Supplementary Materials

The crystal structures analysis of the methyl-substituted pyrazines with anilic acids: a combined diffraction, inelastic neutron scattering, 1H NMR studies and theoretical approach

M. Rok^{1*}, G. Bator¹, W. Sawka-Dobrowolska¹, P. Durlak¹, M. Moskwa¹, W. Medycki², L. Sobczyk¹, M. Zamponi³

¹ Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland,

² Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland

³ Forschungszentrum Jülich GmbHJülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ)Lichtenbergstr. 185748 GarchingGermany

*e-mail: magdalena.rok@chem.uni.wroc.pl

CAPTIONS OF FIGURES

Fig. S1. Simultaneous curves of thermogravimetric analysis and differential thermal analysis (2 K·min⁻¹). **Fig. S2.** DSC curves of TrMP·CLA on heating and cooling runs.

- Fig. S3. The hydrogen bonding ring motifs between tetramethylpyrazine and chloranialic acid (3a); the graph set $R_2^2(10)$ is assigned to the ring motif formed by two CLA⁻ molecules, the $R_2^2(8)$ (green) and $R_1^2(4)$ (green–orange) motifs present interaction between TrMPH⁺ cations and CLA⁻ anions, the $R_2^2(13)$ (dark blue) and $R_4^4(20)$ (orange) rings are built by the unconventional hydrogen bonds.
- **Fig. S4.** Quasielastic spectra of TrMP·CLA **(3b)**. Sample temperatures T = 80 and 180 K. Solid lines are fitted with Dirac, Lorentzian components and resolution function obtained for vanadium.
- Fig. S5. The temperature dependence of the ¹H NMR spin–lattice relaxation time (T_1) for TrMP·BRA (4) (triangles) and 2MP·CLA (1) (circles).

Fig. S6. Infrared spectra of the powdered (1), (2), (3a), (4) complexes in KBr pellets at 300K: between 50 and 4000 cm⁻¹.

Fig. S7. Raman spectra of the powdered (1), (2), (3a), (4) complexes in KBr pellets at 300K: between 50 and 4000 cm⁻¹.

CAPTION OF TABLES

Table S1. Crystal data and structure refinement for all complexes.

Table S2. Experimental and calculated (by using various models) bond lengths and angles 2MP·CLA (1) complex. (Å, °).

Table S3. Experimental and calculated (by using various models) bond lengths and angles 2MP BRA (2) complex. $(Å, \circ)$

Table S4. Experimental and calculated (by using various models) bond lengths and angles TrMP·CLA (3a) complex. (Å, °)

Table S5. Experimental and calculated (by using various models) bond lengths and angles TrMP·CLA (3b) complex. (Å, °)

Table S6. Experimental and calculated (by using various models) bond lengths and angles TrMP·BRA (4) complex. (Å, °)

Table S7. Hydrogen bonds and short contacts for crystals (1) and (2) at 120 and 100 K, respectively.

Table S8. Hydrogen bonds and short contacts for crystals (3a) at 200 K.

Table S9. Hydrogen bonds and short contacts for crystals (3b) at 100 K.

Table S10. Hydrogen bonds and short contacts for crystals (4) at 100 K.

 Table S11. Calculated and experimental frequencies for the 2MP CLA (1) complex.

 Table S12. Calculated and experimental frequencies for the 2MP·BRA (2) complex.

Table S13. Calculated and experimental frequencies for the TrMP·CLA (3a) complex.

Table S14. Calculated and experimental frequencies for the TrMP·BRA (4) complex.

Table S15. Comparison of the hydrogen bonds geometry with tunnelling frequencies and tunnelling activation energies for known supramolecular complexes of methyl derivatives of pyrazine. PT-the proton transfer, HB- the hydrogen bond without proton transfer, a,b- the number of protonated nitrogen atoms in pyrazine ring.

Fig. S1. Simultaneous curves of thermogravimetric analysis and differential thermal analysis (2 K min⁻¹).

Fig. S2. DSC curves of TrMP·CLA on heating and cooling runs.

Fig. S3. The hydrogen bonding ring motifs between tetramethylpyrazine and chloranialic acid (**3a**); the graph set $R_2^2(10)$ is assigned to the ring motif formed by two CLA⁻ molecules, the $R_2^2(8)$ (green) and $R_1^2(4)$ (green–orange) motifs present interaction between TrMPH⁺ cations and CLA⁻ anions, the $R_2^2(13)$ (dark blue) and $R_4^4(20)$ (orange) rings are built by the unconventional hydrogen bonds.

Fig. S4. Quasielastic spectra of TrMP·CLA (**3b**). Sample temperatures T = 80 and 180 K. Solid lines are fitted with Dirac, Lorentzian components and resolution function obtained for vanadium.

Fig. S5. The temperature dependence of the ¹H NMR spin–lattice relaxation time (T_I) for TrMP BRA (4) (triangles) and 2MP CLA (1) (circles).

Fig. S6. Infrared spectra of the powdered (1), (2), (3a), (4) complexes in KBr pellets at 300K: between 50 and 4000 cm-1.

Fig. S7. Raman spectra of the powdered (1), (2), (3a), (4) complexes in KBr pellets at 300K: between 50 and 4000 cm-1.

Complexes:	2MP CLA (1)	2MP BRA (2)	TrMP CLA (3a)	TrMP CLA (3b)	TrMP BRA (4)
Formula	C ₁₁ H ₈ Cl ₂ N ₂ O ₄	$C_{11}H_8Br_2N_2O_4$	C ₁₃ H ₁₂	Cl ₂ N ₂ O ₄	C ₁₃ H ₁₂ Br ₂ N ₂ O ₄
Formula weight	303.09	392.01	331	1.16	420.06
T (K)	120(2)	100(2)	200(2)	100(2)	100(2)
λ[Å]			0.71073	I	
Crystal system	monoclinic	monoclinic	triclinic	triclinic	triclinic
Space group	$P2_{1}/c$	C2/c	<i>P</i> -1 <i>P</i> -1		<i>P</i> -1
<i>a</i> (Å)	6.711(2)	20.001(2)	8.463(3)	13.379(7)	8.450(4)
<i>b</i> (Å)	14.834(5)	4.845(4)	8.976(3)	14.992(3)	9.153(2)
<i>c</i> (Å)	12.391(4)	16.024(4)	10.962(4)	16.043(4)	10.952(4)
α (°)	90	90	95.57(2)	113.90(4)	67.50(3)
β (°)	104.88(3)	125.35(3)	111.82(3)	103.69(3)	67.45(2)
γ (°)	90	90	109.33(2)	98.24(2)	72.56(3)
$V(Å^3)$	1192(2)	1266(3)	706(2)	2746(4)	711(2)
Ζ	4	4	2	8	2
μ (Mo K _a) (mm ⁻¹)	0.56	6.41	0.48	0.49	5.72
Crystal size (mm ³)	0.49×0.35×0.10	0.15×0.11×0.04	0.68×0.36×0.12	0.72×0.37×0.08	0.24×0.19×0.12
θ Range (°)	3.1 to 36.7	3.1 to 36.4	2.9 to 36.6	3.1 to 36.4	3.7 to 36.6
	$-7 \le h \le 8$	$-25 \le h \le 25$,	$-10 \le h \le 8,$	$-16 \le h \le 16$	$-10 \le h \le 10$
Index ranges	$-17 \le k \le 17$	$-6 \le k \le 6,$	$11 \le k \le 11,$	$-16 \le k \le 18$	$-11 \le k \le 11$
	$-12 \le l \le 15$	$-20 \le l \le 20$	$-14 \le l \le 14$	$-19 \le 1 \le 19$	$-14 \le l \le 13$
Absorption correction	none	analytical	analytical	analytical	analytical
T _{min} , T _{max}	-	0.569, 0.817	0.797, 0.951	0.799, 0.966	0.431, 0.644
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4947, 2198, 1943	5110, 1451, 1341	9923, 3238, 2776	25077, 10236, 6857	9479, 3247, 2920
R _{int}	0.018	0.047	0.041	0.042	0.029
Goodness-of-fit on F^2	1.13	1.23	1.07	1.04	1.07
Final R_1 , wR_2 indices $[F^2 > 2\sigma(F^2)]$	$R_1 = 0.033,$ $wR_2 = 0.079$	$R_1 = 0.038,$ $wR_2 = 0.090$	$R_1 = 0.046,$ $wR_2 = 0.126$	$R_1 = 0.056,$ $wR_2 = 0.141$	$R_1 = 0.027,$ $wR_2 = 0.074$
Final R_1 , wR_2	$R_1 = 0.039,$	$R_1 = 0.041,$	$R_1 = 0.053,$	$R_1 = 0.090,$	$R_1 = 0.031,$
indices (all data)	$wR_2 = 0.081$	$wR_2 = 0.092$	$wR_2 = 0.133$	$wR_2 = 0.156$	$wR_2 = 0.077$
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max,\min} (e \text{ Å}^{-3})$	0.33/-0.31	0.52/-0.61	0.46/-0.28	0.60/-0.38	0.71/-0.51

 Table S1. Crystal data and structure refinement for all complexes.

Table S2. Experimental and calculated (on the DFT method level in the solid state) bond lengths (Å) and angles (°) 2MP·CLA (1) complex.

	Experimental	Calculated
2MP		
N(1)-C(2)	1.349(3)	1.348
N(1)-C(6)	1.347(3)	1.348
N(2)–C(5)	1.338(3)	1.341
N(2)–C(3)	1.342(3)	1.341
C(5)–C(6)	1.378(3)	1.387
C(2)–C(3)	1.395(3)	1.401
C(2)–C(21)	1.496(3)	1.488
N1-C2-C3	119.55(18)	121.01
N1-C2-C21	119.46(18)	122.65
C2-N1-C6	117.76(17)	117.24
C3–N2–C5	116.93(18)	117.24
N2-C5-C6	121.44(19)	121.01
N2-C3-C2	122.61(18)	121.01
N1-C6-C5	121.69(19)	121.72
C3–C2–C21	120.98(18)	122.64
CLA		
Cl(1)–C(11)	1.718(2)	1.773
Cl(2)–C(14)	1.719(2)	1.779
C(13)-O(3)	1.217(2)	1.237
C(12)–O(2)	1.322(2)	1.283
C(15)–O(5)	1.323(2)	1.333
C(16)–O(6)	1.220(2)	1.253
C(14)–C(15)	1.348(3)	1.389
C(14)–C(13)	1.458(3)	1.426
C(15)–C(16)	1.506(3)	1.543
C(16)–C(11)	1.460(3)	1.447
C(12)–C(11)	1.349(3)	1.362
C(12)–C(13)	1.515(3)	1.509
O2-C12-C11	121.88(18)	122.60
O2-C12-C13	117.34(17)	116.36
O3-C13-C14	124.16(18)	126.01
O3-C13-C12	118.20(17)	116.14
O5-C15-C14	122.36(18)	124.46
O5-C15-C16	116.77(17)	117.46
O6-C16-C15	118.27(17)	118.38
O6-C16-C11	123.81(18)	123.54
C11-C16-C15	117.92(16)	118.06
C11-C12-C13	120.77(17)	121.01
C12–C11–Cl1	122.34(15)	119.32
C12–C11–C16	121.29(18)	121.76
C13–C14–Cl2	117.79(15)	116.19
C14–C15–C16	120.87(17)	121.02
C14–C13–C12	117.64(17)	118.07
C15–C14–Cl2	120.70(15)	120.56
C15-C14-C13	121.51(18)	123.23
C16-C11-Cl1	116.36(14)	118.86

