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Materials and Methods 

Mineral preparation. Mineral samples were obtained from Ward’s Science (Rochester, 

NY, USA; magnetite: #470025-672, pyrite: #470206-112, pyrrhotite: #470025-750, 

calcite: #470025-512, apatite: #470226-354). Pyrite, pyrrhotite, and magnetite were 

ground mechanically using a jaw crusher and disk mill sieved to exclude grains smaller 

than 75 µm and greater than 150 µm and acid-washed as described in.1 Briefly, the samples 

were sonicated in 95% ethanol 8–10 times, soaked in 0.1 M nitric acid for 1 minute, and 

then rinsed thoroughly with nanopure water with a final 95% ethanol wash to prevent re-

oxidation. The grains were then allowed to dry completely in an anaerobic chamber. 

Removal of the oxidized layers was verified by measuring the amount of sulfate released 

using ion chromatography. Calcite and apatite were ground by hand in a pestle and mortar 

(calcite, apatite) and sieved to remove particles under 75 µm.  

 

RNA preparation. All the random RNAs and the X, Y, and Z RNA fragments were 

purchased from Tri-Link Biotechnologies (San Diego, CA, USA). The W fragment and the 

WXYZ product (size marker) were prepared through run-off in vitro transcription as 

described previously.2 For quantification, random RNAs and the W fragment were 5´-

labeled with γ32P•[ATP] using T4 polynucleotide Kinase (NEB). 

 

RNA adsorption onto mineral surfaces. Typically, 0.6 μM of each length-class of 

random RNA and their 32P-labeled fraction (≤0.005 μM each) were incubated in 10 μL 

buffer (100 mM MgCl2, 30 mM EPPS, pH 7.0) in the presence or absence of 0.2 mg of one 

type of mineral particle at 22 ºC (room temperature) for 2 h. In a subset of experiments, a 

10-fold higher concentration (6 µM) was used instead. The RNAs were heated to 65 ºC for 

2 min and cooled to room temperature just before use. The incubation time (2 h) was more 

than sufficient for the RNA length distribution on mineral surfaces to equilibrate (Fig. S7). 

After incubation, an aliquot of reaction solution was centrifuged (6,000 rpm, 30 sec) to 

remove as much supernatant as possible. An aliquot of the supernatant was put in nine 

volumes of stripping buffer (50% formamide, 8 M urea, 50 mM EDTA, pH 8.0, 0.025% 

bromophenol blue). Mineral particles were quickly washed with >300-fold wash solution 

(100 mM MgCl2, 30 mM EPPS, pH 7.0) and centrifuged (6,000 rpm, 30 sec) to remove 

unbound RNAs. After the removal of wash solution, mineral particles were mixed with 50 

μL of the stripping buffer per 0.2 mg minerals and incubated for 30 min at 22 ºC and 3 min 

at 80 ºC. The supernatant and stripped RNA solutions were subjected to polyacrylamide 

gel electrophoresis. Samples were heated to 80 ºC for 2 min, cooled on ice for 1 min, loaded 

onto a 15% polyacrylamide / 8 M urea denaturing gel in 1X TBE buffer, and 

electrophoresed at 900–1000 V for approximately 2 h. Gels were visualized by 

phosphorimaging on a Typhoon Trio+ imager (GE Healthcare), and band intensities were 

quantified using the ImageQuantTM TL software (GE Healthcare). 

 

Self-assembly reaction with hydroxyapatite. The standard reaction mixture (20 μL) 

contained 2 μM W, X, Y, and Z fragments, 32P-labeled W fragment (≤0.02 μM each), 100 

mM MgCl2, 30 mM EPPS (pH 7.5), with or without 0.2 mg hydroxyapatite. The RNAs 

were heated to 65 ºC for 2 min and cooled to 22 ºC before use. The mixture was incubated 

at 48 ºC for 2 h. After the incubation, supernatant was put in the stripping buffer, and RNAs 

that were adsorbed onto mineral surfaces were stripped off as described above. The RNA 



 

 

3 

 

products were subjected to 8% polyacrylamide / 8M urea denaturing gel electrophoresis in 

1X TBE buffer (800 V, approximately 2 h) and analyzed as described above. 

