Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI)

Aldehyde Effect and Ligand Discovery in Ru-Catalyzed Dehydrogenative Cross-Coupling of Alcohols to Esters

Xiaolin Jiang,^{a,b} Jiahui Zhang,^b Dongmei Zhao,^{*,a} and Yuehui Li^{*,b}

 ^a Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
^b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
E-mail: D. Zhao (dongmeiz-67@163.com) or Y. Li (yhli@licp.cas.cn).

Supporting Information

1. General information	S2
2. Reaction procedures and condition optimization	S2 – S5
3. Characterization data	S6 – S18
4. References	S19
5. Copies of spectra	S20 – S66

1. General information

Unless otherwise stated, all the materials were purchased from commercial suppliers and were used as received. Solvents were dried by solvent purification system from LC Technology Solution Inc. Flash chromatography was performed on SepaBeanTM machine. Products were characterized by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS spectroscopy. All ¹H, ¹³C NMR and ³¹P NMR spectra were recorded on Bruker 400 MHz spectrometer or Varian 400 MHz spectrometer. ¹H NMR and ¹³C{¹H} NMR chemical shifts are reported in ppm referenced to tetramethylsilane or the residual signals of the deuterated solvent. ³¹P{¹H} NMR chemical shifts are reported in ppm referenced to an external 85% solution of phosphoric acid in D₂O. The NMR chemical shift values refer to CDCl₃ (δ (¹H), 7.26 ppm; δ (¹³C), 77.16 ppm). In ¹³C NMR, the C-P coupling constant data is omitted due to the complexity, except for aliphatic carbon atoms. GC-MS data were obtained on Shimadzu GCMS-P2010 SE, GC data were obtained on Shimadzu GCMS-P2010 Plus. All measurements were carried out at room temperature unless otherwise stated.

2.1 General procedure for reactions in Scheme 2: To a 38 mL sealing tube in an nitrogen-filled glove box, the metal source and different kinds of PNP or PNN ligands were added followed by addition of solvent (2 mL). Then the tube was sealed and the resulted mixture was stirred outside the glove box at 120 °C for 1 h (to generate the catalyst *in situ*). The mixture was allowed to cool down to room temperature. To the mixture were added butanol or another aliphatic chain alcohol (0.3 mmol) and *t*BuOK under N₂ atomsphere. The reaction was stirred at 100 °C for 4 h. The yield was determined by GC analysis using *n*-dodecane or *n*-hexadecane as an internal standard.

2.2 General procedure for reactions of 2-phenylethanol and methanol (Table 1): To a 38 mL sealing tube in an nitrogen-filled glove box, the metal source, PNP ligand (obtained from in-*situ* neutralization of PNP.HCl salt with *t*BuOK) and aldehyde were added followed by addition of solvent (2 mL). Then the tube was sealed and the resulted mixture was stirred outside the glove box at 120 °C for 1 h (to generate the catalyst). The mixture was allowed to cool down to room temperature. To this mixture were added 2-phenylethanol (0.3 mmol), methanol (4.5 mmol) and K₂CO₃ under N₂ atomsphere. The reaction was stirred at 120 °C for 16 h. The yield was determined by GC analysis using *n*-tetradecane as an internal standard.

2.3 Condition optimization for the reaction of benzyl alcohol and methanol.

Reaction procedure: To a 38 mL sealing tube in an nitrogen-filled glove box, the metal source, PNP ligand (obtained from in-*situ* neutralization of PNP.HCl salt with *t*BuOK) and aldehyde were added followed by addition of solvent (2 mL). Then the tube was sealed and the resulted mixture was stirred outside the glove box at 120 °C for 1 h (to generate the catalyst). The mixture was allowed to cool down to room temperature. To this mixture were added benzyl

alcohol (0.3 mmol), methanol (4.5 mmol) and K_2CO_3 under N_2 atomsphere. The reaction was stirred at 120 °C for 16 h. The yield was determined by GC analysis using *n*-tetradecane as an internal standard.

Table S1 Investigation of different ligands and solvents for the reaction of benzyl alcohol and methanol^{*a*}

13	A4	THF	15	trace	
14	A4	1,4-dioxane	15	12	
15	A4	DEDM	15	trace	

^{*a*}Reaction conditions: **1i** (0.3 mmol), **Ru1** (1 mol%), **L1** (2 mol%), **A** (2.5 mol%), *t*BuOK (10 mol%), MeOH (X eq.) and solvent (2 mL) for 16 h, unless otherwise noted. ^{*b*}Determined by GC analysis using *n*-tetradecane as an internal standard. CPME = Cyclopentyl methyl ether. DEDM = Diethylene glycol dimethyl ether.