	Experimental	Calculated
2MP	·	
N(1)–C(2)	1.338(5)	1.352
N(1)–C(3)	1.331(5)	1.344
C(3)–C(2) ²	1.395(6)	1.389
$C(2)-C(3)^2$	1.395(6)	1.389
C(2)–C(21)	1.496(9)	1.495
N1-C2-C3 ²	120.6(4)	119.40
N1-C3-C2 ²	122.1(4)	120.79
N1-C2-C21	119.0(5)	119.27
C2-N1-C3	117.3(3)	118.05
BRA		
Br(1)–C(11)	1.881(4)	1.902
C(13)–O(3)	1.215(5)	1.241
C(12)–O(2)	1.319(5)	1.318
C(11)–C(13) ¹	1.453 (5)	1.443
C(11)–C(12)	1.353(5)	1.352
C(13)–C(11) ¹	1.453(5)	1.443
C(13)–C(12)	1.521(5)	1.521
O2-C12-C11	122.1(4)	121.94
O2-C12-C13	117.7(3)	118.04
O3-C13-C111	124.6 (4)	124.39
O3-C13-C12	117.7(3)	117.54
C111-C13-C12	117.7 (3)	118.03
C11-C12-C13	120.1(3)	119.97
C12C11C131	122.2(3)	121.98
C131-C11-Br1	116.8 (3)	117.44
Symmetry code: (1) -x-	+1/2, -y-1/2, -z+1; (2) -x, -y+1	, - <i>z</i> +1.

Table S3. Experimental and calculated (on the DFT method level in the solid state) bond lengths (Å) and angles (°) 2MP·BRA (2) complex.

Table S4. Experimental ar	nd calculated (on the DFT	method level in the s	olid state) bond leng	gths (Å) and angles (°) TrMP·CLA (3a)
complex.					

	Experimental	Calculated
TrMPH ⁺		
N(1)-C(2)	1.345(2)	1.352
N(1)-C(6)	1.338(2)	1.351
N(2)–C(3)	1.333(2)	1.342
N(2)-C(5)	1.351(2)	1.353
C(5)–C(6)	1.385(2)	1.388
C(2)–C(3)	1.411(2)	1.415
C(2)–C(21)	1.490(2)	1.486
C(3)–C(31)	1.500(2)	1.491
C(5)–C(51)	1.489(3)	1.492
N1-C2-C3	116.89(16)	116.87
N1-C2-C21	119.54(16)	120.02
C2-N1-C6	122.15(15)	122.46
C3-N2-C5	119.64(15)	120.06
N2-C5-C6	119.77(16)	120.00
N2-C3-C2	121.71(15)	121.32
N1-C6-C5	119.81(16)	119.23
C3–C2–C21	123.56(16)	123.08
N2-C3-C31	117.95(15)	118.29
C2–C3–C31	120.34(16)	120.39
N2-C5-C51	118.23(16)	118.07
C6–C5–C51	121.99(16)	121.92
CLA-		
Cl(1)–C(11)	1.717(2)	1.779
Cl(2)–C(14)	1.729(2)	1.787
C(13)–O(3)	1.242(2)	1.263
C(12)–O(2)	1.328(2)	1.329
C(15)–O(5)	1.255(2)	1.266
C(16)–O(6)	1.220(2)	1.238
C(14)–C(15)	1.391(2)	1.398
C(14)-C(13)	1.411(2)	1.408
C(15)-C(16)	1.542(2)	1.554
C(16)-C(11)	1.450(2)	1.439
C(12)-C(11)	1.351(2)	1.361
C(12)-C(13)	1.509(2)	1.514
O2C12C11	121.63(15)	121.97
O2-C12-C13	116.62(13)	116.69
O3—C13—C12	116.10(14)	116.68
O3-C13-C14	125.45(15)	125.22
O5C15C14	125.66(15)	126.11
O5-C15-C16	116.73(14)	116.59
O6-C16-C11	123.03(15)	121.09
O6-C16-C15	117.81(15)	117.54
C11-C16-C15	119.15(14)	118.36
C11-C12-C13	121.73(14)	121.32
C12-C11-Cl1	121.87(13)	120.91
C12-C11-C16	120.13(14)	121.01
C13-C14-Cl2	117.54(12)	117.38

C14-C15-C16	117.61(14)	117.39
C14-C13-C12	118.45(14)	118.06
C15-C14-Cl2	119.71(12)	119.31
C15-C14-C13	122.74(14)	123.29
C16-C11-Cl1	117.93(12)	117.88

ionic pair A		ionic pair B		ionic pair C		ionic pair D	
	experimental		experimental		experimental		experimenta
TrMPH ⁺		TrMPH ⁺	T	TrMPH ⁺	· · ·	TrMPH ⁺	
N(1A)-C(2A)	1.345(4)	N(1B)-C(2B)	1.341(4)	N(1C)-C(2C)	1.332(4)	N(1D)-C(2D)	1.333(4)
N(1A)-C(6A)	1.340(4)	N(1B)-C(6B)	1.340(4)	N(1C)-C(6C)	1.348(4)	N(1D)-C(6D)	1.345(4)
N(2A)-C(3A)	1.331(4)	N(2B)-C(3B)	1.332(4)	N(2C)-C(3C)	1.330(4)	N(2D)-C(3D)	1.327(4)
N(2A)-C(5A)	1.343(4)	N(2B)-C(5B)	1.351(4)	N(2C)-C(5C)	1.342(4)	N(2D)-C(5D)	1.348(4)
C(2A)–C(3A)	1.407(5)	C(2B)–C(3B)	1.409(5)	C(2C)–C(3C)	1.415(5)	C(2D)-C(3D)	1.411(5)
C(2A)-C(21A)	1.494(5)	C(2B)–C(21B)	1.490(5)	C(2C)–C(21C)	1.487(4)	C(2D)-C(21D)	1.486(5)
C(3A)–C(31A)	1.499(5)	C(3B)–C(31B)	1.492(5)	C(3C)–C(31C)	1.492(4)	C(3D)–C(31D)	1.500(5)
C(5A)-C(6A)	1.388(5)	C(5B)–C(6B)	1.381(5)	C(5C)–C(6C)	1.390(5)	C(5D)-C(6D)	1.388(5)
C(5A)–C(51A)	1.490(5)	C(5B)–C(51B)	1.495(5)	C(5C)–C(51C)	1.487(5)	C(5D)-C(51D)	1.491(5)
N(1A)-C(2A)-C(3A)	116.8(3)	C(2B)–N(1B)–C(6B)	122.7(3)	C(2C)-N(1C)-C(6C)	122.7(3)	C(2D)-N(1D)-C(6D)	123.5(3)
N(1A)-C(2A)-C(21A)	119.4(3)	C(3B)–N(2B)–C(5B)	119.3(3)	C(3C)-N(2C)-C(5C)	120.2(3)	C(3D)-N(2D)-C(5D)	119.3(3)
C(2A)-N(1A)-C(6A)	122.3(3)	N(1B)-C(2B)-C(3B)	116.6(3)	N(1C)-C(2C)-C(3C)	116.6(3)	N(1D)-C(2D)-C(3D)	116.2(3)
C(3A)-N(2A)-C(5A)	119.7(3)	N(1B)-C(2B)-C(21B)	120.2(3)	N(1C)-C(2C)-C(21C)	120.2(3)	N(1D)-C(2D)-C(21D)	120.1(3)
C(3A)–C(2A)–C(21A)	123.8(3)	C(3B)–C(2B)–C(21B)	123.3(3)	C(3C)–C(2C)–C(21C)	123.2(3)	C(3D)–C(2D)–C(21D)	123.7(3)
N(2A)-C(3A)-C(2A)	121.8(3)	N(2B)-C(3B)-C(2B)	122.0(3)	N(2C)-C(3C)-C(2C)	121.7(3)	N(2D)-C(3D)-C(2D)	122.3(3)
N(2A)-C(3A)-C(31A)	118.4(3)	N(2B)-C(3B)-C(31B)	118.4(3)	N(2C)-C(3C)-C(31C)	118.8(3)	N(2D)-C(3D)-C(31D)	118.1(3)
C(2A)-C(3A)-C(31A)	119.7(3)	C(2B)-C(3B)-C(31B)	119.7(3)	C(2C)–C(3C)–C(31C)	119.5(3)	C(2D)-C(3D)-C(31D)	119.6(3)
N(2A)-C(5A)-C(6A)	120.1(3)	N(2B)-C(5B)-C(6B)	120.4(3)	N(2C)-C(5C)-C(6C)	119.5(3)	N(2D)-C(5D)-C(6D)	120.4(3)
N(2A)-C(5A)-C(51A)	117.6(3)	N(2B)-C(5B)-C(51B)	117.9(3)	N(2C)-C(5C)-C(51C)	118.7(3)	N(2D)-C(5D)-C(51D)	117.9(3)
C(6A)-C(5A)-C(51A)	122.3(3)	C(6B)-C(5B)-C(51B)	121.7(3)	C(6C)–C(5C)–C(51C)	121.7(3)	C(6D)-C(5D)-C(51D)	121.7(3)
N(1A)-C(6A)-C(5A)	119.2(3)	N(1B)-C(6B)-C(5B)	119.1(3)	N(1C)-C(6C)-C(5C)	119.2(3)	N(1D)-C(6D)-C(5D)	118.3(3)
CLA-	CLA-		CLA- CLA-		- I · ·	CLA-	1
Cl(1A)–C(11A)	1.720(3)	Cl(1B)–Cl(11B)	1.716(3)	Cl(1C)–C(11C)	1.716(3)	Cl(1D)–C(11D)	1.713(3)
Cl(2A)-Cl(14A)	1.727(3)	Cl(2B)C(14B)	1.732(3)	Cl(2C)–Cl(14C)	1.730(4)	Cl(2D)-Cl(14D)	1.727(3)
C(12A)-O(2A)	1.325(4)	C(12B)–O(2B)	1.324(4)	C(12C)–O(2C)	1.326(4)	C(12D)-O(2D)	1.327(4)
C(13A)-O(3A)	1.250(4)	C(13B)–O(3B)	1.250(4)	C(13C)–O(3C)	1.255(4)	C(13D)-O(3D)	1.248(4)
C(15A)-O(5A)	1.252(4)	C(15B)–O(5B)	1.264(4)	C(15C)–O(5C)	1.254(4)	C(15D)-O(5D)	1.257(4)
C(16A)-O(6A)	1.229(4)	C(16B)–O(6B)	1.231(4)	C(16C)–O(6C)	1.216(4)	C(16D)-O(6D)	1.217(4)
C(11A)-C(12A)	1.349(5)	C(11B)–C(12B)	1.356(4)	C(11C)-C(12C)	1.351(5)	C(11D)-C(12D)	1.355(5)
C(11A)-C(16A)	1.456(5)	C(11B)–C(16B)	1.438(5)	C(11C)-C(16C)	1.461(5)	C(11D)-C(16D)	1.461(5)
C(12A)-C(13A)	1.516(5)	C(12B)–C(13B)	1.507(5)	C(12C)–C(13C)	1.516(5)	C(12D)-C(13D)	1.498(5)
C(13A)-C(14A)	1.402(5)	C(13B)–C(14B)	1.410(5)	C(13C)–C(14C)	1.406(5)	C(13D)-C(14D)	1.417(5)
C(14A)-C(15A)	1.401 (5)	C(14B)-C(15B)	1.392(5)	C(14C)-C(15C)	1.402(5)	C(14D)-C(15D)	1.395(5)
C(15A)-C(16A)	1.537 (5)	C(15B)-C(16B)	1.545(5)	C(15C)-C(16C)	1.541(5)	C(15D)-C(16D)	1.541(5)
C(12A)-C(11A)-Cl(1A)	122.1(3)	C(12B)–C(11B)–Cl(1B)	121.6(3)	C(12C)–C(11C)–Cl(1C)	121.9(3)	C(12D)-C(11D)-Cl(1D)	122.4(3)
C(12A)-C(11A)-C(16A)	120.3(3)	C(12B)-C(11B)-C(16B)	120.1(3)	C(12C)-C(11C)-C(16C)	120.2(3)	C(12D)-C(11D)-C(16D)	119.8(3)
C(16A)-C(11A)-Cl(1A)	117.6(2)	C(16B)–C(11B)–Cl(1B)	118.3(2)	C(16C)-C(11C)-Cl(1C)	117.8(2)	C(16D)-C(11D)-Cl(1D)	117.8(3)
O(2A)–C(12A)–C(11A)	121.8(3)	O(2B)–C(12B)–C(11B)	121.5(3)	O(2C)–C(12C)–C(11C)	121.9(3)	O(2D)-C(12D)-C(11D)	120.8(3)

