Structure, magnetic and optical properties of $Sr_3RE_2(Ge_3O_9)_2$ cyclogermanates (RE = La - Gd)

Alexander Yu. Chufarov, Olga A. Lipina*, Ludmila L. Surat,

Marina A. Melkozerova, Yana V. Baklanova, , Andrey N. Enyashin,

Alexander P. Tyutyunnik, Dina G. Kellerman and Vladimir G. Zubkov

Institute of Solid State Chemistry, UB RAS, 620990 Ekaterinburg, Russia

* Corresponding author. E-Mail: LipinaOlgaA@yandex.ru

Fig. S1 Experimental (crosses), calculated (solid line), and difference (bottom line) XRPD patterns for Sr₃La₂(Ge₃O₉)₂. Series of tick marks correspond to the Bragg reflection.

Fig. S2 Experimental (crosses), calculated (solid line), and difference (bottom line) XRPD patterns for Sr₃Pr₂(Ge₃O₉)₂. Series of tick marks correspond to the Bragg reflection.

Fig. S3 Experimental (crosses), calculated (solid line), and difference (bottom line) XRPD patterns for Sr₃Sm₂(Ge₃O₉)₂. Series of tick marks correspond to the Bragg reflection.

Fig. S4 Experimental (crosses), calculated (solid line), and difference (bottom line) XRPD patterns for Sr₃Eu₂(Ge₃O₉)₂. Series of tick marks correspond to the Bragg reflection.

Fig. S5 Experimental (crosses), calculated (solid line), and difference (bottom line) XRPD patterns for Sr₃Gd₂(Ge₃O₉)₂. Series of tick marks correspond to the Bragg reflection.

Fig. S6 Temperature dependence of the unit cell parameters and distances along the normal (\perp) and parallel (\parallel) to $(10\overline{1})$ plane for Sr₃La₂(Ge₃O₉)₂.

Fig. S7 Temperature dependence of the unit cell parameters and distances along the normal (\perp) and parallel (\parallel) to (10 $\overline{1}$) plane for Sr₃Pr₂(Ge₃O₉)₂.

Fig. S8 Temperature dependence of the unit cell parameters and distances along the normal ($^{\perp}$) and parallel (\parallel) to (10 1) plane for Sr₃Nd₂(Ge₃O₉)₂. Given for structure type after MPT.

Fig. S9 Temperature dependence of the unit cell parameters and distances along the normal (\perp) and parallel (\parallel) to (10 $\overline{1}$) plane for Sr₃Sm₂(Ge₃O₉)₂.

Fig. S10 Temperature dependence of the unit cell parameters and distances along the normal (\perp) and parallel (\parallel) to (10 $\overline{1}$) plane for Sr₃Eu₂(Ge₃O₉)₂.

Fig. S11 Temperature dependence of the unit cell parameters and distances along the normal ($^{\perp}$) and parallel (\parallel) to (10 $\overline{1}$) plane for Sr₃Gd₂(Ge₃O₉)₂.

Fig. S12 Simultaneous thermal analysis of the Sr₃La₂(Ge₃O₉)₂: solid lines - TG and DSC, dashed lines – ion currents of gases.

Fig. S13 Simultaneous thermal analysis of the Sr₃Gd₂(Ge₃O₉)₂: solid lines - TG and DSC, dashed lines – ion currents of gases.