Table S2 Investigation of different ruthenium sources and bases for the reaction of benzyl alcohol and methanol^a

^{*a*}Reaction conditions: **1i** (0.3 mmol), **L1** (2 mol%), **A4** (2.5 mol%) , base (x mol%), MeOH (15 eq.) and mesitylene (2 mL) at 120 °C for 16 h, unless otherwise noted. ^{*b*}Determined by GC analysis using *n*-tetradecane as an internal standard.

Table S3 Investigation of reaction temperatures and time for the reaction of benzyl alcohol and methanol^a

OH 1i	2 mol% L1 , 2.5 m 1 mol% Ru1 . 20 m 2mL mesitylene, 1	O O Me 2i	
Entry	Temp (°C)	Time (h)	Yield (%) ^b
1	60	16	0
2	80	16	8
3	100	16	32
4	120	16	72
5	120	4	30
6	120	8	50

^{*a*}Reaction conditions: **1i** (0.3 mmol), **Ru1** (1 mol%), **L1** (2 mol%), **A4** (2.5 mol%), K₂CO₃ (20 mol%), MeOH (15 eq.) and mesitylene (2 mL). ^{*b*}Determined by GC analysis using *n*-tetradecane as an internal standard.

3. Characterization data

3.1.1 Syntheses of bis(2-chloroethyl)trimethylsilylamine

3.1.2 The title compound was synthesized following the reported procedure.¹

To a stirred suspension of bis(2-chloroethyl)amine hydrochloride (10 g, 56.0 mmol) in 100 mL Et₂O at 0 °C, 0.25 mL DMSO, triethylamine (17.0 g, 168.0 mmol) and trimethylchlorosilane (21.3 g, 196 mmol) were added dropwise over half an hour. Then the solution was stirred for one hour at 0 °C, followed by warming up to room temperature and stirrring for further 3-5 days. The solution was filtered and the volatiles of the liquid portion were removed in vacuo and the product was obtained as yellow viscous liquid (9.5 g, 44.4 mmol, 79.2 % yield).

¹H NMR (400 MHz, CDCl₃) δ3.37 (t, *J* = 7.4 Hz, 4H), 3.03 (t, *J* = 7.4 Hz, 4H), 0.07 (s, 9H).

3.2.1 Synthesis of bis(2-(diphenylphosphanyl)ethyl)amine

3.2.2 The title compound was synthesized referring to the reported procedure.²

Diphenyl phospine (11 g, 59 mmol) was dissolved in 80 mL of *n*-hexane followed by cooling to -78 °C. *n*-BuLi (2.5 M in n-hexane, 25 mL, 62.5 mmol) was added dropwise to the solution. Then, after the solution was stirred for half an hour at this temperature, it was warmed up to room temperature and the yellow solution was stirred for five hours. 10 mL of THF was added and the solution was again cooled down to -40 °C. 6.32 g (29.5 mmol) of bis(2-chloroethyl)trimethylsilylamine diluted in 10 mL of THF was added dropwise with white solid precipitated out. The yellow suspension was stirred for 16 h at room temperature. Afterwards, 30 mL of water and 60 mL of TBAF (1M solution in THF, 60 mmol) were added and the resulting two-phase system was stirred for 3-5 days at room teppertature.

Most of the organic solvents were removed in vacuo and the product was extracted three times with Et₂O. The organic layer was dried over MgSO₄, filtered. The volatiles of the liquid portion were removed by evaporation and the white product was dried in vacuo. The pincer ligand was further purified by adding one equivalent of HCI (1M in diethylether) to achieve the corresponding HCI solid adduct.

¹H NMR (400 MHz, CDCl₃), δ9.95 (s, 2H), 7.28(m, 20H), 2.91 (m, 4H), 2.50 (m, 4H).

³¹P NMR (162 MHz, CDCl₃) δ -21.03 ppm.

3.3.1 Synthesis of 2-(Diphenylphosphaneyl)-N-(pyridin-2-ylmethyl)ethan-1-amine (L2)

3.3.2 The title compound was synthesized referring to the reported procedure.³

A solution of 2-picolylaldehyde (0.514 g, 4.8 mmol) in THF (5 mL) was slowly added to a solution of the PN ligand (1.0 g, 4.36 mmol) in THF (20 mL). The reaction mixture was stirred for 1 h at room temperature. After the completion of the reaction the solvent was reduced in vacuo and the residue was dissolved in toluene (20 mL). A solution of diisobutylaluminium hydride in toluene (4.36 mL, 5.23 mmol, 1.2 M) was subsequently added to the reaction mixture dropwise. The reaction mixture was stirred for another 1 h at room temperature, and then quenched with water and extracted with toluene. The organic layer was dried with Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography using ethyl acetate/Et₃N as eluent to afford L2 as pale yellow oil. (1.20 g, 86 %).

