Supporting Information

Probing the Photovoltaic Properties of Ga-Doped CdS-Cu₂S

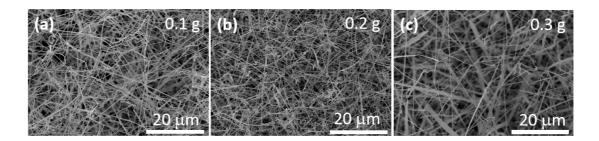
Core-Shell Heterostructured Nanowire Devices

Ming-Yen Lu^{a, b,*}, Meng-Hsiang Hong^c, Yen-Min Ruan^c, and Ming-Pei Lu^d

^a Department of Materials Science and Engineering, National Tsing Hua University,

Hsinchu 300, Taiwan

^b High Entropy Materials Center, National Tsing Hua University, Hsinchu 300,


Taiwan

^c Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-

Yi 62102, Taiwan

^d National Nano Device Laboratories, Hsinchu 300, Taiwan

* Corresponding Author: mylu@mx.nthu.edu.tw

Figure S1 SEM images of CdS NWs grown using (a) 0.1, (b) 0.2, and (c) 0.3 g of the Ga source.

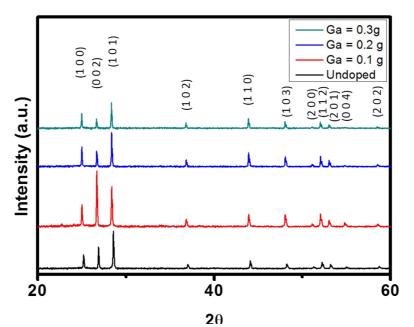


Figure S2 XRD patterns of the various samples.

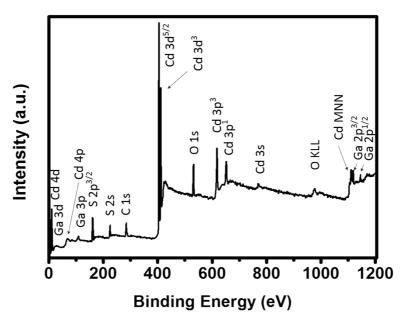
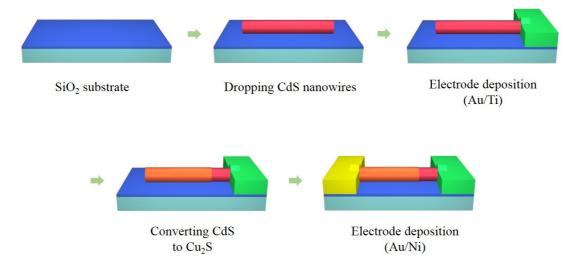



Figure S3 XPS survey scan of the Ga-doped CdS NWs.

Fabrication of heterostructured devices

First, a Ga-doped NW was dispersed on a pre-patterned 300-nm SiO₂/Si substrate [Fig. S4(a)]; after EBL and a lift-off process, 120-nm Ti and 30-nm Au were deposited as the electrode on one side of the CdS NW [Fig. S4(b)]. The NW was then immersed in 5 M CuCl in MeOH at 50 °C for 10 s to form a Cu₂S shell on the CdS NW, through cation exchange [Fig. S4(c)]; the heterostructured NW device was obtained after deposition of a 120-nm Ni/30-nm Au electrode on the Cu₂S shell [Fig. S4(d)]. Ti and Ni served as contact metals for the CdS and Cu₂S, respectively, forming ohmic contacts at the interfaces.

Figure S4 Schematic representation of the fabrication process flow of a CdS–Cu₂S core–shell heterostructure device.

• The definitions of fill factor (FF) and the power conversion efficiency (η)

The FF and the power conversion efficiency (η) are crucial parameters for gauging the performance of any solar cell; they are defined as,

$$FF = \frac{J_m \times V_m}{J_{sc} \times V_{oc}}$$
(1)
and

$$\eta = \frac{J_{sc} \times V_{oc} \times FF}{P_{in}}$$
(2)

where $J_{\rm m}$ and $V_{\rm m}$ are the current density and voltage, respectively, measured when the output power of the device was at its maximum value, and $P_{\rm in}$ is the power density of the incident light.