 

 

Full details of mathematical models.  

We first derive a model for the simultaneous adsorption of different oligomers on a 1D 

surface, to obtain exact expressions for the surface fraction covered by each oligomer in a 

low-dimensional case. We then consider some extensions of the model to higher 

dimensions for stiff and flexible oligomers. These approaches are derived from the works 

of Ramirez-Pastor et al.,3,4 where they have been applied to the case of a single adsorbent. 

 

I Adsorption of oligomers on a 1D lattice  

We start by considering a large solution of RNA oligomers, each of which maintained at a 

fixed dimensionless concentration  𝑐̅. In addition, the solution contains a mineral, with an 

exposed surface on which oligomers can adsorb. We consider the exposed surface to have 

𝑀adsorption sites, with a size comparable to a single monomer. Correspondingly, to fully 

adsorb a k-mer, 𝑘 adsorption sites need to be occupied. For our purposes, the RNA solution 

contains 8-,12-,16-,20- and 24-mers, and whenever we take a sum (e.g. ∑ ) it will denote a 

sum over these values. 

 

Let us denote with 𝑁𝑖 the number of adsorbed RNA oligomers of length i. In total, these 

oligomers occupy 𝑖 𝑁𝑖 mineral sites. Consequently, we find that the number of unoccupied 

mineral sites 𝑁∅ can be written as 

 𝑁∅ = 𝑀 − ∑ 𝑖 𝑁𝑖

𝑖

. (1) 

 

We denote by 𝑊 the number of empty mineral sites plus the number of adsorbed species 

 𝑊 = 𝑁∅ + ∑ 𝑁𝑖

𝑖

. (2) 

 

A surface state is completely described by the exact sequence in which the surface bound 

molecules and empty sites appear. The number of states is consequently given by all their 

possible permutations 

 
Ω({𝑁𝑖}, 𝑀) = (

𝑊
𝑁8, 𝑁12, 𝑁16, 𝑁20, 𝑁24, 𝑁∅

) =
𝑊!

𝑁8! 𝑁12! 𝑁16! 𝑁20! 𝑁24! 𝑁∅!
 . 

 

(3) 

 

We introduce a standard free energy for a 𝑘-mer on a mineral surface, 𝜇𝑘,𝑚𝑖𝑛
∘ , which we 

model as an affine function of 𝑘 

 𝜇𝑘,𝑚𝑖𝑛
∘ = 𝑎0 + 𝑎1 𝑘 , (4) 

 

where we suppose that 𝑎1 < 0. It follows that  Ω({𝑁𝑖}, 𝑀) is the partition function for a 

microcanonical ensemble, which can be related to a canonical ensemble 𝑄({𝑁𝑖}, 𝑀, 𝑇) via 
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 𝑄({𝑁𝑖}, 𝑀, 𝑇) = Ω({𝑁𝑖}, 𝑀) exp(− 𝛽 ∑ 𝑁𝑖

𝑖

𝜇𝑖,𝑚𝑖𝑛
∘ ), (5) 

 

where 𝛽 =
1

𝑘𝑏𝑇
, with Boltzmann’s constant 𝑘𝑏 and the absolute temperature T. We can then 

extract the Helmholtz free energy F by 

 𝛽𝐹({𝑁𝑖}, 𝑀, 𝑇) = − ln 𝑄({𝑁𝑖}, 𝑀, 𝑇) = − ln Ω({𝑁𝑖}, 𝑀) + 𝛽 ∑ 𝑁𝑖

𝑖

𝜇𝑖,𝑚𝑖𝑛
∘ , (6) 

