, 1462, 1441, 1319, 1208 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₁₈H₂₀NO₂ (M+H)⁺ 282.1494, found 282.1488; m.p: 120-122 °C.

Nitrone 4e: Nitrone **4e** was prepared by general procedure B using *N*-allyl aniline **S-1e** (2.00 g, 7.43 mmol), a 1:4 mixture of THF:MeCN (13.8 mL, 0.54 M), 0.01 M aq. Na₂EDTA (10.3 mL, 0.72 M), NaHCO₃ (3.120 g, 37.15 mmol), and oxone (6.160 g, 20.05 mmol). Chromatography (5% MeOH in CH₂Cl₂) afforded **4e** as a yellow solid (1.550 g, 77%). ¹H NMR (500 MHz, CDCl₃) (*E*-isomer): δ 7.27-7.25 (m, 4H), 7.20-7.16 (m, 2H), 6.98-6.95 (m, 2H), 6.75-6.64 (m, 2H), 2.50 (s, 3H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (*E*-isomer): δ 162.8 (d, *J*_{C-F} = 250.0 Hz) 147.3, 143.1, 139.6, 136.1, 129.9, 128.6 (d, *J*_{C-F} = 12.5 Hz), 124.3, 123.4, 121.1, 115.9 (d, *J*_{C-F} = 25.0 Hz) 21.2, 13.4; ¹H NMR (500 MHz, CDCl₃) (*Z*-isomer, diagnostic peaks): δ 7.96-7.93 (m, 1H), 7.57-7.56 (m, 1H), 7.07-7.04 m, 2H), 2.39 (s, 3H), 2.12 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (*Z*-isomer, diagnostic peaks): δ 163.2 (d, *J*_{C-F} = 250.0 Hz), 139.4, 132.4, 129.3 (d, *J*_{C-F} = 12.5 Hz), 120.5, 21.3, 16.3; IR (thin film) 3041, 2974, 2923, 1597, 1505, 1493, 1415, 1311, 1271, 1156 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₁₇H₁₇NO_F (M+H)⁺ 270.1294, found 270.1284; m.p: 99-103 °C.

Nitrone 4g: Nitrone **4g** was prepared by general procedure B using *N*-allyl aniline **S-1g** (1.725 g, 8.480 mmol), a 1:4 mixture of THF:MeCN (15.7 mL, 0.54 M), 0.01 M aq. Na₂EDTA (11.8 mL, 0.72 M), NaHCO₃ (3.56 g, 42.4 mmol), and oxone (7.00 g, 22.9 mmol). Chromatography (5% MeOH in CH₂Cl₂) afforded **4g** as an oil (0.4189 g, 23%). ¹H NMR (500 MHz, CDCl₃) (*E*-isomer): δ 7.23-7.19 (m, 4H), 6.07-6.00 (m, 2H), 2.38-2.37 (m, 6H), 2.02-1.97 (m, 2H), 1.34-1.32 (m, 2H), 0.86-0.85 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) (*E*-isomer): δ 143.1, 142.1, 139.2, 136.8, 129.8, 124.1, 123.4, 35.3, 22.1, 21.2, 13.6, 13.4; ¹H NMR (500 MHz, CDCl₃) (*Z*-isomer, diagnostic peaks): δ 7.34-7.31 (m, 1H), 7.07-6.93 (m, 3H), 6.39-6.32(m, 1H), 2.29-2.26 (2H), 1.54-1.48 (m, 2H), 0.96-0.93 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) (*Z*-isomer, diagnostic peaks): δ 7.34-7.31 (m, 1H), 3030, 2958, 2928, 2870, 1687, 1505, 1441, 1379, 1226, 1174 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₁₄H₂₀NO (M+H)⁺ 218.1545, found 218.1539.