Table S5. Experimental bond lengths (Å) and angles (°) for the TrMP·CLA (3b) complex.

O(2A)-C(12A)-C(13A)	116.9(3)	O(2B)-C(12B)-C(13B)	116.8(3)	O(2C)-C(12C)-C(13C)	116.5(3)	O(2D)-C(12D)-C(13D)	117.0(3)
C(11A)–C(12A)–C(13A)	121.3(3)	C(11B)–C(12B)–C(13B)	121.7(3)	C(11C)-C(12C)-C(13C)	121.6(3)	C(11D)-C(12D)-C(13D)	122.2(3)
O(3A)-C(13A)-C(12A)	115.7(3)	O(3B)–C(13B)–C(12B)	116.3(3)	O(3C)–C(13C)–C(12C)	116.5(3)	O(3D)–C(13D)–C(12D)	116.7(3)
O(3A)-C(13A)-C(14A)	125.4(3)	O(3B)–C(13B)–C(14B)	125.1(3)	O(3C)–C(13C)–C(14C)	125.5(3)	O(3D)-C(13D)-C(14D)	124.5(3)
C(14A)–C(13A)–C(12A)	118.8(3)	C(14B)–C(13B)–C(12B)	118.6(3)	C(14C)-C(13C)-C(12C)	118.6(3)	C(14D)-C(13D)-C(12D)	118.7(3)
C(13A)–C(14A)–Cl(2A)	118.4(2)	C(13B)-C(14B)-Cl(2B)	117.9(3)	C(13C)–C(14C)–Cl(2C)	118.2(2)	C(13D)-C(14D)-Cl(2D)	117.8(3)
C(15A)–C(14A)–Cl(2A)	118.9(3)	C(15B)–C(14B)–Cl(2B)	119.5(3)	C(15C)-C(14C)-Cl(2C)	118.9(3)	C(15D)-C(14D)-Cl(2D)	119.8(3)
C(15A)–C(14A)–C(13A)	122.7(3)	C(15B)–C(14B)–C(13B)	122.6(3)	C(15C)–C(14C)–C(13C)	122.8(3)	C(15D)-C(14D)-C(13D)	122.4(3)
O(5A)-C(15A)-C(14A)	125.8(3)	O(5B)–C(15B)–C(14B)	126.1(3)	O(5C)–C(15C)–C(14C)	126.1(3)	O(5D)–C(15D)–C(14D)	125.7(3)
O(5A)-C(15A)-C(16A)	116.7(3)	O(5B)–C(15B)–C(16B)	116.5(3)	O(5C)-C(15C)-C(16C)	116.4(3)	O(5D)–C(15D)–C(16D)	116.4(3)
C(14A)–C(15A)–C(16A)	117.5(3)	C(14B)–C(15B)–C(16B)	117.4(3)	C(14C)-C(15C)-C(16C)	117.5(3)	C(14D)-C(15D)-C(16D)	117.9(3)
O(6A)-C(16A)-C(11A)	122.8(3)	O(6B)–C(16B)–C(11B)	123.0(3)	O(6C)-C(16C)-C(11C)	122.5(3)	O(6D)–C(16D)–C(11D)	122.8(3)
O(6A)-C(16A)-C(15A)	118.0(3)	O(6B)–C(16B)–C(15B)	117.4(3)	O(6C)-C(16C)-C(15C)	118.5(3)	O(6D)–C(16D)–C(15D)	118.3(3)
C(11A)–C(16A)–C(15A)	119.2(3)	C(11B)-C(16B)-C(15B)	119.6(3)	C(11C)-C(16C)-C(15C)	119.0(3)	C(11D)-C(16D)-C(15D)	118.9(3)

	Experimental	Calculated
TrMPH ⁺	Å	
N(1)-C(2)	1.345(3)	1.352
N(1)-C(6)	1.345(3)	1.347
N(2)—C(3)	1.337(3)	1.343
N(2)-C(5)	1.348(3)	1.349
C(5)-C(6)	1.378(3)	1.388
C(2)–C(3)	1.411(3)	1.412
C(2)–C(21)	1.494(3)	1.486
C(3)–C(31)	1.498(3)	1.490
C(5)–C(51)	1.499(3)	1.487
N1-C2-C3	117.1(2)	116.91
N1C2C21	119.3(2)	119.46
C2-N1-C6	122.1(2)	122.77
C3-N2-C5	119.2(2)	120.14
N2-C5-C6	120.8(2)	120.22
N2-C5-C51	117.7(2)	118.51
N2-C3-C2	121.6(2)	121.07
N2-C3-C31	117.9(2)	117.90
N1-C6-C5	119.2(2)	118.85
C6–C5–C51	121.5(2)	121.26
C3–C2–C21	123.6(2)	123.95
C2–C3–C31	120.5(2)	121.01
BRA-		
Br(1)–C(11)	1.876(2)	1.893
Br(2)–Cl(14)	1.888(2)	1.899
C(13)–O(3)	1.243(3)	1.261
C(12)–O(2)	1.330(3)	1.329
C(15)–O(5)	1.251(3)	1.265
C(16)–O(6)	1.222(3)	1.237
C(14)–C(15)	1.391(3)	1.398
C(14)–C(13)	1.413(3)	1.409
C(15)–C(16)	1.551(3)	1.551
C(16)–C(11)	1.454(3)	1.441
C(12)–C(11)	1.348(3)	1.363
C(12)–C(13)	1.517(3)	1.509
O2-C12-C11	122.3(2)	122.25
O2-C12-C13	115.48(19)	115.99
O3-C13-C14	126.1(2)	124.94
O3–C13–C12	115.8(2)	114.48
O5-C15-C14	126.3(2)	125.36
O5-C15-C16	116.1(2)	116.75
O6-C16-C15	117.66(19)	117.83
O6-C16-C11	123.2(2)	123.38
C11-C16-C15	118.95(19)	118.77
C11-C12-C13	122.2(2)	121.70
C12C11-Br1	121.64(17)	121.45
C12C11C16	119.9(2)	120.38

 Table S6. Experimental and calculated (on the DFT method level in the solid state) bond lengths (Å) and angles (°) TrMP·BRA (4) complex.

TrMP·BRA (4) complex. (Å, °) (continued).					
C13-C14-Br2	117.25(17)	117.32			
C14-C15-C16	117.66(19)	117.88			
C14-C13-C12	118.1(2)	118.51			
C15-C14-Br2	119.89(16)	120.09			
C15-C14-C13	122.8(2)	122.55			
C16C11Br1	118.43(17)	118.12			

Table S6. Experimental and calculated (on the DFT method level in the solid state) bond lengths and angles TrMP·BRA (4) complex. (Å, °) (continued).

Table S7. Hydrogen bonds and short contacts for crystals (1) and (2).

2MP·CLA (1)					
D –Н···A (Å)	D –Н (Å)	H…A (Å)	DA (Å)	D –Н····А (°)	
O(2)-H(1)···N(1)	0.85(3)	1.85(3)	2.664(2)	159(3)	
$O(5)-H(2)\cdots N(2)^2$	0.84(3)	1.91(3)	2.700(2)	155(3)	
$C(3)-H(3)-O(6)^{1}$	0.95	2.43	3.065(3)	124	
C(6)–H(6)····O(3)	0.95	2.40	3.055(3)	125	
C(21)–H(21)···O(2)	0.98	2.56	3.276(3)	130	
$C(21)-H(23)\cdots O(5)^{3}$	0.98	2.64	3.414(3)	136	
Symmetry codes: (1) x-1	1, y, z-1; (2) x+1,	y, z+1; (3) - x+2, -y,	, - <i>z</i> +1.	L	
		2MP·BRA (2)			
D–H··· А (Å)	D–H (Å)	H…A (Å)	D…A (Å)	D–H···A (°)	
$O(2)-H(1)\cdots N(1)$	0.84	1.89	2.645(4)	149	
C(3)–H(3)····O(3)	0.95	2.50	2.124(5)	123	
C(21)–H(21C)···O(2) ³	0.98	2.62	3.530(9)	155	
Symmetry codes: $(3) -x$,	<i>y</i> , <i>-z</i> +1/2.				

TrMP·CLA (3a) at 200 K						
D−H…A (Å)	D–H (Å)	H…A (Å)	D…A (Å)	D –H···A		
$O(2)-H(2)-O(3)^{1}$	0.84	1.90	2.658(2)	150		
N(1)-H(1)···O(5)	0.96	1.74(3)	2.681(2)	164(2)		
C(6)–H(6)···O(6)	0.95	2.32	2.978(2)	126		
C(21)-H(21)····O(5)	0.98	2.38	3.215(2)	143		
$C(31) - H(32) - Cl(2)^2$	0.98	2.93	3.560(2)	123		
$C(31) - H(33) \cdots N(2)^4$	0.98	2.82	3.793(3)	1756		
$C(51)-H(53)\cdots O(2)^3$	0.98	2.79	3.550(3)	135		
symmetry codes: (1) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> ; (2) - <i>x</i> , - <i>y</i> , - <i>z</i> +1; (3) <i>x</i> , <i>y</i> , <i>z</i> +1; (4) - <i>x</i> , - <i>y</i> +1, - <i>z</i> +2.						

Table S8. Hydrogen bonds and short contacts for crystals (3a) at 200 K.