	La	Pr	Sm	Eu	Gd					
Ge(1)-O(1)	1.743(14)	1.826	1.750(15)	1.799(20)	1.846(16)					
Ge(1)-O(2)	1.752(14)	1.784(18)	1.788(18)	2.054(22)	1.934(20)					
Ge(1)-O(4)	1.809(11)	1.751(13)	1.709(14)	1.696(20)	1.714(17)					
Ge(1)-O(5)	1.794(11)	1.701(15)	1.783(17)	1.661(22)	1.703(20)					
Average	1.775	1.765	1.757	1.803	1.799					
Expected	1.75	1.75	1.75	1.75	1.75					
1										
Ge(2)-O(3)	1.774(11)	1.751(13)	1.774(12)	1.794(18)	1.766(15)					
Ge(2)-O(5)	1.816(11)	1.860(15)	1.774(18)	1.791(25)	1.781(21)					
Ge(2)-O(6)	1.736(10)	1.643(13)	1.686(12)	1.713(17)	1.695(15)					
Ge(2)-O(7)	1 758(12)	1 703(14)	1 771(17)	1 615(22)	1 702(19)					
Average	1.771	1.739	1.751	1.728	1.736					
Expected	1 75	1 75	1 75	1 75	1 75					
Емресией	1.75	1.75	1.75	1.75	1.75					
Ge(3)-O(2)	1.811(14)	1.881(18)	1.775(19)	1,703(22)	1.706(20)					
Ge(3)-O(7)	1 778(12)	1.811(15)	1 764(16)	1 815(22)	1 758(20)					
Ge(3) - O(8)	1.773(12)	1.801(15)	1 728(13)	1.813(18)	1 768(15)					
Ge(3) - O(9)	1.703(12) 1.779(12)	1.001(13) 1.700(14)	1.720(15)	1.519(10) 1.549(22)	1 621(19)					
	1.775(12)	1.700(14)	1.746	1.549(22)	1 713					
Fractad	1.700	1.75	1.740	1.720	1.715					
Елрестей	1.75	1.75	1.75	1.75	1.75					
$G_{e}(1)$ - $G_{e}(2)$	3 232(4)	3 251(5)	3 124(6)	3.1/1(8)	3 130(6)					
Ge(1) - Ge(2)	3.232(+) 3.2340(23)	3.231(3) 3.2417(28)	3.12+(0) 3.088(4)	3.141(0) 3.132(6)	3.080(5)					
$G_{0}(2)$ $G_{0}(3)$	3.22 + 9(23) 3.223(4)	3.2417(20) 3.220(5)	3.150(6)	3.132(0) 3.106(0)	3.009(3) 3.153(8)					
A vorego	3.223(4)	3.229(3)	3.130(0)	3.100(9)	3.133(8)					
Average	5.221	5.240	3.121	5.120	3.124					
Bond angles										
$O(1) G_{e}(1) O(2)$	108 9(5)	106.2(7)	106 6(0)	104 3(10)	103 5(8)					
O(1) - O(1) - O(2)	100.9(5) 110.0(6)	130.2(7)	100.0(7) 118 7(7)	104.3(10) 122.4(10)	105.5(0) 117 1(0)					
O(1) - O(1) - O(4)	107 5(5)	100.6(6)	110.7(7) 110.1(8)	122.4(10) 116.1(10)	117.1(9) 118 $1(0)$					
O(1)- $O(1)$ - $O(3)$	107.3(3) 104.0(5)	109.0(0)	110.1(0) 105.8(7)	110.1(10) 00.2(0)	110.4(9) 102.0(8)					
O(2)- $O(1)$ - $O(4)$	104.0(3) 112.0(5)	90.7(0)	103.0(7) 105.8(7)	99.2(9) 101.0(0)	102.9(8)					
O(2)-Ge(1)-O(3)	112.0(3) 105.4(5)	115.2(0)	103.8(7)	101.0(9) 100 ((12)	104.8(9)					
0(4)-Ge(1)-O(3)	103.4(3)	90.0(0)	108.9(8)	109.0(12)	108.1(10)					
Average	109.5	109.4	109.5	108./	109.1					
$O(3) G_{e}(2) O(5)$	105 2(6)	000(7)	117 3(7)	110 6(10)	110 7(8)					
O(3)-Ge(2)-O(5)	105.2(0) 120.6(5)	123 9(6)	120 3(6)	117.0(10) 122.9(9)	117.7(0) 121.1(8)					
O(3) Ge(2) O(7)	120.0(5)	105 5(8)	106 6(8)	122.9(9) 107.0(11)	121.1(0) 104.0(0)					
$O(5)_{Ge}(2) O(7)$	109.3(6)	110 5(8)	101.3(8)	101.0(11)	104.9(9)					
O(5) - O(2) - O(0) $O(5) G_{0}(2) - O(7)$	109.3(0) 110 7(4)	106 6(5)	101.5(6)	01.4(11) 01.7(0)	10+.0(9) 06 1(7)					
O(5) - O(2) - O(7)	110.7(4) 100.8(6)	100.0(3) 100.2(8)	101.0(0) 108.1(8)	$\frac{94.7(9)}{107.2(12)}$	90.1(7) 107 0(11)					
O(0) - O(2) - O(7)	109.8(0)	109.2(6)	100.1(0)	107.2(12)	107.0(11)					
Average	109.4	109.5	109.2	108.8	108.9					
$O(2)_{-}Ge(3)_{-}O(7)$	109 0(5)	108 7(6)	106 6(6)	111 6(11)	107.2(9)					
O(2) - Ge(3) - O(8)	107.0(5) 101.1(6)	100.7(0) 109.2(7)	112 2(7)	107.3(11)	107.2(7) 109 5(10)					
O(2) - O(3) - O(3)	101.1(0) 108.0(5)	109.2(7) 103.1(7)	112.2(7) 107 $4(8)$	107.3(11) 107.7(11)	109.3(10) 100.0(10)					
O(2) - O(3) - O(3) O(7) - Ge(3) - O(8)	100.0(3)	103.1(7) 108 1(7)	107.7(0)	110.8(10)	112 1(8)					
$O(7) G_{0}(3) O(0)$	100.3(3)	100.1(7) 108.8(7)	103.2(0) 108.9(7)	10.0(10) 104.6(11)	1050(0)					
O(7) - OC(3) - O(9) O(8) Co(3) O(9)	107.7(3) 107.2(7)	100.0(7)	100.7(7) 116 1(9)	104.0(11) 114.8(12)	103.0(7) 112 8(10)					
O(0) - O(3) - O(9)	127.3(7) 100 2	110.0(7)	110.1(8) 100 4	114.0(12) 100 5	113.0(10) 100 4					
Average	109.3	109.4	109.4	109.5	109.4					
$C_{0}(1) O(2) C_{0}(2)$	120 7(5)	124 3(6)	120 2(7)	112.7(10)	116.0(8)					
$G_{2}(1) - O(2) - G_{2}(3)$	127.7(3) 127.0(6)	124.3(0) 121.7(8)	120.2(7) 122.8(0)	112.7(10) 121.0(14)	110.0(0) 127.0(12)					
$G_{0}(2) O(3) - G_{0}(2)$	127.0(0) 121 $4(7)$	131.7(0)	122.0(7)	131.0(14) 120.7(12)	12/.9(12) 121.2(11)					
Oc(2) - O(7) - Oc(3)	131.4(7)	133.3(0)	120.1(0)	129.7(13)	131.3(11)					