¹H NMR (600 MHz, CDCl₃): δ 8.53 (d, *J* = 4.8 Hz, 1H), 7.60-7.50 (m, 1H), 7.43-7.40 (m, 4H), 7.3 (m, 6H), 7.24 (m, 1H), 7.14 (m, 1H), 3.88 (s, 2H), 2.81 (dd, *J* = 15.6, 7.9 Hz, 2H), 2.34-2.31 (m, 2H), 1.98 (br, NH). ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 149.3, 138.3 (d, *J* = 12.0 Hz), 136.4, 132.7 (d, *J* = 19.0 Hz), 128.6, 128.5, 128.4 (d, *J* = 7.0 Hz), 122.2 (d, *J* = 12.0 Hz), 55.0, 46.3 (d, *J* = 21.0 Hz), 29.0 (d, *J* = 12.0 Hz). ³¹P NMR (162 MHz, CDCl₃): δ -21.11 ppm.

3.4.1 Synthesis of

(2-((2-(diphenylphosphanyl)ethyl)(pyridin-2-ylmethyl)amino)ethyl)diphenylphosphine oxide or

(2-((2-(diphenylphosphanyl)ethyl)(isoquinolin-3ylmethyl)amino)ethyl)diphenylphosphine oxide

3.4.2 The title compounds were synthesized via the oxygen transfer amination procedure.

In a glove box, L1.HCl (1 g, 2.1 mmol) was dissolved in 3.0 ml of toluene solvent, and K_2CO_3 (48.1 mg, 1.26 mmol, 0.6 eq.) was added and stirred at 60 °C for 2 h. After cooling down to room temperature, picolinaldehyde or 2-quinolinecarboxaldehyde (225 mg or 330 mg, 2.1 mmol, 1eq.) was added under N₂ followed by stirring at 70 °C for 8 h. Then, 2M HCl solution (aq.) was added to the reaction mixture until no more bubbles were generated. Next, distilled water and anhydrous diethyl ether were added for extraction. The organic phase was combined, dried over anhydrous magnesium sulfate, and then filtered to remove the magnesium sulfate. After removing the ether by evaporation, anhydrous diethyl ether was added to wash the residue and give the desired product as white solid.

(2-((2-(diphenylphosphanyl)ethyl)(pyridin-2-ylmethyl)amino)ethyl)diphenylphosphine oxide, L3 ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 4.12 Hz, 1H), 7.67 (d, *J* = 7.28 Hz, 2H), 7.64 (d, *J* = 6.92 Hz, 2H), 7.52 (dd, *J* = 6.2, 13.9 Hz, 2H), 7.47 (d, *J* = 6.2 Hz, 2H), 7.44 - 7.40 (m, 4H), 7.36 - 7.32 (m, 4H), 7.28 - 7.26 (m, 6H), 7.10 (t, *J* = 5.94 Hz, 1H), 3.73 (s, 2H), 2.88 (dd, *J* = 7.4, 15.2 Hz, 2H), 2.62 (dd, *J* = 6.9, 17.5 Hz, 2H), 2.42 - 2.35 (m, 2H), 2.18 - 2.15 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 149.1, 138.6, 136.6, 133.7, 132.9, 131.8, 130.9, 128.9, 128.7, 128.6, 122.5, 59.7, 50.6(d, *J*_{C,P} = 20.0 Hz), 46.2, 27.0(d, *J*_{C,P} = 59.0 Hz), 26.7(d, *J*_{C,P} = 3.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 31.13, -20.19 ppm.

HRMS: C₃₄H₃₄N₂OP₂ [M+H⁺]; calculated: 549.2219, found: 549.2225.