 

We can rewrite ln Ω({𝑁𝑖}, 𝑀) as a mixing entropy, by performing a Stirling approximation 

ln 𝑁! = 𝑁 ln 𝑁 − 𝑁 + 𝑂(ln 𝑁) :  

 ln Ω({𝑁𝑖}, 𝑀) = 𝑊 ln 𝑊 −  ∑ 𝑁𝑖

𝑖

ln 𝑁𝑖 −  𝑁∅ ln 𝑁∅, (7) 

 

which can be rewritten as  

 
ln Ω({𝑁𝑖}, 𝑀) = − ∑ 𝑁𝑖

𝑖

ln
𝑁𝑖

𝑊
− 𝑁∅ ln

𝑁∅

𝑊
. 

(8) 

 

This has the functional form of a mixing entropy (but taken relative to 𝑊 instead of 𝑀), 

which gives a clear interpretation of this object. However, we prefer to work in terms of 

surface coverages 𝜃𝑖 = 𝑖
𝑁𝑖

𝑀
, 𝜃0 =

𝑁∅

𝑀
, 𝜃𝑊 =

𝑊

𝑀
. Let us therefore write: 

 
ln Ω({𝑁𝑖}, 𝑀) = 𝑊 ln

𝑊

𝑀
−  ∑ 𝑁𝑖

𝑖

ln
𝑁𝑖

𝑀
−  𝑁∅ ln

𝑁∅

𝑀
  

(9) 

= 𝑀 [ 𝜃𝑊 ln 𝜃𝑊 −  ∑
𝜃𝑖

𝑖
ln

𝜃𝑖

𝑖
𝑖

 −  𝜃0 ln 𝜃0 ], 

 

where we have introduced 𝜃𝑘 = 𝑘
𝑁𝑘

𝑀
 (fraction of sites covered by  𝑘 -mers), 𝜃0 =

𝑁∅

𝑀
 

(fraction of empty sites), 𝜃𝑊 =
𝑊

𝑀
  (fraction of empty sites and oligomers). The 𝜃𝑊 ln 𝜃𝑊 

term in Eq. (9) is a consequence of multisite adsorption. We can now extract the chemical 

potential of adsorbed monomers of length 𝑘, using 

 
𝜇𝑘,𝑚𝑖𝑛 = (

𝜕𝐹

𝜕𝑁𝑘
)

𝑇,𝑀,𝑁𝑖≠𝑁𝑘

 , 
(10) 

 

which after taking the appropriate derivatives affords the expression 

 
𝜇𝑘,𝑚𝑖𝑛 =  𝜇𝑘,𝑚𝑖𝑛

∘ + 𝑘𝑏𝑇 [ ln
𝜃𝑘

𝑘
+ (𝑘 − 1) ln

𝜃𝑊

 𝜃0 
− ln  𝜃0].  

(11) 

 

If our mixture would contain only a single type of oligomer of length 𝑘, we recover the 

isotherm in 3. 
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Let us now put our system in contact with a large solution of oligomers, each of which 

maintained at a dimensionless concentration  𝑐̅ = 𝑐𝑘/𝑐∘ . Where 𝑐∘  is a standard 

concentration (1 M). The oligomers in solution have a chemical potential 

 𝜇𝑘 = 𝜇𝑘
∘ + 𝑘𝑏𝑇 ln 𝑐̅, (12) 

 

where 𝜇𝑘
∘  is a standard free energy of formation at concentration  𝑐∘. We consider 𝜇𝑘

∘  to be 

an affine function of 𝑘:  

 𝜇𝑘
∘ = 𝑏0 + 𝑏1 𝑘. (13) 

 

A reversible adsorption process will lead to chemical equilibrium, at which 𝜇𝑘,𝑚𝑖𝑛 = 𝜇𝑘. 