Nitrone 4h: Nitrone **4h** was prepared by general procedure B using *N*-allyl aniline **S-1g** (1.60 g, 5.75 mmol), a 1:4 mixture of THF:MeCN (10.6 mL, 0.54 M), 0.01 M aq. Na₂EDTA (8.0 mL, 0.72 M), NaHCO₃ (2.40 g, 28.8 mmol), and oxone (4.75 g, 15.5 mmol). Chromatography (5% MeOH in CH₂Cl₂) afforded **4h** as an oil (0.4872 g, 29%). ¹H NMR (500 MHz, CDCl₃) (*E*-isomer): δ 7.26-7.23 (m, 9H), 6.78-6.68 (m 2H), 2.99-2.96 (m, 1H), 2.48 (s, 3H), 1.74-1.71 (m, 1H), 1.57-1.52 (m, 2H), 1.30-1.23 (m 2H), 1.03-1.00 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) (*E*-isomer): δ 151.1, 143.4, 139.4, 137.3, 131.7, 129.8, 128.8, 127.6, 126.9, 124.3, 120.9, 27.8, 26.6, 23.1, 21.3, 14.0; ¹H NMR (500 MHz, CDCl₃) (*Z*-isomer, diagnostic peaks): δ 7.93-7.90 (m, 1H), 7.62-7.60 (m, 2H), 7.39-7.36 (m, 3H), 7.19-7.16 (m, 2H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (*Z*-isomer, diagnostic peaks): δ 149.1, 143.8, 139.1, 136.3, 130.0, 129.2, 128.6, 123.3, 119.5, 30.6, 29.3, 22.6, 21.2, 13.5; IR (thin film) 3056, 3025, 2955, 2927, 2869, 1509, 1483, 1447, 1298, 1225 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₂₀H₂₄NO (M+H)⁺ 294.1858, found 294.1854.

Nitrone 4j: Nitrone **4j** was prepared by general procedure B with *N*-allyl aniline **S-1j** (3.73 g, 14.7 mmol), a 1:4 mixture of THF:MeCN (27.3 mL, 0.54 M), 0.01 M aq. Na₂EDTA (20.0 mL, 0.72 M), NaHCO₃ (6.78 g, 73.5 mmol), and oxone (12.2 g, 39.7 mmol). Chromatography (5% MeOH in CH₂Cl₂) afforded **4j** as an oil (1.19 g, 30%). ¹H NMR (500 MHz, CDCl₃) (*E*-isomer): δ 7.35-7.33 (m, 2H), 7.27-7.24 (m, 5H), 6.97-6.96 (m, 2H), 6.78-6.74 (m, 2H), 3.86 (s, 3H), 2.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (*E*-isomer): δ 160.1, 147.6, 138.8, 136.1, 132.4, 128.8, 128.8, 126.9, 125.8, 121.4, 114.4, 55.6, 13.6; IR (thin film) 3040, 3024, 2961, 2910, 2836, 1603, 1589, 1498,1384, 1298 cm⁻¹; HRMS (ESI) *m*/z calcd. for C₁₇H₁₈NO₂ (M+H)⁺ 268.1338, found 268.1331.

Synthesis of N-Allylanilines S-1

N-Allylanilines **S-1c**⁷ and **S-1j**⁸ were prepared according to previously published procedures.

General Procedure C: This procedure was adapted from the literature.^{2,7} An 250.0 mL round bottom flask was charged with *N*-aryl imine **S-2** (1.0 equiv), flushed onto a Schlenk line, dissolved in THF to form an 0.1 M solution, and cooled to -78 °C with a dry ice/*i*-PrOH bath. An alkyl lithium reagent (1.5 equiv) was added dropwise to the imine solution and the mixture was stirred at -78 °C for 30 min. The reaction quenched by the addition of aq. NH₄Cl (20.0 mL). The aqueous phase was extracted with Et₂O (2 x 20.0 mL). The combined organic fractions were washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated under vacuum. Crude **S-1** was used for the synthesis of nitrone **4** without further purification.