(2-((2-(diphenylphosphanyl)ethyl)(quinolin-2-ylmethyl)amino)ethyl)diphenylphosphine oxide, L4 ¹H NMR (400 MHz, CDCl₃) δ 8.00 (t, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.69 (t, *J* = 7.1 Hz, 1H), 7.62 - 7.56 (m, 4H), 7.54 - 7.47 (m, 2H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.34 - 7.27 (m, 8H), 7.22 -7.20 (m, 6H), 3.90 (s, 2H), 2.95 - 2.85 (m, 2H), 2.67 - 2.66 (m, 2H), 2.42 - 2.39 (m, 2H), 2.24 -2.15 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 147.5, 138.3, 136.4, 133.4, 132.8, 131.72, 131.7, 130.7, 129.4, 129.1, 128.6, 128.61, 128.5, 128.5, 127.6, 127.5, 126.2, 121.2, 60.3, 49.9(d, *J*_{C,P} = 21.0

Hz), 46.1, 26.3(d, $J_{\rm C,P}$ = 68.0 Hz), 25.6(d, $J_{\rm C,P}$ = 2.0 Hz). $^{31}\rm P$ NMR (162 MHz, CDCl_3) δ 31.23 , - 20.28 ppm.

HRMS: C₃₈H₃₆N₂OP₂ [M+H⁺]; calculated: 599.2376, found: 599.2374.

3.5 NMR data of products

methyl 2-phenylacetate **(2a).**⁴ Pale yellow oil; 75% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.30 - 7.25 (m, 5H), 3.65 (s, 3H), 3.60 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ 172.0, 134.1, 129.3, 128.6, 127.0, 52.0, 41.2.

methyl 3-phenylpropanoate (**2b**).⁵ Pale yellow oil; 89% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.30 - 7.22 (m, 5H), 3.68 (s, 3H), 2.97 (t, *J* = 7.8 Hz, 2H), 2.65 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 140.5, 128.5, 128.3, 126.3, 51.6, 35.7, 31.0.

methyl pentanoate (**2d**).⁶ Clear colorless liquid; 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 3.65 (s, 3H), 2.29 (t, *J* = 7.5 Hz, 2H), 1.65-1.52 (m, 2H), 1.40-1.26 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 51.5, 33.9, 27.2, 22.4, 13.8.

methyl hexanoate (**2e**).⁶ Clear colorless liquid; 89% yield; ¹H NMR (400 MHz, CDCl₃) δ 3.65 (s, 3H), 2.28 (t, *J* = 7.6 Hz, 2H), 1.66-1.53 (m, 2H), 1.37-1.21 (m, 4H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 51.4, 34.0, 31.3, 24.6, 22.3, 13.9.

methyl benzoate (**2i**).⁷ Clear colorless oil; 83% yield; 1H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 133.0, 130.3, 129.7, 128.4, 52.2.

methyl 4-methylbenzoate (**2j**).⁷ Pale yellow oil; 93% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 3.86 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 143.5, 129.6, 129.0, 127.5, 51.8, 21.5.

MeO

methyl 4-methoxybenzoate (**2k**).⁷ Pale yellow oil; 90% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.2 Hz, 2H), 6.90 (d, J = 8.2 Hz, 2H), 3.87 (s, 3H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 163.5, 131.7, 122.4, 113.7, 55.5, 51.9.

methyl [1,1'-biphenyl]-4-carboxylate (**2I**).⁷ 84% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.0 Hz, 2H), 7.68 – 7.62 (m, 4H), 7.49 – 7.38 (m, 3H), 3.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 145.8, 140.2, 130.2, 129.1, 128.3, 127.4, 127.2, 52.2.

methyl 4-fluorobenzoate (**2m**).⁷ Clear colorless liquid; 69% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.99 (m, 2H), 7.06 (t, *J* = 8.5 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 165.3 (d, *J* = 158.7 Hz), 132.2 (d, *J* = 9.3 Hz), 126.5 (d, *J* = 3.1 Hz), 115.5 (d, *J* = 21.9 Hz), 52.2.

methyl 4-chlorobenzoate (**2n**).⁸ Pale yellow oil; 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 139.5, 131.1, 128.83, 128.77, 52.4.

methyl 4-bromobenzoate (**2o**).⁸ Pale yellow oil; 82% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 131.8, 131.2, 129.2, 128.1, 52.4.

methyl 4-iodobenzoate (**2p**).⁹ Pale yellow oil; 35% yield; ¹H NMR (400 MHz, CDCl₃) *δ* 7.81 – 7.71 (m, 4H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) *δ* 166.6, 137.8, 131.1, 129.7, 100.8, 52.4.

methyl 4-(trifluoromethyl)benzoate (**2q**).⁷ Pale yellow oil; 61% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H), 3.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 133.3 (q, J = 32.7 Hz), 132.4 (m), 128.9, 124.2 (q, J = 3.7 Hz), 123.5 (q, J = 272.6 Hz), 51.6.