Let us now substitute Eq. (12) in Eq. (11), and write  

 
0 = Δ𝜇𝑘,𝑎𝑑𝑠

∗ + 𝑘𝑏𝑇 [ ln
𝜃𝑘

𝑘
+ (𝑘 − 1) ln

𝜃𝑊

 𝜃0 
− ln  𝜃0]. 

(14) 

 

From Eq. (4),(12), and (13) it follows that Δ𝜇𝑘,𝑎𝑑𝑠
∗  is again an affine function. We write 

 Δ𝜇𝑘,𝑎𝑑𝑠
∗ = 𝜖 + 𝛿 𝑘, (15) 

 

where 𝜖 = 𝑎0 − 𝑏0 − 𝑘𝑏𝑇 ln 𝑐̅  and 𝛿 = 𝑎1 − 𝑏1 . Eq. (14) then gives the equilibrium 

surface coverage for 𝑘-mers  

 
𝜃𝑘 = 𝑘 exp(−𝛽(𝜖 + 𝛿𝑘)) (

𝜃0

𝜃𝑊
)

𝑘−1

𝜃0. 
(16) 

 

Let us define 𝑟𝑘 = 5
𝜃𝑘

𝑘
/∑

 𝜃𝑖

𝑖
 as the relative concentration of a 𝑘-mer. The ratio of 𝑘-mers 

to 𝑗-mers is then 

 𝑟𝑘

𝑟𝑗
=

𝑗 𝜃𝑘

𝑘 𝜃𝑗
= (

𝜃0

 𝜃𝑊 
)

𝑘−𝑗

exp(−𝛽 𝛿 (𝑘 − 𝑗)). 
(17) 

 

Because 𝑊 ≥  𝑁∅ , 𝜃0/𝜃𝑊 ≤ 1 . If we consider 𝑘 > 𝑗 , we see that the entropic term 

(
𝜃0

 𝜃𝑊 
)

𝑘−𝑗

favors shorter oligomers. This is to be expected, as smaller oligomers allow for 

more possible surface configurations. Because 𝛿 < 0, the factor exp(−𝛽 𝛿 (𝑘 − 𝑗)) favors 

longer oligomers. From Eq. (17), we deduce that the relative concentrations of adsorbed 

oligomers follow an exponential trend. We will now extend the model by relaxing the 1D 

assumption. Interestingly, this can largely be taken account by simply shifting the constants 

𝜖 and 𝛿. Consequently, we can proceed using Eq. (16). 

  

IIa 2D: Connectivity ansatz 
As shown in 3, an effective way to describe stiff oligomers on a 2D lattice is by introducing 

a connectivity ansatz. Let 𝑐 be the number of connections of a lattice point (for a 2D square 

lattice: 4, on the line: 2). By supposing Ω scales with dimension as the one for the Flory 

model, it can be shown that  

 Ω(𝑀, 𝑁, 𝑐)

Ω(𝑀, 𝑁, 𝑐′)
= [

𝑐 − 1

𝑐′ − 1
]

∑ 𝑁𝑖𝑖  (𝑖−1)

. 
(18) 
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Perfoming our previous calculation and setting 𝑐′ = 2, we find for arbitrary 𝑐 

 𝜇𝑘,𝑚𝑖𝑛,𝑐 =  𝜇𝑘,𝑚𝑖𝑛,2 − 𝑘𝑇 (𝑘 − 1) ln(𝑐 − 1). (19) 

 

This means we can incorporate it in Δ𝜇𝑎𝑑𝑠
∗  by defining 𝜖′ = 𝜖 + 𝑘𝑏𝑇 ln(𝑐 − 1)  and   

𝛿′ = 𝛿 − 𝑘𝑏𝑇 ln(𝑐 − 1). 