N-Allylaniline S-1b: *N*-Allylaniline S-1b was prepared by general procedure C using *N*-aryl imine S-2b (2.00 g, 6.98 mmol), THF (70.0 mL), and MeLi (6.56 mL of a 1.60 M solution in Et₂O, 10.48 mmol). *N*-Allylaniline S-1b was isolated as an oil (1.730 g, 78%) and used without purification for the synthesis of

nitrone **4b**. ¹H NMR (500 MHz, CDCl₃): δ 7.36-7.35 (m, 2H), 7.32-7.29 (m, 2H), 7.24-7.23 (m, 3H), 6.57-6.52 (m, 3H), 6.20-6.15 (m, 1H), 4.12-4.07 (m, 1H), 3.67 (br, 1H), 1.40 (d, *J* = 5.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 146.4, 136.8, 132.5, 131.9, 129.6, 128.6, 127.5, 126.3, 115.0, 108.9, 50.9, 22.0; IR (thin film) 3410, 3058, 3024, 2964, 2923, 2866, 1591, 1489, 1314, 1177 cm⁻¹; HRMS (ESI) *m*/z calcd. for C₆₇H₁₇NBr (M+H)⁺, found 286.0232.

S-1d

N-Allylaniline S-1d: *N*-allyl aniline S-1d was prepared by general procedure C using *N*-aryl imine S-2d (2.570 g, 10.22 mmol), THF (102.0 mL), MeLi (9.60 mL of a 1.60 M solution in Et₂O, 15.33 mmol). *N*-Allylaniline S-1d was isolated as an oil (2.4728 g, 90%) and used without purification for the synthesis of nitrone 4d. ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.31 (m, 2H), 7.01-7.00 (m, 2H), 6.88-6.86 (m, 2H), 6.62-6.61 (m, 2H), 6.56-6.53 (m, 1H), 6.13-6.09 (m, 1H), 4.15-4.10 (m, 1H), 3.83 (s, 3H), 2.26 (s, 3H), 1.42 (d, *J* = 5.0 Hz, 3H), N–*H* was too broad to be observed; ¹³C NMR (125 MHz, CDCl₃): δ 159.0, 145.2, 131.3, 129.9, 129.7, 128.6, 127.5, 126.5, 113.9, 113.7, 55.3, 51.2, 22.2, 20.4; IR (thin film) 3399, 2966, 2916, 2865, 2834, 1606, 1577, 1508, 1462, 1315 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₁₈H₂₂NO (M+H)⁺ 268.1701, found 268.1701.

S-1e

N-Allylaniline S-1e: N-Allylaniline S-1e was prepared by general procedure C using *N*-aryl imine S-2e (2.629 g, 10.98 mmol), THF (110.0 mL), and MeLi (10.30 mL of a 1.60 M solution in Et₂O, 15.33 mmol). *N*-Allylaniline S-1e was isolated as an oil (2.00 g, 68%) and used without purification for the synthesis of nitrone 4e. ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.30 (m, 2H), 7.00-6.97 (m, 4H), 6.59-6.63 (m, 3H), 6.16-6.12 (m, 1H), 4.13-4.09 (m, 1H), 3.53 (br, 1H), 2.24 (s, 3H), 1.41 (m, 3H), N–*H* was too broad to be observed; ¹³C NMR (125 MHz, CDCl₃): δ 162.2 (d, J_{C-F} = 237.5 Hz), 145.1, 133.2, 129.7, 128.0, 127.7 (d, J_{C-F} = 25.0 Hz), 126.6, 115.7, 115.4 (d, J_{C-F} = 25.0 Hz), 113.6, 51.1, 22.1, 20.4; IR (thin film) 3398, 2981, 2938, 2871, 1736, 1616, 1518, 1507, 1372, 1044 cm⁻¹; HRMS (ESI) *m*/*z* calcd. for C₁₇H₁₉NF (M+H)⁺ 256.1502, found 256.1508.