dimethyl terephthalate (**2r**).⁷ White powder; 58% yield; ¹H NMR (400 MHz, CDCl₃) *δ* 8.07 (s, 4H), 3.92 (s, 6H).¹³C NMR (100 MHz, CDCl₃) *δ* 166.3, 134.0, 129.6, 52.5.

methyl 3-methylbenzoate (**2s**).⁸ Clear colorless liquid; 84% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (t, J = 5.9 Hz, 2H), 7.35 – 7.28 (m, 2H), 3.89 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 138.1, 133.7, 130.1, 128.3, 126.7, 52.0, 21.2.

methyl 3-methoxybenzoate (**2t**).⁸ Pale yellow oil; 81% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.55 (m, 2H), 7.33 (t, *J* = 7.9 Hz, 1H), 7.08 (d, *J* = 7.4 Hz, 1H), 3.90 (s, 3H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 159.6, 131.5, 129.4, 122.0, 119.50, 114.1, 55.4, 52.2.

methyl 2-methylbenzoate (**2u**).⁸ Pale yellow oil; 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.21 (d, J = 4.0 Hz, 2H), 3.86 (s, 3H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 140.2, 1320, 131.7, 130.6, 129.6, 125.7, 51.8, 21.7.

methyl 2-naphthoate (**2v**).⁸ Pale yellow oil; 82% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.07 (d, *J* = 8.6 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 8.6 Hz, 2H), 7.61 – 7.52 (m, 2H), 3.99 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 167.4, 135.7, 132.7, 131.2, 129.5, 128.4, 128.3, 127.9, 127.6, 126.8, 125.4, 52.3.

benzyl benzoate (**2y**).¹⁰ Pale yellow oil; 85% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.9 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.46 – 7.34 (m, 7H), 5.39 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 136.1, 133.16, 130.18, 129.8, 128.7, 128.5, 128.4, 128.3, 66.8.

4-methoxybenzyl 4-methoxybenzoate (**2z**).¹¹ Pale yellow oil; 94% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.9 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 6.92 – 6.89 (m, 4H), 5.27 (s, 2H), 3.85 (s, 3H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 163.5, 159.8, 131.8, 130.1, 128.6, 122.9, 114.1, 113.7, 66.4, 55.5, 55.4.

4-methylbenzyl 4-methylbenzoate (**2aa**).¹² Pale yellow oil; 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.4 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 7.21 – 7.17 (m, 2H), 5.30 (s, 2H), 2.38 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 143.7, 138.1, 133.3, 129.8, 129.2, 128.4, 127.6, 66.6, 21.7, 21.3.

4-fluorobenzyl 4-fluorobenzoate (**2ab**).¹¹ Pale yellow oil; 78% yield; 1H NMR (400 MHz, CDCl₃) δ 8.09 – 8.05 (m, 2H), 7.44 – 7.40 (m, 2H), 7.12 – 7.04 (m, 4H), 5.31 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 164.8 (d, *J* = 144.3 Hz), 163.2 (d, *J* = 310.4 Hz), 132.4 (d, *J* = 9.2 Hz), 131.9, 130.4 (d, *J* = 8.2 Hz), 126.4, 115.7 (d, *J* = 21.7 Hz), 66.3.

4-chlorobenzyl 4-chlorobenzoate (**2ac**).¹¹ White powder; 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 6.4 Hz, 2H), 7.30 (d, J = 6.4 Hz, 8H), 5.21 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 139.8, 134.5, 131.2, 129.8, 129.0, 128.9, 128.6, 66.3.

4-bromobenzyl 4-bromobenzoate (**2ad**).¹² White powder; 84% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 5.30 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 134.96, 131.99, 131.96, 131.4, 130.1, 129.0, 128.5, 122.6, 66.3.

4-iodobenzyl 4-iodobenzoate (**2ae**).¹² White powder; 78% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.71 (m, 6H), 7.18 (d, *J* = 7.4 Hz, 2H), 5.28 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 137.97, 137.96, 135.6, 131.3, 130.2, 129.6, 101.1, 94.2, 66.4.

[1,1'-biphenyl]-4-ylmethyl [1,1'-biphenyl]-4-carboxylate (**2af**).¹¹ White powder; 83% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 7.8 Hz, 2H), 7.69 – 7.61 (m, 8H), 7.56 (d, *J* = 7.1 Hz, 2H), 7.49 – 7.35 (m, 6H), 5.45 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 146.0, 141.4, 140.9, 140.2, 135.3, 130.4, 129.1, 129.0, 128.8, 128.3, 127.6, 127.5, 127.4, 127.3, 127.2, 66.6.