Table S1 Selected bond lengths (Å), angles (°) for $Sr_3RE_2(Ge_3O_9)_2$ (*RE* = La, Pr, Sm, Eu, Gd) not included in Table 2

Table S2 Atom coordinates and thermal parameters (Å²) for the Sr₃*RE*₂(Ge₃O₉)₂ (*RE* = La, Pr, Sm, Eu,

Gd) compounds

Atom		La	Pr	Sm	Eu	Gd		
Sr/ <i>RE</i> (1)	x/a	0.16218(14)	0.16159(17)	0.16691(17)	0.16789(26)	0.16804(20)		
	y/b	0.1174(5)	0.1232(10)	0.1237(4)	0.1278(6)	0.1269(5)		
	z/c	0.41319(12)	0.41301(15)	0.40876(15)	0.40878(22)	0.40900(19)		
	$U_{i}/U_{e}*100$	3.16(7)	3.22(7)	2.02(15)	3.55(27)	2.92(22)		
~ ~ ~ ~ ~ ~	Fraction	0.652(8)/0.348(8)	0.721(5)/0.279(5)	0.445(1)/0.555(1)	0.459/0.541(12)	0.442/0.558(9)		
Sr/RE(2)	$E(2) \ x/a \qquad 0.33451(13)$		0.33582(17)	0.34232(20)	0.34282(30)	0.34262(25)		
	y/b	0.1264(4)	0.1287(9)	0.1265(6)	0.1275(8)	0.1272(7)		
	<i>z/c</i>	0.08156(11)	0.08226(13)	0.05086(18)	0.05242(26)	0.05419(23)		
	$U_i/U_e \approx 100$	2.59(7)	2.79(8)	2.34(16)	4.10(27)	3.54(22)		
	Fraction	0.665(7)/0.335(7)	1/0	0.983/0.017(5)	0.977/0.023(3)			
Sr/RE(3)	x/a	0	0 0.2915(5)	0 2920(4)	0.000000	0.00000		
	<i>y/b</i>	0.3827(4)	0.3815(5)	0.3820(4)	0.3829(6)	0.3790(6)		
	Z/C	0.25	0.25	0.25	0.250000	0.250000		
	U_i/U_e^*100	2.83(7) 0.265(1)/0.625(1)	2.30(7) 0.245(2)/0.755(2)	0.92(10) 0.100(1)/0.801(1)	1.08(30) 0.116/0.884(14)	1.83(24) 0.162/0.828(12)		
$\mathbf{C}_{\mathbf{a}}(1)$	r raction	0.303(1)/0.033(1)	0.243(2)/0.733(2)	0.109(1)/0.891(1) 0.08725(20)	0.110/0.884(14) 0.0871(4)	0.102/0.000(12)		
Ge(1)	x/a	0.09427(20) 0.07120(21)	0.09400(24) 0.0726(4)	0.08753(29) 0.0476(4)	0.0871(4) 0.0478(6)	0.08020(51)		
	y/D 7/0	0.07120(31) 0.10012(20)	0.0720(4) 0.10058(22)	0.0470(4) 0.12210(20)	0.0478(0) 0.12200(40)	0.0441(3) 0.12477(35)		
	2/C	0.10012(20)	0.10030(22)	0.12210(29) 1.77(10)	0.12390(40) 2.75(21)	0.12477(55)		
$C_{\alpha}(2)$	$U_i/U_e \cdot 100$	5.10(9) 0.27228(17)	$5.52(12)^{\circ}$	1.77(19) 0.26282(24)	2.73(31)	2.00(27)		
Oe(2)	x/a	0.27338(17) 0.37129(54)	0.27218(20) 0.3696(8)	0.20283(24) 0.3650(9)	0.2022(4) 0.3572(11)	0.20081(30) 0.3611(10)		
	y/0 7/0	0.37129(34) 0.26763(14)	0.3090(8) 0.26511(16)	0.3030(9) 0.24303(23)	0.3372(11) 0.24436(35)	0.3011(10) 0.24203(30)		