N-Allylaniline S-1g: *N*-Allylaniline S-1g was prepared by general procedure C using *N*-aryl imine S-2g (2.363, 12.60 mmol), THF (126.0 mL), and MeLi (11.80 mL of a 1.60 M solution in Et₂O, 18.90 mmol). *N*-Allylaniline S-1g was isolated as an oil (1.7250 g, 67%) and used without purification for the synthesis of nitrone 4g. ¹H NMR (500 MHz, CDCl₃): δ 7.00-6.98 (m, 2H), 6.57-6.56 (m, 2H), 5.67-5.63 (m, 1H), 5.46-5.42 (m, 1H), 3.94-3.92 (m, 1H), 3.47 (br, 1H), 2.30 (s, 3H), 2.03-1.99 (m, 2H), 1.42-1.40 (m, 2H), 1.31-1.29 (m, 3H), 0.92-0.89 (m, 3H), N–*H* was too broad to be observed; ¹³C NMR (125 MHz, CDCl₃): δ 145.4, 133.5, 130.3, 129.9, 129.6, 113.7, 50.9, 34.4, 22.5, 22.2, 20.4, 13.7; IR (thin film) 3400, 2957, 2924, 2869, 1641, 1614, 1514, 1371, 1299, 1253 cm⁻¹; HRMS (ESI) *m*/z calcd. for C₁₄H₂₂N (M+H)⁺ 204.1752, found 204.1749.

N-Allylaniline S-1h: *N*-Allylaniline S-1h was prepared by general procedure C using *N*-aryl imine S-2a (1.50, 6.77 mmol), THF (67.0 mL), and *n*-BuLi (6.35 mL of a 2.50 M solution in hexanes, 10.17 mmol). *N*-Allylaniline S-1h was isolated as an oil (1.69 g, 89%) and using without purification for the synthesis of nitrone 4h. ¹H NMR (500 MHz, CDCl₃): δ 7.37-7.35 (m, 2H), 7.31-7.28 (m, 2H), 7.22-7.20 (m, 1H), 6.98-6.96 (m, 2H), 6.59-6.55 (m, 3H), 6.16-6.12 (m, 1H), 3.93-3.91 (m, 1H), 2.23 (s, 3H), 1.70-1.67 (m, 2H), 1.45-1.37 (m, 4H), 0.94-0.91 (m, 3H), N–*H* was too broad to be observed; ¹³C NMR (125 MHz, CDCl₃): δ 145.4, 137.2, 132.6, 130.0, 129.7, 128.6, 128.5, 127.3, 126.3, 113.5, 56.0, 36.1, 28.2, 22.7, 20.4, 14.1; IR (thin film) 3406, 3023, 2954, 2927, 2858, 1615, 1516, 1494, 1315, 1256 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₂₀H₂₆N (M+H)⁺ 280.2065, found 280.2663.

N-Allylaniline S-1j: *N*-Allylaniline S-1j was prepared by general procedure C using *N*-aryl imine S-2j (3.77, 15.89 mmol), THF (160.0 mL), and MeLi (14.80 mL of a 1.60 M solution in Et₂O, 23.8 mmol). *N*-Allylaniline S-1j was isolated as an oil (3.73 g, 93%) and used without purification for the synthesis of nitrone 4j. ¹H NMR (500 MHz, CDCl₃): δ 7.39-7.38 (m, 2H), 7.33-7.30 (m, 2H), 7.26-7.22 (m, 1H), 6.81-6.79 (m, 2H), 6.67-6.65 (m, 2H), 6.61-6.58 (m, 1H), 6.26-2.22 (m, 1H). Spectral data for this compound were consistent with those found in the literature.⁹

Synthesis of N-Aryl Imines S-2

N-Aryl Imines **S-2b**,¹⁰ **S-2c**,⁷ **S-2d**,⁷ and **S-2j**¹⁰ were prepared according to previously published procedures.

General Procedure D: A 0.4 M solution of aniline (1.05 equiv, 12.5 mmol) in Et₂O (30 mL) was mixed with anhydrous MgSO₄ (5.0 g). α , β -Unsaturated aldehyde **S-3** (1.0 equiv, 12.0 mmol) was added dropwise to the resulting slurry and the reaction mixture was stirred at 25 °C for 18 h under N₂. The reaction mixture was then filtered over cotton with Et₂O (20.0 mL) and concentrated under vacuum to give crude *N*-aryl imine **S-2**. *N*-Aryl imine **S-2** was used for the preparation of *N*-allylanilines **S-1** without purification.

