Supporting information:

A novel carbazole derivative containing fluorobenzene unit: Aggregation-induced fluorescence emission, polymorphism, mechanochromism and non-reversible thermostimulus fluorescence

Huichao Zhu^a, Shiyin Weng^a, Hong Zhang^a, Haizhu Yu^a, Lin Kong^a, Yulin Zhong^{*b}, Yupeng Tian^a, Jiaxiang Yang^{*a}

^aCollege of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230601, P. R. China. E-mail: jxyang@ahu.edu.cn ^bCentre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD 4222, Australia. E-mail: y.zhong@griffith.edu.au.

Contents:

Scheme S1 Synthetic routes of compound 3.

Table S1 Crystal data and details of collection and refinement of 3Y and 3O.

Fig. S1 ¹H NMR of compound **3**Y (CDCl₃, 400 MHz)

Fig. S2 ¹H NMR of compound 3Y and 3O (CDCl₃, 400 MHz)

Fig. S3 ¹³C NMR of compound 3Y (CDCl₃, 400 MHz)

Fig. S4 The absorption spectra for 3Y and 3O in the solid state.

Fig. S5 Lifetime decay curves of 3Y (a) and 3O (b).

Fig. S6 As-experimental and as-simulated XRD patterns for powder 3Y, 3O and crystals 3Y, 3O.

- Fig S7 Highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) diagrams and the energy gap (ΔE) of **3Y** and **3O**
- Fig. S8 Molecular stacks in the crystals of 3O, (a) structure A, (b) structure B, (c) 3O viewed from the a-axis.
- Fig. S9 The molecules of 3O (structure A and B)
- **Fig. S10** Molecular stacks in the crystals of **30**, (a) structure A, (b) structure B, and **30** (c) viewed from the a-axis.
- Fig. S11 Molecular stacks in the crystals of 3O viewed from the b-axis (a) and c-axis (b).
- Fig. S12 Cycle behaviors of the maximum emission peaks for 3Y.
- Fig. S13 The PXRD diagram of 3Y, heated 3Y and 3O.

Scheme S1 Synthetic routes of compound 3

Identification code	3 Y	30
CCDC	1511130	1576277
Empirical formula	$C_{28}H_{22}FN_3$	$C_{28}H_{22}FN_3$
Formula weight	419.49	419.48
Temperature (K)	296(2)	296(2)
Wavelength (Å)	0.71073	0.71073
Crystal system, space group	Orthorhombic, $P2_12_12_1$	Monoclinic, $P2_1/c$
<i>a</i> (Å)	8.7593(18)	12.758(5)
<i>b</i> (Å)	13.386(4)	14.223(5)
<i>c</i> (Å)	19.541(4)	12.808(5)
α (deg)	90	90
β (deg)	90	93.522(4)
$\gamma(\text{deg})$	90	90
Volume (Å ³)	2291.2(9)	2319.8(14)
Z, Calculated density (Mg/m ³)	4, 1.216	4, 1.201
Absorption coefficient (mm ⁻¹)	0.078	0.077
F(000)	880	880
Crystal size (mm)	$0.19 \times 0.18 \times 0.17$	$0.19 \times 0.18 \times 0.17$
Theta range for data collection (deg)	1.84 to 25.00 .	1.599 to 24.999
	-10<=h<=10,	-15<=h<=14,
Limiting indices	-15<=k<=15,	-16<=k<=16,
	-21<=1<=23	-15<=14
Reflections collected / unique	16322 / 4029	16199 / 4073
R(int)	0.0199	0.0521
Data / restraints / parameters	4029 / 0 / 291	4073 / 23 / 290
Goodness-of-fit on F^2	1.049	1.064
Final <i>R</i> indices [I>2sigma(I)]	$R_1 = 0.0395, wR_2 = 0.1048$	$R_1 = 0.0879, wR_2 = 0.2700$
R indices (all data)	$R_1 = 0.0458, wR_2 = 0.1106$	$R_1 = 0.1019, wR_2 = 0.2873$

Table S1 Crystal data and details of collection and refinement of 3Y and 3O.

Fig. S2 ¹H NMR of compound 3Y and 3O (CDCl₃, 400 MHz)

Fig. S3 ¹³C NMR of compound 3Y (CDCl₃, 400 MHz).

Fig. S4 The absorption spectra for 3Y and 3O in the solid state.

Fig. S5 Lifetime decay curves of 3Y (a) and 3O (b).

Fig. S6 As-experimental and as-simulated XRD patterns for powder 3Y, 3O and crystals 3Y, 3O.

Fig S7 Highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) diagrams and the energy gap (ΔE) of **3Y** and **3O**

Fig. S8 Molecular stacks in the crystals of 3Y viewed from the a-axis (a) and c-axis (b).

Fig. S9 The molecules of 3O (structure A and B)

Fig. S10 Molecular stacks in the crystals of **30**, (a) structure A, (b) structure B, and **30** (c) viewed from the a-axis.

Fig. S11 Molecular stacks in the crystals of **30** viewed from the b-axis (a) and c-axis (b).

Fig. S12 Cycle behaviors of the maximum emission peaks for 3Y.

Fig. S13 The PXRD diagram of 3Y, heated 3Y and 3O.