	2/C U/U *100	3 19(8)	$3.28(10)^{a}$	1.57(18)	3.32(31)	2.24203(30)		
Ge(3)	r/a	0.40331(21)	0.40301(24)	0.40992(30)	0.4085(4)	0.40947(36)		
00(3)	$\frac{x}{a}$	0.40331(21) 0.18030(32)	0.40301(24) 0.1772(4)	0.40772(30) 0.1871(4)	0.4005(4) 0.1824(7)	0.40947(30) 0.1840(5)		
	7/C	0.10050(32) 0.40456(22)	0.1772(1) 0.40344(24)	0.38653(27)	0.1021(7) 0.38515(40)	0.38590(35)		
	U:/U.*100	2.88(9)	$3 10(13)^{a}$	1.88(20)	4 39(34)	3 73(28)		
O (1)	x/a	-0.0033(9)	-0.0059(12)	-0.0016(11)	-0.0095(15)	-0.0134(12)		
0(1)	v/b	0.1785(15)	0.1839(21)	0.1889(19)	0.1855(26)	0.1861(22)		
	z/c	0.1363(8)	0.1435(9)	0.1326(12)	0.1299(14)	0.1230(12)		
O(2)	x/a	0.0571(6)	0.0491(7)	0.0265(8)	0.0194(13)	0.0215(10)		
	v/b	0.1195(19)	0.1179(24)	0.1339(24)	0.1601(28)	0.1524(25)		
	$\frac{z}{z}$	0.5638(6)	0.5630(7)	0.5988(9)	0.5895(13)	0.5965(10)		
O(3)	x/a	0.1549(8)	0.1570(9)	0.1610(9)	0.1598(14)	0.1603(12)		
	y/b	0.3674(20)	0.3680(28)	0.3570(23)	0.3463(29)	0.3420(24)		
	z/c	0.3026(6)	0.3047(8)	0.3105(9)	0.3125(13)	0.3092(11)		
O(4)	x/a	0.1611(8)	0.1672(9)	0.1637(12)	0.1634(15)	0.1623(13)		
	y/b	0.1520(18)	0.1193(31)	0.0683(17)	0.0536(24)	0.0590(23)		
	z/c	0.0120(7)	0.0140(8)	0.0347(10)	0.0366(14)	0.0358(12)		
O(5)	x/a	0.1767(8)	0.1799(10)	0.1563(14)	0.1475(19)	0.1542(17)		
	y/b	0.0558(13)	0.0521(17)	0.0229(18)	0.0021(26)	0.0130(23)		
	z/c	0.1875(7)	0.1782(9)	0.2329(12)	0.2269(16)	0.2299(14)		
O(6)	x/a	0.2989(7)	0.2969(9)	0.2491(8)	0.2530(12)	0.2481(11)		
	y/b	0.3617(18)	0.3774(28)	0.3669(23)	0.3631(34)	0.3550(28)		
	z/c	0.1596(6)	0.1626(8)	0.1245(9)	0.1224(13)	0.1209(11)		
O(7)	x/a	0.3193(8)	0.3267(12)	0.3358(13)	0.3308(17)	0.3352(15)		
	y/b	0.1996(14)	0.2044(16)	0.2029(19)	0.2114(25)	0.2116(21)		
	z/c	0.3200(8)	0.3100(9)	0.2798(10)	0.2765(15)	0.2794(13)		
O(8)	x/a	0.3312(7)	0.3327(10)	0.3321(11)	0.3383(16)	0.3423(13)		
	y/b	0.1322(23)	0.0952(23)	0.1585(21)	0.1526(31)	0.1548(28)		
	z/c	0.4870(7)	0.4885(8)	0.4736(10)	0.4860(13)	0.4854(11)		
U(9)	x/a	0.4969(9)	0.4984(11)	0.5070(12)	0.5263(15)	0.5218(13)		
	y/b	0.0696(14)	0.0740(18)	0.0422(18)	0.0432(29)	0.0379(24)		
	z/c	0.1312(7)	0.1261(9)	0.1254(11)	0.1373(16)	0.1357(13)		
	$U_{i}/U_{e}*100^{a}$	$2.19(9)^{a}$	$3.08(12)^{a}$	1.53(19)	2.53(33)	2.15(29)		