S-2e

N-Aryl Imine S-2e: *N*-Aryl imine S-2e was prepared by general procedure D using 4-toluidine (1.34g, 12.5 mmol), Et₂O (30.0 mL), MgSO₄ (5.00 g), and 4-fluorocinnamaldehyde (S-3e) (1.80 g, 12.0 mmol). *N*-Aryl imine S-2e was isolated as a yellow solid (2.629 g, 92%). ¹H NMR (500 MHz, CDCl₃): δ 8.27-8.26 (m, 1H), 7.52-7.50 (m, 2H), 7.20-7.18 (m, 2H), 7.12-7.04 (m, 6H), 2.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 163.4 (d, *J*_{C-F} = 250.0 Hz), 160.5, 149.0, 142.1, 136.1, 132.1(*J*_{C-F} = 12.5 Hz), 129.8, 129.2 (d, *J*_{C-F} = 12.5 Hz), 128.5, 120.8, 116.0 (d, *J*_{C-F} = 25.0 Hz), 21.3; IR (thin film) 3024, 2980, 2922, 2869, 1703, 1696, 1627, 1598, 1538, 1501 cm⁻¹; HRMS (ESI) *m*/*z* calcd. for C₁₆H₁₅NF (M+H)⁺ 240.1189, found 240.1180; m.p: 111-115 °C.

S-2g

N-Aryl Imine S-2g: *N*-Aryl imine S-2g was prepared by general procedure D using 4-toluidine (1.340 g, 15.50 mmol), Et₂O (30.0 mL), MgSO₄ (5.00 g), and 2-hexenal (S-3g) (1.40 mL, 12.0 mmol). *N*-Aryl imine S-2g was isolated as an oil (1.8847 g, 84%) and used without further purification for the synthesis of S-1g. ¹H NMR (500 MHz, CDCl₃): δ 8.08-8.06 (m, 1H), 7.16-7.15 (m, 2H), 7.06-7.01 (m, 2H), 6.47-6.36 (m, 2H), 2.35 (s, 3H), 2.29-2.24 (m, 2H), 1.56-1.51 (m, 2H), 0.99-0.96 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 161.4, 149.3, 148.1, 135.5, 131.4, 129.7, 120.7, 34.9, 21.7, 21.0, 13.7; IR (thin film) 3022, 2958, 2927, 2869, 1644, 1612, 1504, 1455, 1396, 1298 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₁₃H₁₈N (M+H)⁺, 268.2058.

References

1. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, *Organometallics*, 1996, **15**, 1518.

2. D.-L. Mo, D. J. Wink, L. L. Anderson, Chem. Eur. J., 2014, 20, 13217.

3. W. H. Pace, D.-L. Mo, T. W. Reidl, D. J. Wink, L. L. Anderson, Angew. Chem. Int. Ed., 2016, 55, 9183.

- 4. (a) R. W. Lang, H. J. Hansen, Helv. Chim. Acta, 1980, 63, 438; (b) Z. Huang, X. Yang, F. Yang, T. Lu,
- Q. Zhou, Org. Lett., 2017, 19, 3524.
- 5. L. Rout, A. M. Harned, Chem. Eur. J., 2009, 15, 12926.
- 6. P. Maity, S. D. Lepore, J. Org. Chem., 2009, 74, 158.
- 7. T. S. Hood, C. B. Huehls, J. Yang, *Tetrahedron Lett.*, 2012, **53**, 4679.
- 8. S. E. Denmark, N. Nakajima, C. M. Stiff, O. J. C. Nicaise, M. Kranz, *Adv. Synth. Catal.*, 2008, **350**, 1023.
- 9. T. Zhu, P. Zheng, C. Mou, S. Yang, B. A. Song, Y. R. Chi, Nat. Commun., 2014, 5, 1.
- 10. J. C. K. Chu, D. M. Dalton, T. Rovis, J. Am. Chem. Soc., 2015, 137, 4445.

9E.1-1'20 92'T

2.5 40.2 5.6 5.6 5.6 67.6 67.6 67.6 67.6

78.5

68'E 06'8-3.92

₽6.5₋ 90.4₋ 60.4₇

11.4

67.9

05.9 29.9 69.9

Z8.ð.