TrMP·CLA (3b) at 100K								
D–H···A (Å)	D-H	H…A (Å)	D…A (Å)	D-H···A				
ionic pair A								
N(1A)–H(1A)····O(5A)	0.88	1.84	2.702(4)	165				
$O(2A)-H(2A)\cdots O(3B)^1$	0.84	1.92	2.668(3)	148				
C(6A)–H(6A)···O(6A)	0.95	2.32	2.965(4)	125				
C(21A)–H(21A)···O(5A)	0.98	2.37	3.215(5)	144				
$C(21A)-H(23A)\cdots O(2D)^2$	0.98	2.67	3.312(4)	123				
$C(21A)-H(32A)\cdots O(3D)^{3}$	0.98	2.70	3.268(4)	117				
	ioni	c pair B						
N(1B)-H(1B)···O(5B)	0.88	1.80	2.658(4)	165				
$O(2B)-H(2B)\cdots O(3A)^1$	0.84	1.92	2.668(3)	148				
C(6B)–H(6B)···O(6B)	0.95	2.29	2.945(4)	125				
C(21B)–H(21B)····O(5B)	0.98	2.36	3.191(5)	142				
$C(21B)-H(22B)\cdots Cl(1D)^4$	0.98	2.91	3.779(3)	149				
$C(31B)-H(32B)\cdots Cl(2C)^{4}$	0.98	2.89	3.714(4)	143				
$C(51B)-H(53B)\cdots Cl(1C)^4$	0.98	2.88	3.843(4)	168				
$C(51B)-H(51B)\cdots Cl(2D)^{2}$	0.98	2.88	3.812(4)	159				
	ioni	c pair C						
$N(1C)-H(1C)\cdots O(5C)$	0.88	1.81	2.668(4)	165				
$O(2C)-H(2C)\cdots O(3C)^5$	0.84	1.97	2.715(3)	147				
$C(6C)-H(6C)\cdots O(6C)$	0.95	2.31	2.955(5)	125				
$C(21C)-H(21C)\cdots O(5C)$	0.98	2.36	3.190(5)	142				
$C(31C)-H(32C)\cdots Cl(2A)^4$	0.98	2.92	3.796(3)	150				
	ioni	c pair D						
$N(1D)-H(1D)\cdots O(5D)$	0.88	1.85	2.708(4)	165				
$O(2D)-H(2D)\cdots O(3D)^7$	0.84	1.87	2.628(3)	149				
$C(6D)-H(6D)\cdots O(6D)$	0.95	2.33	2.972(5)	125				
$C(21D)-H(21D)\cdots O(5D)$	0.98	2.36	3.202(5)	144				
$C(21D) - H(23D) \cdots O(2A)^2$	0.98	2.72	3.349(4)	123				
$C(21D)-H(22D)\cdots O(6B)^{2}$	0.98	2.70	3.305(4)	121				
$C(31D)-H(33D)\cdots Cl(1B)^2$	0.98	2.91	3.800(3)	151				
Symmetry codes: (1) $-x$, $-y$, $-z+1$;	(2) -x+1, -y	+1, $-z+1$; (3) x	+1, y, z+1; (4) x, y, z+	-1; (5) - x +1, -				
y, -z; (6) x+1, y, z; (7) -x, -y+1, -z.								

Table S9	Hydrogen	honds and	short	contacts	for	crystals ((3h)) at	100	K
1 abic 57.	ITyurogen	bonus anu	SHOLL	contacts	101	ci y stais	30	j ai	100	n.

TrMP·BRA (4)									
D− H···A (Å)	D–H (Å)	H…A (Å)	DA (Å)	D-H···A (°)					
N1-H1…O5	0.92 (3)	1.79 (4)	2.682(3)	162 (3)					
O2−H2…O3 ¹	0.84	1.93	2.666(2)	146					
С6-Н6…О6	0.95	2.30	2.947(3)	125					
С21-Н21…О5	0.98	2.38	3.215(3)	143					
C21–H22···O2 ²	0.98	2.74	3.356(3)	121					
C21–H23…O6 ³	0.98	2.90	3.436(3)	115					
C51–H52···O2 ⁴	0.98	2.80	3.526(3)	132					
Symmetry codes: (1) -	x, -y+1, -z; (2) -x, -y	y+1, -z+1; (3) -x+1,	-y+1, -z+1; (4) x, y, z+1						

Table S10. Hydrogen bonds and short contacts for crystals (4).

IR FREQUENCIES [cm ⁻¹]	RAMAN FREQUENCIES [cm ⁻¹]	HARM. FREQUENCIES [cm ⁻¹]	IR	RAMAN	ASSIGNMENTS
77 (vw)		75	А	Ι	
90 (vw)		89	А	Ι	
95 (w)		92	Α	Ι	$2MP: \rho_{(r)}CH_3$
		96	А	Ι	
98 (w)		98	А	Ι	
100 (w)		102	А	Ι	2MP: $\rho_{(r)}CH_3$
112 (s)		107	А	Ι	2MP: $\rho_{(r)}$ CH ₃ , $\delta_{(\pi)}$ C-H
118 (s)		121	А	Ι	2MP: $\rho_{(r)}CH_3$, $\delta_{torsion}$ ring
131 (m)		129	А	Ι	2MP: r(r)CH3, CLA: d(p)C=O, r(r) ring
138 (m)		146	А	Ι	2MP: r(r)CH3, CLA: d(p)C-OH
141 (w)		148	А	Ι	2MP: $\rho_{(r)}CH_3$, $\delta_{(\pi)}C$ -H, ring butter. (2MP+CLA)
156 (w)		161	А	Ι	CLA: dC-Cl, ring torsion (2MP+CLA)
	208 (vw)	207	Ι	А	ring butter. (2MP+CLA)
204 (s)		211	А	Ι	ring butter. (2MP+CLA)
213 (w)		213	А	Ι	ring butter. (2MP+CLA)
	218 (vw)	218	Ι	А	ring butter. (2MP+CLA)
216 (w)		219	А	Ι	ring butter. (2MP+CLA)
	221 (vw)	220	Ι	А	2MP: $\rho_{(w)}CH_3$, $\delta_{(\pi)}C$ -H, ring butter.
226 (vw)		224	А	Ι	2MP: $\rho_{(w)}$ CH ₃ , $\delta_{(\pi)}$ C-H, $\delta_{(\pi)}$ C-CH ₃
235 (vw)		224	А	Ι	2MP: $\rho_{(w)}CH_3$, $\delta_{(\pi)}C$ -H, $\delta_{(\pi)}C$ -CH ₃
243 (vw)		250	А	Ι	CLA: $\rho_{(r)}$ ring
251 (vw)		251	А	Ι	CLA: $\rho_{(r)}$ ring
	246 (w)	252	Ι	А	CLA: $\rho_{(r)}$ ring
	266 (vw)	253	Ι	А	CLA: $\rho_{(r)}$ ring
322 (vw)		293	A	Ι	CLA: v _(ass) CCC, δC-OH, vC-Cl, vC=O
341 (vw)		347	A	Ι	2MP: $\rho_{(r)}CH_3$, δC - CH_3 , $\nu_{(ass)}CNC$, CLA: δC - OH , δC = O
352 (m)		352	А	Ι	2MP: $\rho_{(2)}CH_3$, δC -CH ₃ , $\nu_{(3)}CNC$, CLA: δC -OH, δC =O

359 (s)		355	А	I	2MP: $\rho_{(r)}$ CH ₃ , δ C-CH ₃ , $v_{(ass)}$ CNC, CLA: δ C-OH, δ C=O
371 (m)		378	А	I	CLA: $\delta_{(\pi)}$ CCC, vC-Cl, δ C-OH, δ C=O
	385 (vw)	383	I	A	CLA: $\delta_{(\pi)}$ CCC, vC-Cl, δ C-OH, δ C=O
386 (vw)		384	А	I	CLA: $\delta_{(\pi)}$ CCC, vC-Cl, δ C-OH, δ C=O
398 (vw)		405	A	I	2MP: $\delta_{(\pi)}$ C-H, $\delta_{(t,\pi)}$ CNC
	395 (w)	405	Ι	A	2MP: $\delta_{(\pi)}$ C-H, $\delta_{(t,\pi)}$ CNC
411 (m)		406	А	I	2MP: δ CNC, CLA: $v_{(ass)}$ CCC, δ C-OH, δ C=O, δ C-Cl
412 (m)		407	А	I	2MP: $\rho_{(w)}$ CH ₃ , $\delta_{(\pi)}$ C-H, CLA: δ C-OH, δ C=O
	412 (w)	407	Ι	A	CLA: v _(ass) CCC, δC-OH, δC=O
421 (vw)		421	А	I	2MP: $v_{(ass)}$ CNC, vC-H, CLA: $v_{(ass)}$ CCC, δ C=O
430 (vw)		471	А	I	2MP: $\rho_{(w)}$ CH ₃ , δ C-CH ₃ , CLA: vC-Cl, ring butter.
	477 (vw)	471	Ι	A	2MP: $\rho_{(w)}$ CH ₃ , δ C-CH ₃ , CLA: vC-Cl, ring butter.
476 (vw)		472	А	Ι	2MP: $\rho_{(w)}$ CH ₃ , δ C-CH ₃ , CLA: vC-Cl, ring butter.
483 (vw)		488	А	Ι	CLA: $\rho_{(t)}$ CCC, ν C-OH
	490 (vw)	492	Ι	A	CLA: $\rho_{(t)}$ CCC, $\delta_{(\pi)}$ C-OH, $\delta_{(\pi)}$ C=O, $\delta_{(\pi)}$ C-Cl
492 (vw)		503	А	Ι	2MP: νCNC, ν _(ass) CH ₃ , δC-H, CLA: δC-Cl
522 (vw)		508	А	Ι	2MP: $\rho_{(sc.)}$ CNC, vC-H, CLA: δ C-OH, $v_{(ass)}$ CCC,
	526 (vs)	528	Ι	A	CLA: vCCC, vC-Cl, vC-OH, vC=O
535 (vw)		529	А	Ι	CLA: vCCC, vC-Cl, vC-OH, vC=O
553 (m)		547	А	I	CLA: vCCC, vC-Cl, vC-OH, vC=O
558 (s)		548	А	I	CLA: $\rho_{(t)}$ CCC, $\delta_{(\pi)}$ C-OH, $\delta_{(\pi)}$ C=O
	568 (vw)	555	Ι	A	CLA: $\rho_{(t)}$ CCC, $\delta_{(\pi)}$ C-OH, $\delta_{(\pi)}$ C=O
563 (vw)		573	А	I	2MP: vC-H, vC-CH ₃ , vCNC, CLA: vC-OH, vC=O, vCCC, vC-Cl
574 (vw)		573	А	I	2MP: vC-H, vC-CH ₃ , vCNC, CLA: vC-OH, vC=O, vCCC, vC-Cl
	575 (vw)	574	Ι	A	2MP: vC-H, vC-CH ₃ , vCNC, CLA: vC-OH, vC=O, vCCC, vC-Cl
617 (vw)		604	А	I	2MP: ρ _(sc.) CNC, νC-CH ₃ , νC-H, CLA: νC-OH
	661 (vw)	604	Ι	A	2MP: $\rho_{(sc.)}$ CNC, vC-CH ₃ , vC-H, CLA: vC-OH
631 (vw)		604	А	I	2MP: ρ _(sc.) CNC, vC-CH ₃ , vC-H, CLA: vC-OH
697 (vw)		732	А	Ι	CLA: ρ _(t) CCC
719 (vw)		732	A	I	2MP: $\rho_{(w)}$ CH ₃ , $\delta_{(\pi)}$ C-H, $\rho_{(t)}$ CNC, CLA: $\rho_{(t)}$ CCC