3-methoxybenzyl 3-methoxybenzoate (**2ag**).¹¹ Pale yellow oil; 82% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.6 Hz, 1H), 7.61 (s, 2H), 7.37 – 7.29 (m, 2H), 7.11 (d, *J* = 9.2 Hz, 1H), 7.04 – 6.99 (m, 2H), 6.89 (d, *J* = 7.9 Hz, 2H), 5.34 (s, 2H), 3.84 (d, *J* = 9.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 159.9, 159.73, 137.72, 131.6, 129.8, 129.5, 122.3, 120.4, 119.7, 114.39, 114.38, 113.8, 66.8, 55.6, 55.4.

3-methylbenzyl 3-methylbenzoate (**2ah**).¹¹ Pale yellow oil; 79% yield; ¹H NMR (400 MHz, CDCl₃) 7.37-7.16 (m, 5H), 3.71 (q, *J* = 7.2 Hz, 1H), 1.49 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) *δ* 181.3, 139.8, 128.8, 127.7, 127.5, 45.5, 18.2.

benzo[d][1,3]dioxol-5-ylmethyl benzo[d][1,3]dioxole-5-carboxylate (**2ak**).¹¹ White powder; 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.65 (m, 1H), 7.48 (t, *J* = 1.7 Hz, 1H), 6.93 – 6.90 (m, 2H), 6.82 (td, *J* = 8.3, 1.4 Hz, 2H), 5.99 (d, *J* = 23.5 Hz, 4H), 5.22 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 151.8, 148.0, 147.9, 147.8, 130.1, 125.6, 124.4, 122.3, 109.7, 109.1, 108.4, 108.1, 101.9, 101.3, 66.7.

naphthalen-2-ylmethyl 2-naphthoate (**2al**).¹¹ White powder; 84% yield; ¹H NMR (400 MHz, CDCl₃) 7.37-7.16 (m, 5H), 3.71 (q, J = 7.2 Hz, 1H), 1.49 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 181.3, 139.8, 128.8, 127.7, 127.5, 45.5, 18.2.

phenethyl 2-phenylacetate (**2am**).¹⁰ Colourless oil; 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.18 (m, 8H), 7.13 (d, *J* = 7.4 Hz, 2H), 4.29 (t, *J* = 6.9 Hz, 2H), 3.58 (s, 2H), 2.89 (t, *J* = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 137.8, 134.1, 129.4, 129.0, 128.6, 128.6, 127.1, 126.6, 65.4, 41.5, 35.1.

pentyl pentanoate (**2ap**).¹¹ Clear colorless liquid; 88% yield; ¹H NMR (400 MHz, CDCl₃) δ 4.04 (t, J = 6.4 Hz, 2H), 2.28 (t, J = 7.7 Hz, 2H), 1.62 – 1.57 (m, 4H), 1.36 – 1.30 (m, 6H), 0.92 – 0.87 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 64.5, 34.2, 28.5, 28.2, 27.2, 22.43, 22.39, 14.1, 13.8.

C₅H₁₁ O C₅H₁₁

hexyl hexanoate (**2aq**).¹¹ Clear colorless liquid; 93% yield; ¹H NMR (400 MHz, CDCl₃) δ 4.04 (t, J = 6.8 Hz, 2H), 2.27 (t, J = 7.5 Hz, 2H), 1.64 – 1.56 (m, 4H), 1.29 (d, J = 3.2 Hz, 10H), 0.89 – 0.86 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 64.5, 34.5, 31.6, 31.5, 28.8, 25.7, 24.8, 22.7, 22.4, 14.1, 14.0.

C₁₅H₃₁ O C₁₅H₃₁

hexadecyl palmitate (**2ar**).¹³ 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 4.05 (t, *J* = 6.7 Hz, 2H), 2.28 (t, *J* = 7.5 Hz, 2H), 1.26 (s, 54H), 0.88 (t, *J* = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 64.5, 34.6, 32.1, 29.84, 29.81, 29.76, 29.73, 29.69, 29.6, 29.5, 29.4, 29.3 28.8, 26.1, 25.2, 22.8, 14.2.

isobenzofuran-1(3H)-one (**2as**).¹¹ 95% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.6 Hz, 1H), 7.67 (t, J = 7.3 Hz, 1H), 7.53 – 7.48 (m, 2H), 5.31 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 146.6, 134.1, 129.1, 125.8, 122.2, 69.7.