88.8-68.9∼ 71.7∽

48.7

0

				100-1
ح20.2 20.2				 20
9.85~ 9.82~				 30
8'54 8'54 6'74				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5.24 1.22 2.22				1, wellingeleveryullurlih. 50
S'SS Z'SS 0'T9-⁄ī				 140,011,000,000,000,000,000,000,000,000,
S'T9 8' 7 9 S'S9				,
S'9TT 2'9TT				
2'121- 2'121- 2'121- S'921-				1 1000
2'52'- 2'52'- 12'0'- 12'0'-				1110
5 821 7 1587 6 821 - L 0 671 - L				 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
S'6ZT 5'6ZT 5'5ZT		_		
2:021 2:021 2:0717				1.μ/ψ/ψ/ψ/ψ/
5.24[~ 2.24[~ 2.24[1
				1
6'29I~				 1 70 1 7
9 691	Ae			10000000000000000000000000000000000000
	Me	= 3:2)		00 116
	O Z J	6a (dr		104/144/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/
~503.1 ~203.1	Me			 ылийи/илини
			S-25	онимириячичи
				≩ [°

S-27

0

-L

- 9

50-

- 8

- 64

50

.09

2-2-

- 8

- 6

100

-11

120

130

140

150

160

170

180

190

200

210

Γö

					1.5 1.0 0.5 0.
56.2 26.2 90.8 80.8 11.8 55.8 18.8 55.8 55.8 18.8 50.4 70.4 70.4 70.4 70.4 70.4 70.4 70.4 7			_		5.0 4.5 3.0 2.5 5.0 2.5 3.0 2.5 5.0 2.5 3.0 2.5 5.0 2.5 3.0 2.5 5.0 2.5 3.0 2.5 5.0 2.5 3.0 2.5 5.0 2.
22.9 22.9 22.9 22.9 22.9 22.2 2.2 2.2 2.					8.0 8.0 7.5 8.0 7.5 7.0 6.5 6.0 6.5 6.0 7.5 7.0 6.5 7.0 6.5 7.0 7.5 7.0 7.5 7.0 7.5 7.0 7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
	H O CO ₂ Me N- PMP Me	6i (dr = 20:1)	S-48		.0 10.5 10.0 9.5 9.0 8.5

08'0 28'0 28'0 26'0			 _		± 25.2 ± 25.	0 2.5 2.0 1.5 1.0 0.5 0
\$\psi_1^2					下	5.5 5.0 4.5 4.0 3.5 3.0
±0.4.1 11.4.1 21.4.1 61.4.1 61.4.1 61.4.1 61.4.1 61.4.1 61.4.1 61.4.1 61.4.1 61.4.1 61.4.1 62.4.1 64.9.9 68.9 28.9 68.9 28.9 68.9 27.2 62.2 62.2 05.2 05.2 62.2 05.2 62.2 05.2	H O CO2/7-BU	6j (dr = 3:2)			1.161 √ 1.161 √ 1.164 √ 1.	0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0

				z.	гч
				Nhanda	-
				A)AIIMANANA	-
-20.29					20
-26.09					-
					- 8
					-
				(through the	_ o
24.24~					4
67.64					-
~25.21					- 22
-24.43					-
10.10-					- 8
2819-				AL MANAGA	-
				Aller May	- 6
<u>66.67</u> —					
				oglavheaut	- 80
				MM/MM	-
)MANA (H	- 6
				N/N/ 1/hr	-
					-8
					_
					o (E
					11 (pi
78.211-					-
				hirt have	120
12 921					-
127.97					- 130
128.20				in the second	
728.40				WWW	29
/9.641~					14
29.941-					
				W/W/W	150
					-
				line and the second	- 160
					-
	Ŧ			(Dimple)	10
	é é				(÷
	(qz ~_	0:1			
		>2			- 18(
	z	 		- MM	ŀ
	- []	p) (N/N/N/	- 190
	e	ດ		4M/(jitMua	ŀ
	Z			Madywinn	_ 8
				NNAMAN	Ň
				inter-	51(
			S-60		ŀ
				(I) MAN	Γö