 

IIb 2D: Dilute lattice placements  

Another extension, put forward in,4 is to study a dilute limit and consider the number of 

ways an oligomer can be placed on a lattice. For stiff oligomers, which can only be placed 

on square lattices, we can then consider every 1D placement, and place them along all 𝑐/2 

directions. The microcanonical partition function then grows as: 

 Ω(𝑀, 𝑁, 𝑐)

Ω(𝑀, 𝑁, 𝑐′)
= [

𝑐

𝑐′
]

∑ 𝑁𝑖𝑖  

. 
(20) 

 

Which yields a constant correction to 𝜇𝑘 

 𝜇𝑘,𝑚𝑖𝑛,𝑐 =  𝜇𝑘,𝑚𝑖𝑛,2 − 𝑘𝑏𝑇 ln(𝑐/2) . (21) 

 

It can be absorbed in the expression for Δ𝜇𝑎𝑑𝑠
∗ , by defining 𝜖′ = 𝜖 + 𝑘𝑏𝑇 ln(𝑐/2). For 

dilute flexible oligomers, the number of single-oligomer configurations 𝛾(𝑐, 𝑘) is the 

number of self-avoiding random walks of length 𝑘. On a 2D square lattice, this quantity 

behaves as 𝛾(𝑐, 𝑘) = 𝑢𝑘𝑘𝑣 , with 𝑢2𝑑 ≈ 2.62, 𝑣2𝑑 =
11

32
. On a 3D lattice, we have 𝜈3𝑑 ≈

0.16. The correction for dilute systems is then 

 𝜇𝑘,𝑚𝑖𝑛,4 = 𝜇𝑘,𝑚𝑖𝑛,2 −  𝑘𝑏𝑇[𝑘 ln 𝑢2𝑑/𝑢3𝑑 + (𝑣2𝑑 − 𝑣3𝑑)  ln 𝑘]. (22) 

 

Just as with the connectivity ansatz, we can absorb a contribution proportional to 𝑘, 

because we can write 𝛿′ = 𝛿 − 𝑘𝑏𝑇 ln 𝑢. The ln 𝑘 contribution gives a new factor 

(
𝑘

𝑗
)

𝑣2𝑑−𝑣3𝑑

. However, because 𝑣2𝑑 − 𝑣3𝑑 ≈ 0.18, this contribution is relatively small, 

and we will neglect it in our further derivation. Overall, we see that the extension of the 

model to 2D for stiff and flexible polymers can be accounted for by shifting the 

parameters in the adsorption energy. In the subsequent sections, we will solve the model 

for Eq. (16). 

 

III Solving for 𝜽𝒊 

 

Since the solutions are expressed in terms of 𝜃0/𝜃𝑊 , we do not have a full solution. 

Expressed in terms of 𝜃𝑖, we find 

 
𝜃𝑊 = ∑

𝜃𝑖

𝑖
𝑖

 + 𝜃0,  
(23) 

and 

 𝜃0 = 1 − ∑ 𝜃𝑖

𝑖

. (24) 

 

We can then write: 
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 𝜃𝑊 = ∑ exp(−𝛽(𝜖 + 𝛿𝑖)) 

𝑖

(𝜃0/𝜃𝑊)𝑖−1𝜃0 + 𝜃0. (25) 

Let us define  𝜁 =
𝜃0

𝜃𝑊
. From Eq. (23), we then find 

 1 = ∑ exp(−𝛽(𝜖 + 𝛿𝑖)) 

𝑖

𝜁𝑖 + 𝜁, (26) 

 

which is a nonlinear polynomial equation from which we need a real root 𝜁 < 1.    

We can then express 𝜃0 as 

 
𝜃0 =

1

1 + ∑ 𝑖 exp(−𝛽(𝜖 + 𝛿𝑖)) 𝑖 𝜁𝑖−1
, 

 

(27) 

 

and thus we can numerically solve the system of equations by finding 𝜁. 

 

IV Temperature dependence 

It is observed that the relative abundance of longer RNAs increases at higher temperature.  