δ-Valerolactone (**2at**).¹⁴ Clear colorless liquid; 84% yield; ¹H NMR (400 MHz, CDCl₃) δ4.27 (t, J = 5.7 Hz, 2H), 2.48 (t, J = 6.7 Hz, 2H), 1.87 – 1.75 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 69.4, 29.8, 22.2, 19.0.

Cyclohexanone (**3a**).¹⁴ Clear colorless liquid; 65% yield; ¹H NMR (400 MHz, CDCl₃) δ 2.27 – 2.23 (m, 3H), 1.77 – 1.63 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 212.0, 41.9, 27.0, 25.0.

Acetophenone (**3b**).¹⁴ Clear colorless liquid; 81% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.94 (m, 2H), 7.57 – 7.53 (m, 1H), 7.45 (t, *J* = 6.7 Hz, 2H), 2.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.1, 137.2, 133.1, 128.6, 128.3, 26.6.

MeO

1-(4-methoxyphenyl)ethan-1-one (**3c**).¹⁴ Crystalline Powder; 89% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 163.6, 130.7, 130.5, 113.8, 55.6, 26.4.

 \sim

1-(p-tolyl)ethan-1-one (**3d**).¹⁴ Pale yellow liquid; 84% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 2.57 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.8, 143.8, 134.8, 129.2, 128.4, 26.5, 21.6.

1-(o-tolyl)ethan-1-one (**3e**).¹⁴ Pale yellow liquid; 78% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (t, J = 7.7 Hz, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.27 – 7.20 (m, 2H), 2.55 (s, 3H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.5, 138.3, 137.6, 132.0, 131.4, 129.3, 125.6, 29.4, 21.5.

Br

1-(4-bromophenyl)ethan-1-one (**3f**).¹⁴ Crystalline flakes; 79% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 2H), 7.59 (d, J = 8.6 Hz, 2H), 2.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 136.0, 132.0, 123.0, 128.4, 26.6.

4. References:

1. Li, H.; Dong, K.; Jiao, H.-J.; Neumann, H.; Jackstell, R.; Beller, M. Nat. Chem. 2016, 8, 1159 -1166.

2. Garbe, M.; Junge, K.; Walker, S.; Wei, Z.-H.; Jiao, H.-J.; Spannenberg, A.; Bachmann, S.; Scalone , M.; Beller, M. Angew. Chem. Int. Ed. **2017**, *56*, 11237-11241.

3. Zubar, V.; Lebedev, Y.; Azofra, L.- M.; Cavallo, L.; El-Sepelgy, O. ; Rueping, M. Angew. Chem. Int. Ed. **2018**, *57*, 13439 - 13443.

4. Ke, J.; He, C.; Liu, H.-Y.; Xu, H.; Lei, A.-W. Chem. Commun. 2013, 49, 6767 - 6769.

5. Guo, L.; Ma, X.-C; Fang, H.-Q.; Jia, X.-Q.; Huang, Z. Angew. Chem. Int. Ed. 2015, 54, 4023 - 4027.

6. Nikishin, G.-I.; Kapustina, N.-I.; Sokova, L.-L.; Bityukov, O.-V.; Terent'ev, A.-O. Tetrahedron Letters, 2017, 58, 352 - 354.

7. Liu, C .; Wang, J.; Meng, L-K.; Deng, Y .; Li, Y.; Lei, A-W. Angew. Chem. Int. Ed. 2011, 50, 5144 - 5148.

8. Cheng, J.-J.; Zhu, M.-J.; Wang, C.; Li, J.-J.; Jiang, X.; Wei, Y.-W.; Tang, W.-J.; Xue, D.; Xiao, J.-L. Chem. Sci. **2016**, *7*, 4428 - 4434.

9. Zhou, H.; Zhang, J.-L.; Yang, H.-M.; Xia, C.-G.; Jiang, G.-X. Organometallics 2016, 35, 3406 - 3412.

10. Sølvhøj, A.; Madsen, R. Organometallics 2011, 30, 6044 - 6048.

11. Paudel, K.; Pandey, B.; Xu, S.; Taylor, D.-K.; Tyer, D.-L.; Torres, C.-L.; Gallagher, S.; Kong, L.; Ding, K.-Y. Org. Lett. **2018**, *20*, 4478 - 4481.