					Upperformed	
					line while when the	10
1.91 2.02					Manager 1	- 50
Z·SZ—					aline restriction for	30
					envelopmenter and	- 4
9' 7 7 5'9 7 6'IS〜			-		lort hydrauth lyd	20
Z'65 ∼ 0'19 − 7'52 √					and the second	- 09
2 292					And Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-	- 02
					north and the second	- 08
					ANT MANY WALLAND	- 06
					in the second second	100
					MARINA CONVERTIN	110
119:5 — 233:3 _ 2129:9					AN MAN AN AN AN	120
2'97I 0'87I 6'97I						130
6.821 1.081					ANNAL PARAMA	140
5.24[-	hind the line of t	120
					เปลาไม่สุดใหญ่ เปลาไปสุด	- 09
					40M/WM/MIN	20
—172.2					n lander of the second	80 1
	Me	>20:1)			nd by way and a	90 1
	T O ² C	0 (dr =			wan change and the second)0 1 <u>(</u>
-208.6	Me	~			MDavHeed NYMA	0 2(
			S-63		An university of the second	20 2

0.22—				 41/01/11/11/11/11/11/11/11/11/11/11/11/11
6 [.] 05—				 0.000 100 100 100 100 100 100 100 100 10
				 MUTAMMANUprinding Way with a contract of c
6.801 — 0.211 — 2.321 <u>-</u> 2.321 <u>-</u> 2.321 <u>-</u> 2.321 <u>-</u>				1 1 2 0 1 1 0 1 1 0 0
9 821 9.621 5.221 9.921 8.921 9.921 9.921				4.1Mat/Mat/Mat/Mat/Mat/Mat/Mat/Mat/Mat/Mat/
	- F	<u>0</u>		1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	Br	လု	S-69	Martinghiludahilugahilugahilan

						And Upe	ΓŬ
						NANA WANNA AN	-
						NV MANAMAN	- ii
~50.4 ~22.4				_		a)had baarre	20
1 22						A STANKA MANA	0
						Mun Mun Mu	-
						krythynnyr yw	40
1.1.6						aan waxaa ka	- 02
[[5—						NAMAN MAN	-
						uduumavo Vurps	- 09
						n water of the second	- 02
						W ^{III} Kreentuur	-
						1).444.444.444.444	- 8
						www.huhan	- 06
						nandananan	0
						(Juni-Indu Vulue)	- 10
9.511 2.213.6						WWWWWWWWWWW	110
S'STT						way way and	50
9.51 726.6 727.6						Ju washington	÷
8.721 128.0						, Maria Manual Maria	130
2.8517) 2.851						NY provinski N	- 40
1.241.						wyryl wyrydwy	
						N.N.N.NIMMIN	150
Z'T9T~-						MANAMA	160
1.631~	ш				-	Mr.C.W.W.Way	
						in you for a new your way	170
	>=/					1/11/14/14/14/14/14/14/14/14/14/14/14/14	180
	$\langle \rangle$	1e)~~~~~	0
	¥-<	လ်				MMINNYAN	19
	Ře (ANN MANY MANY	200
						yydr'l Uhringan ⁱ YU	10
	Me		S-81			NAMANAN	5
						yLM	Ĺ

			Joshw	
∀.13.4			MAN ANA ANA ANA ANA ANA ANA ANA ANA ANA	10
9'ET 8'ET			 With Dawn	-
۶'I2' ۲'I2'			 Market 1/10-10	- 20
			w/hanhane	30
9.25 2			 hy Lawy Liver	- 40
			Weiplored University	- 20
			W.M.W.W.W.W.	- 09
			tradit have constrained and	- 20
		-	 in the second seco	- 80
			m.	- 06
			When Martin Martin	100
			ulo approved and a second s	110
123'3 123'4 123'6			 We cho where the second	120
129.9 8.921 7.129.9			Mr. My Man	130
∽139'8 ∽139'5 ∽1⊀5'1			 Mikeo (A Faler Krypto	140
4.741 1.841 7.43.1			Appendice on Autophysic	150
			ND-N MANANA	160
Me			UPPHALANAMACAN	170
	= 3:1)		AND	180
©o_	g (E:Z ₌		Alwhyllethimes	190
₩ ₩	4		HILI TAY WAY	200
		0.07	1 M-INVIANA MADALA	210
2		5-87	MUNUM	_ 0