728 (vw)		733	Α	I	2MP: $\rho_{(w)}$ CH ₃ , $\delta_{(\pi)}$ C-H, $\rho_{(t)}$ CNC, CLA: $\rho_{(t)}$ CCC
	744 (vw)	736	Ι	A	CLA: $\rho_{(t)}$ CCC
743 (vw)		736	Α	I	2MP: $\delta_{(\pi)}$ CH, CLA: $\delta_{(\pi)}$ C=O, $\rho_{(i)}$ CCC
768 (vw)		759	Α	I	2MP: $\rho_{(sc.)}$ CNC, CLA: δ C-OH, δ C=O, $\rho_{(r)}$ ring
	785 (vw)	800	Ι	A	CLA: ρ _(sc.) CCC, δC-OH, δC=O, νC-Cl
786 (vw)		804	Α	I	CLA: $\rho_{(sc.)}$ CCC, δ C-OH, δ C=O, ν C-Cl
799 (w)		808	А	I	2MP: $\rho_{(w)}$ CH ₃ , $\delta_{(\pi)}$ C-H
811 (w)		812	А	I	2MP: $\rho_{(w)}$ CH ₃ , $\delta_{(\pi)}$ C-H
	818 (vw)	819	Ι	A	2MP: vC-CH ₃ , $\delta_{(\pi)}$ C-H, $\rho_{(sc)}$ CNC
832 (m)		820	А	I	2MP: ν C-CH ₃ , $\delta_{(\pi)}$ C-H, ν CNC
832 (m)		820	А	Ι	2MP: ν C-CH ₃ , $\delta_{(\pi)}$ C-H, ν CNC
	833 (w)	821	Ι	A	2MP: ν C-CH ₃ , $\delta_{(\pi)}$ C-H, ν CNC
848 (m)		852	А	I	CLA: vC-Cl, δOH, vC-Cl
885 (w)		886	А	I	2MP: $\rho_{(r)}$ CH ₃ , δ C-H, $\rho_{(sc)}$ CNC, CLA: vC-Cl
904 (w)		915	А	I	2MP: ρ _(w) CH ₃ , δC-H, CLA: δΟ-H
	910 (vw)	915	Ι	A	2MP: ρ _(w) CH ₃ , δC-H, CLA: δΟ-H
933 (w)		943	А	I	2MP: ρ _(w) CH ₃ , δC-H, ρ _(w) CNC
945 (w)		945	А	I	2MP: $\rho_{(w)}$ CH ₃ , δ C-H, $\rho_{(w)}$ CNC
957 (w)		962	А	I	CLA: vC-Cl, v _(ass) CCC, δOH
975 (w)		964	А	I	CLA: νC-Cl, ν _(ass) CCC, δOH
	975 (vw)	965	Ι	A	CLA: vC-Cl, v _(ass) CCC, δOH
985 (m)		993	Α	I	2MP: $\rho_{(t)}$ CH ₃ , CLA: $\delta_{(p)}$ OH
991 (s)		994	А	I	2MP: $\rho_{(t)}$ CH ₃ , CLA: $\delta_{(p)}$ OH
	989 (vw)	995	Ι	A	2MP: $\rho_{(t)}$ CH ₃ , CLA: $\delta_{(p)}$ OH
1029 (m)		1025	А	I	2MP: $\rho_{(w)}$ CH ₃ , $\delta_{(\pi)}$ C-H, CLA: $\delta_{(\pi)}$ OH
1035 (m)		1026	А	I	2MP: $\rho_{(w)}$ CH ₃ , $\rho_{(\tau)}$ CCC, CLA: $\delta_{(\pi)}$ OH
	1036 (w)	1027	Ι	A	2MP: $\rho_{(w)}$ CH ₃ , $\rho_{(\tau)}$ CCC, CLA: $\delta_{(\tau)}$ OH
1054 (m)		1053	A	I	2MP: δC-H, νC-CH ₃ , νCNC, ρ _(w) CH ₃
1067 (m)		1054	А	Ι	2MP: δ C-H, vC-CH ₃ , vCNC, ρ _(w) CH ₃
	1066 (w)	1054	Ι	A	2MP: δC-H, vC-CH ₃ , vCNC, ρ _(w) CH ₃

1130 (m)		1144	А	I	CLA: $v_{(ass)}CCC$, δOH
1144 (m)		1145	А	I	CLA: v _(ass) CCC, бОН
1163 (m)		1154	А	I	2MP: $\rho_{(t)}$ CH ₃ , δ C-H, $\nu_{(ass)}$ CNC, CLA: δ OH
1172 (m)		1156	А	I	2MP: $\rho_{(t)}$ CH ₃ , δ C-H, $\nu_{(ass)}$ CNC, CLA: δ OH
1187 (m)		1180	А	I	2MP: δC-H, νC-CH ₃ , CLA: νC-Cl, δOH
1196 (m)		1184	А	I	2MP: δC-H, νC-CH ₃ , CLA: νC-Cl, δOH
1211 (m)		1220	А	I	2MP: vC-CH ₃ , $v_{(ass)}$ CNC, CLA: $\delta_{(\pi)}$ C-H
1220 (m)		1221	А	I	2MP: vC-CH ₃ , $v_{(ass)}$ CNC, CLA: $\delta_{(\pi)}$ C-H
1235 (vs)		1235	А	I	2MP: δC-H, ρ _(w) CH ₃ , ν _(ass) CNC, CLA: νC-OH, νC-Cl
1236 (vs)		1238	А	I	2MP: δC-H, ρ _(w) CH ₃ , ν _(ass) CNC, CLA: νC-OH, νC-Cl
	1240 (w)	1243	Ι	А	2MP: δC-H, ρ _(w) CH ₃ , ν _(ass) CNC, CLA: νC-OH, νC-Cl
	1243 (vw)	1244	Ι	A	2MP: δC-H, ρ _(w) CH ₃ , ν _(ass) CNC, CLA: νC-OH, νC-Cl
1253 (m)		1249	А	I	CLA: v _(ass) CCC, vC-OH, vC=O
1261 (m)		1256	А	I	2MP: δC-H, δC-CH ₃ , ν _(ass) CNC
1261 (m)		1257	А	I	2MP: δC-H, δC-CH ₃ , ν _(ass) CNC
1299 (w)		1285	А	I	2MP: δC-H, CLA: δOH
	1299 (vw)	1294	Ι	А	2MP: δС-Н, СLA: δОН
1310 (s)		1317	А	I	2MP: δ C-H, CLA: $\rho_{(t)}$ CCC
1312 (s)		1320	А	I	2MP: δ C-H, CLA: $\rho_{(t)}$ CCC
	1331 (vw)	1366	Ι	A	2MP: δ C-H, CLA: $\rho_{(t)}$ CCC
1354 (w)		1367	А	I	2MP: δ C-H, $\nu_{(ass)}$ CCC, $\nu_{(ass)}$ CNC, CLA: $\nu_{(ass)}$ CCC
1367 (w)		1369	А	I	2MP: δ C-H, $\nu_{(ass)}$ CCC, $\nu_{(ass)}$ CNC, CLA: $\nu_{(ass)}$ CCC
1384 (w)		1385	А	I	2MP: ρ _(w) CH ₃ , δC-H, νCC
	1392 (vw)	1396	Ι	A	2MP: δ C-H, $\rho_{(sc.)}$ CH ₃ , $\rho_{(t)}$ CNC
1405 (w)		1401	А	I	2MP: δ C-H, $\rho_{(sc.)}$ CH ₃ , $v_{(ass)}$ CNC
1414 (vw)		1415	А	I	2MP: δ C-H, $\rho_{(sc.)}$ CH ₃ , $\nu_{(ass)}$ CNC
1446 (vw)		1443	А	I	2MP: δC-H, ρ _(sc.) CH ₃
1464 (vw)		1464	A	Ι	2MP: δ C-H, $\rho_{(t)}$ CH ₃ , ν CNC
1475 (vw)		1491	А	Ι	2MP: δ C-H, $\rho_{(t)}$ CH ₃ , $v_{(ass)}$ CNC
1526 (vw)		1556	А	I	CLA: δC-OH, νC=O

1548 (vw)		1560	А	I	CLA: δC-OH, vC=O
	1530 (vw)	1578	Ι	A	2MP: δC-H, ρ _(t) CCC, CLA: ρ _(t) CCC
1574 (w)		1579	А	I	2MP: $\rho_{(r)}$ CH ₃ , δ C-H, CLA: δ C=O, δ C-OH
	1599 (vs)	1602	Ι	A	2MP: δ C-H, $\rho_{(r)}$ CH ₃ , $\rho_{(t)}$ CCC, CLA: δ C-OH, δ C=O
1606 (m)		1602	А	I	2MP: δ C-H, $\nu_{(ass)}$ CNC, CLA: δ C-OH, δ C=O
1615 (m)		1607	А	I	2MP: δ C-H, $\nu_{(ass)}$ CNC, CLA: δ C-OH, δ C=O
1625 (m)		1626	А	I	2MP: δ C-H, $\nu_{(ass)}$ CNC, CLA: δ C-OH, δ C=O
1626 (m)		1626	А	I	2MP: δ C-H, $\nu_{(ass)}$ CNC, CLA: δ C-OH, δ C=O
1655 (m)		1632	Α	I	2MP: δ C-H, $\rho_{(t)}$ CCC, CLA: $\rho_{(t)}$ CCC, δ C=O
1667 (s)		1633	А	I	2MP: δC-H, ρ _(t) CCC, CLA: ρ _(t) CCC
	1637 (s)	1637	Ι	A	2MP: δC-H, ρ _(t) CCC, CLA: ρ _(t) CCC
1678 (m)		1644	А	I	2MP: δC-H, ν _(ass) CNC
1684 (m)		1646	А	I	2MP: δC-H, ν _(ass) CNC
	1672 (vw)	1647	Ι	Α	2МР: δС-Н, νС-С
2199 (vw)		2826	А	I	CLA: vO-H
2399 (w)		2827	А	Ι	CLA: vO-H
	2331 (vw)	2827	Ι	A	CLA: vO-H
2551 (w)		2831	Ι	A	$2MP: v_{(s)}CH_3$
2724 (w)		2955	А	I	$2MP: v_{(s)}CH_3$
	2931 (w)	2957	А	I	$2MP: v_{(s)}CH_3$
2932 (vw)		3039	А	I	$2MP: v_{(s)}CH_3$
3066 (vw)		3041	А	I	$2MP: v_{(s)}CH_3$
	3082 (vw)	3088	Ι	A	$2MP: v_{(ass)}CH_3$
3283 (vw)		3088	А	I	$2MP: v_{(ass)}CH_3$
3455 (vw)		3155	А	I	2MP: vC-H (ring)

v-streching, δ -deformation (bending), sc.-scissors, ρ_w -wagging, ρ_r -rocking, ρ_t -twisting, π -out of the plane, s-symmetric, ass-asymmetric, vs-very strong, s-strong, m-medium, w-weak, vw-very weak, A–active, I–inactive band

 Table S12. Calculated and experimental frequencies for the 2MP·BRA (2) complex.