To investigate this effect, let us again consider the quantity 
𝑟𝑘

𝑟𝑗
 in Eq. (17), where 𝑘 > 𝑗,  

and study its derivative with regard to temperature 𝑇. 

 𝑑 (
𝑟𝑘

𝑟𝑗
)

𝑑𝑇
= (

𝑟𝑘

𝑟𝑗
) [

δ − 𝑇
dδ
𝑑𝑇

𝑘𝑇2
(𝑘 − 𝑗) + (𝑘 − 𝑗)

1

𝜁

𝑑𝜁

𝑑𝑇
]. 

(28) 

 

Since 𝛿 and 𝜖 correspond to a Gibb’s free energy change, we can write them as enthalpies 

Δℎ𝛿 , Δℎ𝜖  and entropies Δ𝑠𝛿 , Δ𝑠𝜖. 

 𝛿 = Δℎ𝛿 − 𝑇Δ𝑠𝛿 , (29) 

 𝜖 = Δℎ𝜖 − 𝑇Δ𝑠𝜖 , (30) 

 

And thus  

 
δ − 𝑇

dδ

𝑑𝑇
= Δℎ𝛿 . 

(31) 

 

Taking the derivative with regard to 𝑇 of Eq. (26) , we find that  

 
(∑ exp(−𝛽(𝜖 + 𝛿𝑖)) 

𝑖

𝑖 𝜁𝑖−1 + 1)
𝑑𝜁

𝑑𝑇
 

(32) 

= − ∑ exp(−𝛽(𝜖 + 𝛿𝑖)) (Δℎ𝜖 + 𝑖 Δℎ𝛿)

𝑖

/𝑘𝑇2 𝜁𝑖, 

 

which after rewriting gives 

 
𝑑𝜁

𝑑𝑇
=

Δℎ𝛿

𝑘𝑇2 𝜁 −
Δℎ𝜖

𝑘𝑇2 ∑ exp(−𝛽(𝜖 + 𝛿𝑖))𝑖 𝜁𝑖

∑ exp(−𝛽(𝜖 + 𝛿𝑖)) 𝑖 𝑖 𝜁𝑖−1 + 1
−

Δℎ𝛿

𝑘𝑇2
𝜁. 

(33) 
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Plugging this back in Eq. (28), we then have 

 𝑑 (
𝑟𝑘

𝑟𝑗
)

𝑑𝑇
= (

𝑟𝑘

𝑟𝑗
) (𝑘 − 𝑗) [

Δℎ𝛿

𝑘𝑇2 −
Δℎ𝜖

𝑘𝑇2 ∑ exp(−𝛽(𝜖 + 𝛿𝑖))𝑖 𝜁𝑖−1

∑ exp(−𝛽(𝜖 + 𝛿𝑖)) 𝑖 𝑖 𝜁𝑖−1 + 1
]. 

(34) 

 

It follows that selectivity can increase with temperature, provided that the enthalpic 

contributions obey 

 Δℎ𝛿 − Δℎ𝜖 ∑ exp(−𝛽(𝜖 + 𝛿𝑖))

𝑖

𝜁𝑖−1 > 0. (35) 

 

Example: consider Fig. 4D, for which 𝜖 = 3.4 𝑘𝑏𝑇∗,    𝛿 =  − 0.8 𝑘𝑏𝑇∗ and (
𝑟24

𝑟8
) = 2.90, 

with 𝑇∗ = 293K  a reference temperature. Numerically, we find that selectivity would 

increase with 𝑇 in this case if 

 − 0.884 Δℎ𝜖 > −Δℎ𝛿 . (36) 

 

As an illustration, let us choose Δℎ𝜖 = −11.5 𝑘𝑏𝑇∗,  Δℎ𝛿 = −2.5 𝑘𝑏𝑇∗ From Eq. (29) and 

Eq. (30) it follows that Δ𝑠𝜖 = 14.9 𝑘𝑏 , Δ𝑠𝛿 = 1.7 𝑘𝑏. Augmenting the temperature with 

Δ𝑇 =15 K, we would then have for a 24-mer versus an 8-mer  

 𝑑 (
𝑟24

𝑟8
)

𝑑𝑇
Δ𝑇 ≈ 0.072 ∙ 15 = 1.08, 

(37) 

 

which corresponds well with the order of magnitude observed in the experiment.  