^a The thermal vibration parameters of oxygen atoms have been constrained as a single variable.

$\alpha_{\rm L} \times 10^6, ^{\circ}{\rm C}^{-1}$															
T, ℃	$Sr_3La_2(Ge_3O_9)_2$				$Sr_3Pr_2(Ge_3O_9)_2$				$Sr_3Nd_2(Ge_3O_9)_2$						
	а	b	С	β	V	а	b	С	β	V	а	b	с	β	V
100	6.7	11.3	1.0	-0.9	19.0	4.5	10.9	-0.1	-0.9	15.4	1.3	10.7	12.6	-10.7	26.1
200	4.7	11.1	-2.8	-1.0	13.0	3.9	11.4	-2.1	-1.9	13.3	3.1	12.7	15.1	-11.1	32.3
300	2.3	9.5	-4.0	-1.7	7.7	5.6	13.9	-1.1	-2.3	18.4	1.1	9.2	11.6	-11.1	23.3
400	5.4	13.2	-1.2	-2.3	17.3	5.0	12.1	-0.5	-3.6	16.7	4.0	12.6	15.1	-12.0	33.1
500	6.1	14.7	-1.3	-2.9	19.5	4.5	12.6	-2.5	-2.3	14.7	2.1	7.8	13.2	-10.9	24.4
600	6.6	13.2	0.3	-3.3	20.2	6.4	13.8	2.2	-3.2	22.4	4.1	10.8	15.0	-12.4	31.3
700	5.4	13.5	1.7	-4.0	20.7	6.3	8.6	4.3	-4.8	19.3	4.5	8.6	18.3	-11.0	32.6
800	17.6	26.4	9.8	-3.9	53.7	3.0	14.3	-3.3	-3.3	14.1	2.3	5.6	14.4	-11.2	23.6
900	5.2	15.8	-3.1	-1.9	18.0	4.5	17.7	-4.5	-3.3	17.8	7.1	8.1	20.5	-11.8	36.9
T, ℃	, °C Sr ₃ Sm ₂ (Ge ₃ O ₉) ₂			$Sr_3Eu_2(Ge_3O_9)_2$					$Sr_3Gd_2(Ge_3O_9)_2$						
	а	b	с	β	V	а	b	с	β	V	а	b	с	β	V
100	3.4	11.2	12.7	-6.7	14.2	-1.0	6.5	12.3	-11.9	19.6	-6.4	3.6	-3.5	-10.7	-4.8
200	2.4	11.3	12.8	-10.4	17.0	2.1	8.4	12.7	-8.2	24.4	-0.7	3.0	10.4	-9.5	14.1
300	3.8	10.7	14.1	-9.8	17.7	1.8	7.3	10.8	-10.3	21.3	0.2	4.8	11.5	-9.5	17.8
400	3.8	10.5	11.3	-9.4	16.0	2.4	10.5	13.1	-10.9	27.5	5.4	13.5	14.0	-11.5	34.5
500	3.0	9.5	12.8	-7.6	14.8	1.2	4.8	10.9	-10.3	18.3	4.4	4.1	10.4	-10.8	20.4
600	6.1	9.4	16.0	-11.3	21.2	6.8	13.4	18.0	-10.8	39.6	3.8	12.8	14.7	-9.2	32.5
700	4.9	10.9	13.9	-9.1	17.5	3.8	7.1	16.5	-10.1	28.7	6.6	7.8	20.3	-9.5	35.9
800	4.7	7.9	14.3	-10.4	18.8	3.5	6.0	11.8	-10.4	22.6	7.2	11.3	13.6	-10.6	33.4
900	3.9	8.2	17.0	-12.0	21.2						1.8	4.2	10.5	-8.2	17.5

Table S3 Thermal expansion coefficients $Sr_3RE_2(Ge_3O_9)_2$ (*RE* = La, Pr, Nd, Sm, Eu, Gd)