IR FREQUENCIES [cm ⁻¹]	RAMAN FREQUENCIES [cm ⁻¹]	HARM. FREQUENCIES [cm ⁻¹]	IR	RAMAN	ASSIGNMENTS
62 (vw)		61	А	I	$2MP: \rho_{(r)}CH_3$
81 (vw)		80	А	I	BRA: $\delta_{(\pi)}$ C-OH, ring asym. torsion
94 (vw)		93	А	I	2MP: $\rho_{(r)}CH_3$
115 (w)		113	А	I	$2MP: \rho_{(r)}CH_3$
128 (w)		124	А	I	$2MP: \rho_{(r)}CH_3$
137 (w)		138	А	I	$2MP: \rho_{(t)}CH_3$
144 (w)		145	Α	I	$2MP: \rho_{(r)}CH_3$
159 (w)		162	А	Ι	2MP: $\rho_{(r)}CH_3$
161 (w)		170	А	I	2MP: ρ _(r) CH ₃ , BRA: νΟ-Η
193 (w)		172	А	A	2MP: ρ _(r) CH ₃ , BRA: νΟ-Η
	194 (w)	194	Ι	A	BRA: δ ring, vC-Br, 2MP: $\delta_{(\pi)}$ C-H _(ring)
202 (m)		207	А	Ι	2MP: $\delta_{(\pi)}$ C-CH ₃ , $\delta_{(\pi)}$ C-H, ring butterfly BRA: ring butterfly
212 (w)		211	А	Ι	2MP: $\delta_{(\pi)}$ C-CH ₃ , $\delta_{(\pi)}$ C-H, ring butterfly BRA: ring butterfly
	222 (w)	215	Ι	A	2MP: $\delta_{(\pi)}$ C-CH ₃ , $\delta_{(\pi)}$ C-H, ring butterfly BRA: ring butterfly
233 (vw)		235	А	Ι	2MP: δ C-CH ₃ , BRA: $\rho_{(r)}$ ring
240 (vw)		237	А	Ι	2MP: δ C-CH ₃ , BRA: $\rho_{(r)}$ ring
	282 (vw)	274	Ι	A	BRA: $\rho_{(t,\pi)}$ ring
291 (w)		274	А	Ι	BRA: $\rho_{(t,\pi)}$ ring
294 (w)		305	А	Ι	2MP: $v_{(s)}CH_3$, BRA δ ring
302 (m)		306	А	I	2MP: $v_{(s)}CH_3$, BRA δ ring
348 (vw)		356	А	I	2MP: δ C-CH ₃ , ρ _(w) CH ₃ , ρ _(r) ring BRA: ρ _(r) ring
365 (w)		357	Α	Ι	2MP: δ C-CH ₃ , ρ _(w) CH ₃ , ρ _(r) ring BRA: ρ _(r) ring
380 (w)		394	А	Ι	2MP: δC-CH ₃ , δ ring BRA: δ ring
	380 (w)	394	Ι	A	2MP: δC-CH ₃ , δ ring BRA: δ ring
406 (m)		408	А	Ι	2MP: δ C-CH ₃ , $\delta_{(\pi)}$ C-H, BRA: δ C=O, δ C-OH
	409 (w)	409	Ι	A	2MP: δ C-CH ₃ , $\delta_{(\pi)}$ C-H, BRA: δ C=O, δ C-OH
414 (m)		411	A	Ι	2MP: δC - CH_3 , $\delta_{(\pi)}C$ -H, $\rho_{(t,\pi)}$ ring

460 (vw)		468	A	I	2MP: δ C-CH ₃ , $\delta_{(\pi)}$ C-H, $\rho_{(t,\pi)}$ ring
465 (vw)		469	А	Ι	2MP: δ C-CH ₃ , $\delta_{(\pi)}$ C-H, $\rho_{(t,\pi)}$ ring
	485 (w)	486	I	А	BRA: $\rho_{(t,n)}$ ring
474 (vw)		486	А	Ι	BRA: $\rho_{(t_n)}$ ring
484 (m)		494	А	Ι	BRA: vO-H, v(C=O+C-OH), vC-Br, δ ring
493 (m)		495	A	Ι	BRA: νO-H, ν(C=O+C-OH), νC-Br, δ ring
511 (m)		516	A	Ι	BRA: νΟ-Η, ν(C=O+C-OH), νC-Br, δ ring
	516 (vs)	516	I	A	BRA: νΟ-Η, ν(C=O+C-OH), νC-Br, δ ring
547 (m)		549	A	Ι	BRA: $\rho_{(t)}$ ring
557 (s)		550	А	Ι	BRA: $\rho_{(t)}$ ring
568 (m)		564	A	Ι	2MP: vC-CH ₃ , vC-H, vCNC, BRA: vO-H
	570 (vw)	566	I	A	2MP: vC-CH ₃ , vC-H, vCNC, BRA: vO-H
598 (vw)		566	A	Ι	2MP: vC-CH ₃ , vC-H, vCNC, BRA: vO-H
	664 (vw)	670	I	A	2MP: δ C-H, $\nu_{(ass)}$ CNC
733 (w)		733	A	I	BRA: $\delta_{(t,\pi)}$ ring, $\delta_{(t,\pi)}$ C=O
739 (w)		733	A	I	BRA: $\delta_{(t,\pi)}$ ring, $\delta_{(t,\pi)}$ C=O
	741 (vw)	744	Ι	А	BRA: $\delta_{(t,\pi)}$ ring, $\delta_{(t,\pi)}$ C=O
754 (w)		763	A	Ι	BRA: δO -H, $\delta (C=O+C-OH)$, $\rho_{(t)}$ ring
781 (m)		774	A	Ι	BRA: δ O-H, δ (C=O+C-OH), $\rho_{(t)}$ ring
	771 (w)	779	Ι	A	BRA: δ O-H, δ (C=O+C-OH), ρ _(t) ring
	785 (w)	808	Ι	A	2MP: $\delta_{(\pi)}$ C-CH ₃ , $\delta_{(\pi)}$ C-H
802 (m)		811	А	Ι	$2MP: \delta_{(\pi)}C-CH_3, \delta_{(\pi)}C-H$
804 (m)		814	А	Ι	BRA: δ ring
	823 (w)	814	Ι	A	2MP: vC-CH ₃ , vC-H, BRA: δ ring
824 (m)		829	Α	Ι	2MP: vC-CH ₃ , vC-H, BRA: δ ring
	837 (w)	829	I	А	2MP: vC-CH ₃ , vC-H, BRA: δ ring
875 (w)		829	А	Ι	2MP: vC-CH ₃ , vC-H, BRA: δ ring
917 (w)		909	А	Ι	$2MP: \rho_{(w)}CH_3, \delta_{(\pi)}C-H$
	934 (vw)	943	I	А	$2MP: \delta_{(\pi)}C-H$
961 (m)		961	A	Ι	BRA: δΟ-H, δ ring
	972 (vw)	963	I	А	BRA: δO-H, δ ring

1		1			1	
	974 (s)		980	A	I	2MP: ρ _(w) CH ₃
	998 (s)		982	А	I	2MP: ρ _(w) CH ₃
	1018 (s)		1030	А	Ι	2MP: ρ _(w) CH ₃
	1037 (m)		1030	А	Ι	2MP: $\rho_{(w)}CH_3$, $\delta_{(\pi)}C$ -H, δ ring
		1036 (w)	1036	Ι	A	2MP: $\rho_{(w)}CH_3$, $\delta_{(\pi)}C$ -H, δ ring
	1043 (w)		1038	A	Ι	2MP: $\rho_{(w)}CH_3$, $\delta_{(\pi)}C$ -H, δ ring
	1060 (w)		1059	Α	Ι	2MP: $\rho_{(w)}CH_3$, $\delta_{(\pi)}C$ -H, δ ring
		1067 (w)	1060	Ι	A	2MP: ν _(ass) CNC, δC-H, BRA: δΟ-H
	1088 (s)		1100	А	Ι	2MP: $\delta_{(\pi)}$ C-H, BRA: $\delta_{(\pi)}$ O-H
	1110 (w)		1101	Α	Ι	2MP: $\delta_{(\pi)}$ C-H, BRA: $\delta_{(\pi)}$ O-H
	1123 (m)		1123	А	I	2MP: $\delta_{(\pi)}$ C-H, BRA: δ O-H
	1145 (m)		1125	А	Ι	2MP: $\delta_{(\pi)}$ C-H, BRA: δ O-H
		1169 (w)	1151	Ι	А	$2MP: \delta_{(\pi)}C-H, BRA: \delta O-H$
	1166 (s)		1151	А	Ι	BRA: δ O-H
	1194 (m)		1191	А	Ι	2MP: ν _(ass) CNC, BRA: δΟ-Η
	1222 (s)		1215	А	Ι	BRA: δO -H, vC-Br
		1230 (w)	1232	Ι	A	2MP: v _(ass) CNC, BRA: vCC
	1241 (s)		1237	А	Ι	2MP: νC-CH ₃ , δC-H, ν _(ass) CNC, BRA: δO-H
	1255 (s)		1237	А	Ι	2MP: νC-CH ₃ , δC-H, ν _(ass) CNC, BRA: δO-H
		1247 (vw)	1247	Ι	A	2MP: νC-CH ₃ , δC-H, ν _(ass) CNC, BRA: δO-H
		1267 (vw)	1267	Ι	A	2MP: νC-H, BRA: δ O-H
	1280 (m)		1283	А	Ι	2MP: δ C-H, BRA: ν C-OH, $\nu_{(ass)}$ CCC
		1292 (vw)	1291	Ι	A	2MP: δC-H, v _(ass) CNC, BRA: δΟ-H
	1302 (w)		1295	А	Ι	2MP: δC-H, v _(ass) CNC, BRA: δΟ-H
	1309 (w)		1312	А	Ι	2MP: \deltaC-H, v _(ass) CNC, BRA: δO-H, vC-Cl, vC-OH, vC=O
	1350 (s)		1316	А	Ι	BRA: v _(ass) CCC, vC-OH, vC=O
		1380 (vw)	1385	Ι	A	BRA: v _(ass) CCC, vC-OH, vC=O
	1353 (s)		1386	Α	Ι	2MP: ρ _(w) CH ₃ , δC-H, BRA: νC-OH
	1407 (vw)		1402	А	I	2MP: $\rho_{\text{(w)}}$ CH ₃ , δ C-H, BRA: vC-OH
ſ	1418 (vw)		1403	А	I	2MP: ρ _{fw})CH ₃ , ν _(ass) CNC, δC-H, BRA: δC-OH
ſ	1418 (vw)		1443	А	I	2MP: $\rho_{\rm (sc.)}$ CH ₃ , $\nu_{\rm (ass)}$ CNC, δ C-H, BRA: δ C-OH