12. Ghatak, T.; Drucker, S.; Fridman, N.; Eisen, M.-S. Dalton Trans. 2017, 46, 12005 - 12009.

13. Ji, Q.; Miljanić, O.-Š. J. Org. Chem. 2013, 78, 12710 - 12716.

14. Chakraborty, S.; Lagaditis, P.-O.; Förster, M.; Bielinski, E.-A.; Hazari, N.; Holthausen, M.-C.; Jones, W.-D.; Schneider, S. ACS Catal. **2014**, *4*, 3994–4003.

5. Copies of product NMR

¹H NMR for N,N-bis(2-chloroethyl)-1,1,1-trimethylsilanamine

³¹P NMR for bis(2-(diphenylphosphanyl)ethyl)amine

¹H NMR for 2-(Diphenylphosphaneyl)-N-(pyridin-2-ylmethyl)ethan-1-amine, L2

³¹P NMR for 2-(Diphenylphosphaneyl)-N-(pyridin-2-ylmethyl)ethan-1-amine, L2

Parameter Value 1 Solvent CDC13 2 Temperature 298.3 3 Number of Scans 2 4 Spectrometer Frequency 161.97 5 Nucleus 31P	Ĩ		
~			

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -2 fl (ppm) ¹H NMR for (2-((2-(diphenylphosphanyl)ethyl)(pyridin-2-ylmethyl)amino)ethyl) diphenyl phosphine oxide, **L3**

¹³C NMR for (2-((2-(diphenylphosphanyl)ethyl)(pyridin-2-ylmethyl)amino)ethyl) diphenylphosphine oxide, **L3**

³¹P NMR for (2-((2-(diphenylphosphanyl)ethyl)(pyridin-2-ylmethyl)amino)ethyl) diphenylphosphine oxide, **L3**

HRMS for NMR for (2-((2-(diphenylphosphanyl)ethyl)(pyridin-ylmethyl)amino)ethyl) diphenylphosphine oxide, **L3**

¹H NMR for (2-((2-(diphenylphosphanyl)ethyl)(isoquinolin-3-ylmethyl)amino)ethyl) diphenyl-phosphine oxide, **L4**

¹³C NMR for (2-((2-(diphenylphosphanyl)ethyl)(isoquinolin-3-ylmethyl)amino)ethyl) diphenyl-phosphine oxide, **L4**

³¹P NMR for (2-((2-(diphenylphosphanyl)ethyl)(isoquinolin-3-ylmethyl)amino)ethyl) diphenyl-phosphine oxide, **L4**

HRMS for (2-((2-(diphenylphosphanyl)ethyl)(isoquinolin-3-ylmethyl)amino)ethyl) diphenyl-phosphine oxide, L4

methyl 2-phenylacetate, 2a

methyl 3-phenylpropanoate, 2b

methyl pentanoate, 2d

methyl hexanoate, 2e

methyl 4-methylbenzoate, 2j

methyl 4-methoxybenzoate, 2k

methyl [1,1'-biphenyl]-4-carboxylate, 2l

methyl 4-fluorobenzoate, 2m

methyl 4-chlorobenzoate, 2n

methyl 4-bromobenzoate, 20

S37

methyl 4-iodobenzoate, 2p

methyl 4-(trifluoromethyl)benzoate, 2q

dimethyl terephthalate, 2r

methyl 3-methylbenzoate, 2s

methyl 3-methoxybenzoate, 2t

methyl 2-methylbenzoate, 2u

methyl 2-naphthoate, 2v

4-methoxybenzyl 4-methoxybenzoate, 2z

4-methylbenzyl 4-methylbenzoate, 2aa

4-chlorobenzyl 4-chlorobenzoate, 2ac

4-bromobenzyl 4-bromobenzoate, 2ad

4-iodobenzyl 4-iodobenzoate, 2ae

[1,1'-biphenyl]-4-ylmethyl [1,1'-biphenyl]-4-carboxylate, **2af**

3-methoxybenzyl 3-methoxybenzoate, 2ag

benzo[d][1,3]dioxol-5-ylmethyl benzo[d][1,3]dioxole-5-carboxylate, 2ak

phenethyl 2-phenylacetate, 2am

pentyl pentanoate, 2ap

hexyl hexanoate, 2aq

hexadecyl palmitate, 2ar

isobenzofuran-1(3H)-one, 2as

tetrahydro-2H-pyran-2-one, 2at

Cyclohexanone, 3a

S61

Acetophenone, 3b

1-(4-methoxyphenyl)ethan-1-one, 3c

1-(p-tolyl)ethan-1-one, 3d

1-(o-tolyl)ethan-1-one, 3e

1-(4-bromophenyl)ethan-1-one, **3f**