 

 

9 

 

                      
Fig. S1. Analysis of (A) pyrite, (B) pyrrhotite, (C) magnetite, (D) calcite, and (E) 

hydroxyapatite grains by X-ray diffraction (left) and scanning electron microscopy (right). 

Diffractograms were obtained on a RIGAKU D/Max Rapid II instrument (50 kV; 50 mA; 

30-60 min exposure) and the resulting diffraction patterns were identified using Jade 

software and Powder Diffraction Files from the International Centre for Diffraction Data 

(ICDD). The grains were imaged on a FEI Quanta 200 in low-vaccum mode. 
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Fig. S2. An example of a polyacrylamide gel from the adsorption experiment. The RNA 

samples (no mineral control reaction, adsorbed on surface, in supernatant) were loaded 

onto a 15% polyacrylamide / 8 M urea denaturing gel. The type of minerals used in the 

experiments were: P, pyrite; Py, pyrrhotite; M, magnetite; C, calcite; H, hydroxyapatite. 

The two presented images were on the same gel (same contrast). 
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Fig. S3. Estimated concentration of RNAs in Fig. 1A, B. (A) Total concentration of 

recovered RNAs in each reaction, calculated by summing RNAs stripped from minerals 

and RNAs in supernatant. The concentration was normalized to the level of the control 

reaction performed in the absence of minerals. (B) Estimated percentage of unrecovered 

RNAs, whose length distribution could not be determined. This may represent RNA that 

we failed to strip off the minerals or RNAs that degraded, precipitated, or removed during 

mineral washing. (C) The percent of total concentration of RNAs adsorbed onto minerals, 

estimated by dividing the concentration of RNAs stripped from minerals by the total 

concentrations of recovered RNAs. In all panels, the error bars indicate standard errors (N 

= 3). 
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Fig. S4. The adsorption of RNA on calcite and hydroxyapatite by mineral surfaces with 

higher RNA concentrations. The adsorption experiments were performed with (A) calcite 

or (B) hydroxyapatite using the same method as the experiments in Fig. 1A, B except for 

a 10-fold higher concentration of the RNAs (6 μM of each length RNA). Estimated 

unrecovered RNA was 6% and 7% for calcite and apatite, respectively. Estimated 

percentage of adsorbed RNA was 13% for both calcite and apatite. The error bars indicate 

standard deviations (N = 3). 
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Fig. S5. The effect of a high temperature for RNA adsorption on pyrite and magnetite. The 

adsorption experiments were performed with (A) pyrite or (B) magnetite at 22 ºC or 48 ºC and 

RNA concentrations were determined in the same method as the experiments in Fig. 1. The error 

bars indicate standard deviations (N = 3). 
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Fig. S6. Design of the Azoarcus self-assembly reaction. A part of W fragment (pink) was 
32P-labeled. Dotted arrows indicate weak (grey) or strong (black) catalytic reactions. There 

are reaction intermediates (250–350 nt products). The exact intermediate products remain 

unspecified. 
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Fig. S7. Time course of the change of RNA concentrations on mineral surfaces. Adsorption 

experiment was performed by incubating a mixture of 8-, 12-, 16-, 20-, 24-mer fully 

random RNAs (0.6 μM each) and 0.2 mg hydroxyapatite in 10 μl at 22 ºC for 10 min, 30 

min, or 120 min. The concentrations were determined by radioactivity of 32P-labeled RNA 

and normalized to the levels of the control reaction (120 min) performed without minerals. 
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