1450 (vw)		1445	A	A	2MP: $\rho_{(sc.)}CH_3$, $\nu_{(ass)}CNC$, δC -H
1476 (vw)		1446	A	I	2MP: $\rho_{(sc)}CH_3$, $v_{(ass)}CNC$, δC -H, BRA: δC -OH
	1530 (vw)	1532	I	A	2MP: ν _(ass) CNC, δC-H, BRA: δC-OH
1533 (vw)		1535	A	I	2MP: v _(ass) CNC, \deltaC-H, BRA: vC-Cl
1591 (w)		1574	A	I	BRA: δ O-H, vC-C, vC-OH, vC=O
	1603 (m)	1602	I	A	2MP: ρ _(w) CH ₃ , δC-H, νC-C
1611 (s)		1602	A	I	BRA: vC-C, vC-OH, vC=O
	1627 (vs)	1608	I	A	BRA: $vC=0$, δ ring
1627 (s)		1609	A	Ι	BRA: $vC=O$, δ ring
1662 (vs)		1611	A	Ι	BRA: $\delta(\pi)$ O-H, δ ring
1665 (vs)		1612	A	Ι	BRA: $\delta(\pi)$ O-H
2158 (vw)		1987	A	Ι	BRA: vO-H
2369 (w)		1988	A	I	BRA: vO-H
2700 (vw)		2230	А	I	2MP: v _(s) CH ₃
2920 (vw)		2246	А	I	2MP: v _(s) CH ₃
	2929 (vw)	2961	A	I	2MP: v _(ass) CH ₃
3099 (vw)		2962	A	I	2MP: $v_{(ass)}CH_3$
	3082 (vw)	3047	Ι	A	2MP: v _(ass) CH ₃
3246 (vw)		3168	A	I	2MP: vC-H (ring)
3480 (vw)		3168	A	Ι	2MP: vC-H (ring)

v-streching, δ -deformation (bending), sc.-scissors, ρ_w -wagging, ρ_r -rocking, ρ_t -twisting, π -out of the plane, s-symmetric, ass-asymmetric, vs-very strong, s-strong, m-medium, w-weak, vw-very weak, A-active, I-inactive band

IR FREQUENCIES [cm ⁻¹]	RAMAN FREQUENCIES [cm ⁻¹]	HARM. FREQUENCIES [cm ⁻¹]	IR	RAMAN	ASSIGNMENTS
69 (vw)		68	Ι	A	TrMP: $\rho_{(r)}$ CH ₃ , ring asym. torsion
82 (vw)		80	А	Ι	TrMP+CLA: ring asym. torsion
110 (m)		111	А	Ι	TrMP+CLA: ring asym. torsion
116 (m)		115	А	Ι	TrMP+CLA: ring asym. torsion
199 (w)		199	А	Ι	CLA: ring butterfly(s), vCCl; TrMP: $\rho_{(r)}CH_3$
204 (w)		202	А	Ι	CLA: ring butterfly(s), vCCl; TrMP: $\delta_{(\pi)}$ CH, $\rho_{(r)}$ CH ₃
	217 (vw)	213	Ι	A	CLA: δring, δC-OH
237 (vs)		232	А	Ι	TrMP: $\rho_{(r)}$ CH ₃ , $\delta_{(\pi)}$ CNC, $\delta_{(\pi)}$ C-H
	239 (s)	232	Ι	A	TrMP: $\rho_{(r)}$ CH ₃ , $\delta_{(\pi)}$ CNC, $\delta_{(\pi)}$ C-H
284 (w)		283	А	Ι	CLA: vCCl, &C-OH, ˚
	288 (m)	285	Ι	A	CLA: vCCl, \deltaC-OH, oring
	336 (vw)	328	Ι	A	TrMP: $\rho_{(r)}$ CH ₃ , $\delta_{(\pi)ring, \nu}$ C-CH ₃
345 (s)		345	А	I	CLA: νCCl, δC-OH
	353 (vw)	351	Ι	Α	CLA: $\delta(CO + OH)$, vCCl,
362 (m)		356	А	Ι	CLA: $\delta(CO + OH)$, vCCl,
	367 (w)	361	Ι	A	CLA: $\delta(CO + OH)$
	389 (m)	384	Ι	A	CLA: δ ring
409		406	А	Ι	CLA: $\delta(CO + OH)$, vCCl,
	408 (w)	407	Ι	A	CLA: δCO
	458 (vw)	454	Ι	A	TrMP: $\rho_{(w,\pi)}$ CNC, $\delta_{(\pi)}$ NH
459 (vw)		454	А	Ι	TrMP: $\rho_{(w,\pi)}$ CNC, $\delta_{(\pi)}$ NH, $\rho_{(w,\pi)}$ CH ₃
		471	Ι	А	TrMP: ρ _(r) ring, δC-CH ₃
472 (vw)		473	А	Ι	TrMP: $\rho_{(w.)}CH_3$, $\delta_{(\pi)}CH$, δ ring
484 (vw)		482	А	Ι	TrMP: $\rho_{(r)}$ ring, vC-CH ₃
	489 (w)	483	Ι	А	TrMP: $\rho_{(r)}$ ring, vC-CH ₃
	511 (vw)	499	Ι	A	CLA: δring
537 (vw)		532	Α	Ι	CLA: δ C-OH, vCCl, δ _(sc.) CCC(ring)
	547 (vs)	536	Ι	A	CLA: δ C-OH, vCCl, δ _(sc.) CCC(ring)
	568 (w)	564	Ι	A	TrMP: vC-CH ₃ , δ CNC

 Table S13. Calculated and experimental frequencies for the TrMP·CLA (3a) complex.

580 (s)		571	A	I	TrMP: vC-CH ₃ , δCNC; CLA: δ ring	
694 (m)		708	А	Ι	TrMP: vNH, vC-CH ₃ , vCCC(ring)	
	695 (w)	708	Ι	А	TrMP: vNH, vC-CH ₃	
748 (vw)		749	А	Ι	TrMP: vNH, vC-CH ₃	
	747 (vw)	751	Ι	A	TrMP: νNH, δC-H _(ring) , νC-CH ₃	
777 (vw)		759	А	Ι	CLA: $\rho_{(t,\pi)}CCC_{(ring)}$	
, <i>, , , , , , , , , , , , , , , , </i>	796 (vw)	797	Ι	A	CLA: oring, vCCl, oC-OH	
800 (w)		802	А	Ι	CLA: $v(C=O+C-O^{-})$, $vCCl$,	
843 (m)		841	A	Ι	CLA: vCCring, vCCl,	
	838 (vw)	844	Ι	A	TrMP: $\delta_{(\pi)}$ C-H _(ring) , $\delta_{(w)}$ CH ₃	
879 (w)		846	А	I	TrMP: $\delta_{(\pi)}$ C-H	
	877 (vw)	847	Ι	A	CLA: δ _{(r1} CH _(rino) , vCCl, δring	
	894 (vw)	852	Ι	A	CLA: $\delta_{(\pi)}$ OH, vC-OH	
885 (w)		892	А	I	$CLA: \delta_{(\pi)}OH$	
	949 (vw)	948	Ι	A	TrMP: $\rho_{(w)}$ CH ₃ , δ NH, δ ring	
947 (w)		948	А	Ι	TrMP: $\rho_{(t)}$ CH ₃ , δ NH, vCH, vC-CH ₃	
982 (m)		974	А	Ι	TrMP: δC-H, ρ _(t) CH ₃ , νCNC, νNH	
		991	А	Ι	TrMP: $\delta_{(\pi)}$ C-H, $\rho_{(w, ass)}$ CH ₃ , $\delta_{(\pi)}$ CNC	
	988 (vw)	993	Ι	A	TrMP: $\delta_{(\pi)}$ C-H, $\rho_{(w. ass)}$ CH ₃ , $\delta_{(\pi)}$ NH	
1000 (w)		1001	А	Ι	TrMP: δC-H, ρ _(t) CH ₃ , νCNC, νNH	
1033 (w)		1034	A	Ι	TrMP: $\delta(\pi)$ C-H, $\rho_{(t)}$ CH ₃ , $\delta_{(\pi)}$ C-CH ₃	
1136 (m)		1140	А	Ι	TrMP: $\delta(\pi)$ NH,	
		1143	Ι	А	CLA: vOH, δ OH; TrMP: δ CH, $\delta_{(\pi)}$ NH, vNH	
		1146	Ι	A	CLA: vOH, δ OH; TrMP: δ CH, $\delta_{(\pi)}$ NH, vNH	
1167 (s)		1150	А	Ι	TrMP: δ C-H, δ C-CH ₃ , δ NH	
	1187 (vw)	1152	Ι	А	TrMP: ν C-CH ₃ , δ C-H _(ring) , δ NH, ρ _(w) CH ₃	
1190 (vs)	, , , , , , , , , , , , , , , , , , ,	1166	А	Ι	CLA: SOH	
		1219	Ι	A	TrMP: ν C-CH ₃ , δ C-H _(ring) , ν CN	
1232 (vs)		1248	А	I	$CLA: \delta OH + vCC + vC-OH + vCCl$	
	1255 (m)	1258	Ι	A	CLA: vCCl + vCC; TrMP: vC-CH3, δC-H(ring)	
	1277 (s)	1264	I	A	TrMP: vC-CH ₃ , δ C-H _(ring) , δ CNC, ρ _(w) CH ₃	

1270 (vs)		1265	A	I	TrMP: vC-CH ₃ , δ C-H _(ring) , v _(ass.) CNC, ρ _(w) CH ₃
1286 (vs)		1289	А	I	TrMP: $\delta_{(\pi)}$ C-CH ₃ , δ C-H _(ring) , $v_{(ass)}$ CNC, $\rho_{(w)}$ CH ₃
		1289	Ι	A	TrMP: vC-H _(ring) , vCC _(ring) , vCN
	1346 (vs)	1330	I	A	TrMP: δC-CH ₃ , δNH, νCC
1346 (m)		1341	А	Ι	CLA: δring, δCCl
1377 (s)		1372	А	Ι	TrMP: $\rho_{(w)}$ CH ₃ , ν C-CH ₃
	1371 (m)	1376	Ι	A	TrMP: $\rho_{(w)}$ CH ₃ , δ NH, δ CH _(ring)
1386 (m)		1383	A	Ι	TrMP: $\rho_{(t)}CH_3$
	1390 (m)	1392	Ι	A	TrMP: $\rho_{(w)}$ CH ₃ , δ NH, δ CH _(ring)
	1425 (vw)	1428	Ι	А	TrMP: $\rho_{(t)}CH_3$
		1447	I	A	TrMP: $\delta_{(sc.)}$ CH ₃ , vC-CH ₃ , $v_{(ass)}$ CN
1448 (m)		1448	A	I	TrMP: $\delta_{(sc.)}$ CH ₃ , vC-CH ₃ , $v_{(ass)}$ CN
		1451	I	A	TrMP: $\delta_{(w)}$ CH ₃ , δ NH, vCNC, vC-CH ₃
	1496 (w)	1466	Ι	A	TrMP: $\rho_{(t)}$ CH ₃ , δ CH, ν CN
	1518 (w)	1507	I	A	TrMP: $\delta_{(ass. sc.)}$ CH ₃ , δ NH, vCN, vCC
1502 (vs)		1509	А	I	TrMP: $\delta_{(t)}$ CH ₃ , δ NH, vCN, vCC
1530 (vs)		1527	A	I	CLA: $v_{(ass)}CC_{ring}$, δOH , δCCl
		1528	Ι	A	CLA: n(ass)CCl, δOH, vC-O-; TrMP: nCN
1616 (w)		1598	A	Ι	TrMP: δC-CH ₃ , δCH _(ring) , νCC _{ring}
	1602 (vs)	1602	Ι	A	TrMP: δNH, δCH _(ring) , δCC _{ring} , CLA: δCC _{ring} ,
	1633 (vs)	1622	I	A	TrMP: δ NH, δ CNC
1685 (m)		1642	А	Ι	CLA: νCC_{ring} , δOH , $\delta (C=O+C-O^{-})$
	1642 (m)	1642	Ι	A	TrMP: $\delta_{(\pi)}$ NH; CLA: vC=O, δ C-OH
	2740 (vw)	2607	I	A	TrMP: vNH
2447 (vw)		2616	А	Ι	TrMP: $v_{(s)}CH_3$
2931 (vw)		2968	А	I	TrMP: $v_{(s)}CH_3$
	2927 (w)	2968	Ι	A	TrMP: $v_{(s)}CH_3$
2950 (vw)		2972	A	Ι	TrMP: $v_{(s)}CH_3$
	2964 (vw)	2973	Ι	A	TrMP: $v_{(s)}CH_3$
	2994 (vw)	2976	Ι	A	$TrMP: v_{(s)}CH_3$
		3041	I	A	$TrMP: v_{(s)}CH_3$