			Myddygal	- U
				10
-14.1 			n Manananan ang mananan ang	20
۲.22 کے ۲.28 کے				30
Ţ.ð£—			/www.u.go//www.u.go//www.u.go//www.u.go//www.u.go//www.u.go//www.u.go//www.u.go//www.u.go//www.u.go//www.u.go/	40
			สมนางที่ใหญ่หมู่หมู่ห	20
0.92—				0
			tral particularity	9 (
				- 22
			- MILANNAN	80
				- 06
			Indian with the second s	100
S.EII —		 	hornonya na	110
2129°3 ۲221 ک			MANANA JOANNA -	120
S'8ZT 9'8ZT / 6ZT				130
0.0ET 9.2ET 2.7ET				140
₽.2₽1 —				150
			ייייייייייייייייייייייייייייייייייייי	160
£			MUMMUM .	20
			ייראולארואארארואינא	30 1
R t-s t-s			10/m/11/10/11/10/01	0 18
ŢŦġ			WARA AN ANA ANA ANA ANA ANA ANA ANA ANA A	19
				200
ž	S-99		ng/manuality	210
				20

							o.
							0.5
							1.0
							1.5
							2.0
						₽00.£	2.5
							3.0
							3.5
98 [.] E—						≖66.2	0.
							- ri 4
							0
					1		
							- 2.5
⊅/`9 ⊃							.9
82'9 96'9 26'9						[™] .06.1	6.5
52.7 22.7 25.7						5.11-₹ 5.13 5.30 2.30	7.0
22 [.] 2 88 [.] 2 58 [.] 7						Porc	7.5
					Ş		8.0
							8.5
							9.0
	Ae	10:1)					9.5
	The second	E:Z = 1					10.0
	÷z=	4j (10.5
	Ŭ Ž		S-101				0

				-		,
9.51 —						2
				-	20	7
					- - - - - - - - - - - - - - - - - - -	ג ר
				-	- 04 - 10) F
				-		2
9.22—					- 09	2
						2
						2
					- - 06	2
						>>> T
					- 110 -	> 7 T
-1144 7 152.4 7				 	120 -	T L C
÷126.9 2.828 2.8287					130	2 T
7.132.4 7.132.4 1.38.7					140 - 1	
9'2 † I—					150	2 T
T.001-					160	2021
					170	7 / C
					1	TUC
	<u>e</u>	0:1)			190	۲ تر ر
	No de	::Z = 1			200	200
	÷z-	4j (F			1001	717
	°° ¥		S-102			2

S-104

10.5

0

0
				The second s	۲v
				NUL VENANA	-
L'LT				Montheast	10
— ۲۵ م ۲ S.05				WWW	
∽51'9 ∽53'¢					50
c.uc—					
2 02				whenter	
8.04— 2.75—					- 4
				h when we have a second se	-
9'TS—					50
				ANNAN ANNA ANNA ANNA ANNA ANNA ANNA AN	-
				"Albong/(I/M	- 90
				Whenhula	
					- 80
				April 100	-
				internet (unut	- 06
				A MANA ANA ANA ANA ANA ANA ANA ANA ANA A	
				YAAN MANNA MA	10
8.011~				MY1HWWWW	[0]
~112.4				May AN M	
				WWW	120
− 122 0 − 129:0					-
9 [.] 821— 2.0512					130
<u>∽</u> 134.0				1/M/Inner/Mi	0
				And Marken a	- 1
S.041—					50
				Development	
				UMMUN MUN	160
6 [.] 991 —					-
				N/WWW	170
				UTMAN IMPAN	
	Ae 2Me			∧∧www.wigy	[³⁷]
	L OS			1) International Inte	- 06
	~ / J	g		Janakan	
	M K	~		LLAVIANA	200
	()			(LANIANA)	
	Me			Anna Manu	210
			S-109	Undhamaya	