3166 (w)		3093	A	I	CLA: vOH
3155 (w)		3094	А	Ι	TrMP: $v_{(ass)}CH_3$
	3113 (vw)	3113	Ι	Α	CLA: vOH
3160 (w)		3194	А	Ι	TrMP: vCH _(ring)
	3166 (vw)	3194	Ι	A	TrMP: vCH _(ring)

v-streching, δ -deformation (bending), sc.-scissors, ρ_w -wagging, ρ_r -rocking, ρ_t -twisting, π -out of the plane, s-symmetric, ass-asymmetric, vs-very strong, s-strong, m-medium, w-weak, vw-very weak, A-active, I-inactive band

Table S14. Calculated and experimental frequencies for the TrMP·BRA (4) complex.

IR FREQUENCIES [cm ⁻¹]	RAMAN FREQUENCIES [cm ⁻¹]	HARM. FREQUENCIES [cm ⁻¹]	IR	RAMAN	ASSIGNMENTS
82 (vw)		79	А	Ι	
95 (vw)		97	А	I	
112 (vw)		105	А	Ι	BRA: ring asym. torsion
		108	Ι	A	BRA: ring asym. torsion
160 (vw)		156	А	I	TrMP: $\rho_{(w)}CH_3$
	160 (vw)	171	Ι	A	TrMP: $\rho_{(r)}CH_3$, $\nu CH_{(methyl)}$
	178 (vw)	176	Ι	A	TrMP: $\rho_{(r)}CH_3$, $\nu CH_{(methyl)}$
193 (w)		185	А	Ι	TrMP: $\rho_{(r)}CH_3$
	195 (w)	189	Ι	A	TrMP: $\rho_{(r)}CH_3$, $\nu CH_{(methyl)}$
198 (vw)		198	А	Ι	TrMP: ρ _(r) CH ₃ , BRA: δring, νC-Br
	201 (w)	205	Ι	A	BRA: oring, vC-Br
	209 (m)	207	Ι	A	TrMP: $\rho_{(r)}CH_3$, BRA: ring butterfly
211 (w)		211	А	Ι	TrMP: $\rho_{(r)}CH_3$, BRA: ring butterfly
		221	А	Ι	BRA: δC-Br
		224	Ι	A	BRA: δC-Br
	271 (vw)	287	Ι	A	BRA: $\delta_{(t,\pi)}$ ring
	297 (vw)	300	Ι	A	TrMP: δ C-CH ₃
293 (vw)		302	А	I	BRA: vC-Br, $\delta_{(s,r)}$ (C-O+C=O)
350 (m)		340	А	I	TrMP: $\delta_{(\pi)}$ C-CH ₃ , $\delta_{(\pi)}$ CH _(ring)
	337 (vw)	340	Ι	A	TrMP: $\delta_{(\pi)}$ C-CH ₃ , $\delta_{(\pi)}$ CH _(ring)
350 (m)		357	А	I	BRA: $\delta(CO + OH)$
	362 (w)	369	Ι	A	BRA: $\delta(CO + OH)$
	388 (m)	390	Ι	A	BRA: oring
405 (m)		406	А	I	BRA: δCO
	406 (w)	407	Ι	A	BRA: δCO
	458 (vw)	447	Ι	А	TrMP: $\rho_{(w,\pi)}$ CNC, $\delta_{(\pi)}$ NH
455 (vw)		448	А	Ι	TrMP: $\rho_{(w,\pi)}$ CNC, $\delta_{(\pi)}$ NH
471 (vw)		474	А	I	TrMP: $\rho_{(r)}$ ring

491 (vw)		491	А	I	TrMP: $v_{(s)}$ C-CH ₃
	493 (w)	491	Ι	A	TrMP: $v_{(s)}$ C-CH ₃
	510 (vw)	511	I	A	BRA: δ ring, vC-Br
519 (vw)		519	A	I	BRA: δ ring, vC-Br
	540 (vw)	549	Ι	A	TrMP: $\rho_{(\pi)}$ ring, $\delta_{(\pi)}$ CH _(ring)
561 (w)		553	A	I	BRA: ring butterfly _(s)
	557 (s)	556	Ι	A	TrMP+BRA: ring butterfly
	570 (w)	570	Ι	A	TrMP: νC-CH ₃ , δCNC
570 (w)		570	А	I	TrMP: νC-CH ₃ , δCNC
	698 (w)	713	Ι	A	TrMP: δ ring, vNH, vC-CH ₃
693 (m)		713	A	I	TrMP: δ ring, vNH, vC-CH ₃
	746 (vw)	732	Ι	A	BRA: $\rho_{(t,\pi)}CC_{(ring)}, \delta_{(\pi)}OH$
744 (vw)		735	A	I	BRA: $\rho_{(t,\pi)}CC_{(ring)}, \delta_{(\pi)}OH$
763 (vw)		761	A	I	BRA: $\rho_{(t, \pi)}CC_{(ring)}$
	793 (vw)	781	Ι	A	BRA: δ ring, vC-Br
804 (m)		813	A	I	BRA: δ ring
	801 (vw)	813	Ι	A	BRA: $\delta_{(\pi)}$ OH
	832 (vw)	816	Ι	A	BRA: $\delta_{(\pi)}$ OH, vC-Br, vC-C
877 (vw)		862	А	I	TrMP: $\delta_{(\pi)}$ C-H, $\delta_{(\pi)}$ N-H, $\delta_{(\pi)}$ C-CH ₃
	882 (vw)	863	Ι	A	TrMP: $\delta_{(\pi)}$ C-H _(ring)
	956 (vw)	971	Ι	A	TrMP: δ C-CH ₃ , $\rho_{(w, ass)}$ CH ₃ , δ CNC
968 (m)		975	A	I	TrMP: δ C-CH ₃ , $\rho_{(w, ass)}$ CH ₃ , δ CNC
	968 (vw)	996	Ι	A	TrMP: $\rho_{(w, ass)}CH_3$, $\delta_{(\pi)}NH$
1008 (vw)		1004	А	I	TrMP: δ C-CH ₃ , $\rho_{(w, ass)}$ CH ₃ , $\delta_{(\pi)}$ CH (ring), vCC
1035 (vw)		1033	A	I	TrMP: vC-CH ₃ , $\rho_{(w, ass)}$ CH ₃ , $\delta_{(\pi)}$ CH (ring), $\delta_{(t)}$ CC
1124 (w)		1140	А	I	TrMP: δCH , $\delta_{(\pi)}NH$, $\delta_{(\pi)}CNC$
	1171(vw)	1155	Ι	A	TrMP: δCH , $\delta_{(\pi)}NH$, νNH
1178 (s)		1164	Α	I	BRA: δΟΗ, νCC
1193 (m)		1226	A	I	TrMP: νC-CH ₃ , δC-H _(ring) , νCN
	1258(s)	1257	Ι	A	BRA: vCC, vCO
1264 (vs)		1261	Α	I	BRA: $\delta OH + vCC$

Table S14. Calculated and experimental frequencies for the TrMP·BRA (4) complex (continued).

1270 (vs)		1272	А	Ι	TrMP: vC -H _(ring) , $vCC_{(ring)}$	
1323 (m)		1301	A	Ι	BRA: vCC, vCO	
1323 (m)		1330	А	Ι	TrMP: δC-CH ₃ , δNH, νCC	
	1337 (m)	1332	Ι	A	TrMP: δC-CH ₃ , δNH, νCC	
1342 (s)		1346	А	Ι	BRA: vCC, vC=O	
1369 (m)		1362	А	Ι	TrMP: $\delta_{(w)}$ CH ₃ , δ NH, δ CH _(ring)	
	1370 (m)	1371	Ι	A	TrMP: $\delta_{(w)}$ CH ₃ , δ NH, δ CH _(ring)	
1371 (m)		1374	A	Ι	TrMP: δ _(ass, w) CH ₃ , δNH, νC-CH ₃	
1382 (w)		1383	А	Ι	TrMP: $\delta_{(ass, w)}CH_3$, δNH , vC -CH ₃	
1397 (vw)		1395	A	Ι	TrMP: $\delta_{(w)}$ CH ₃ , vC-CH ₃ , δ NH, vCN	
	1393 (w)	1395	Ι	A	TrMP: $\delta_{(w)}$ CH ₃ , vC-CH ₃ , δ NH, vCN	
1425 (w)		1428	Ι	A	TrMP: $\delta_{(sc.)}$ CH ₃ , vC-CH ₃ , vCN	
1439 (vw)		1435	A	I	TrMP: $\delta_{(ass, sc.)}$ CH ₃ , vC-CH ₃ , vCN	
	1433 (vw)	1437	Ι	A	TrMP: $\delta_{(ass, sc.)}$ CH ₃ , vC-CH ₃ , vCN	
1442 (w)		1442	A	Ι	TrMP: $\delta_{(ass, sc.)}CH_3$, vCN	
1470 (vw)		1456	A	Ι	TrMP: $\delta_{(ass,sc.)}CH_3$, δNH	
1489 (vw)		1463	А	Ι	TrMP: $\delta_{(ass, sc.)}CH_3 + \delta CH_{(ring)}$, vCN	
	1516 (vw)	1513	Ι	A	TrMP: $\delta_{(ass, sc.)}$ CH ₃ , δ NH, vCN, vCC	
1517 (vs)		1513	А	Ι	TrMP: $\delta_{(ass, sc.)}$ CH ₃ , vC-CH ₃ , vCN	
1520 (s)		1528	А	Ι	BRA: νCC, δOH, νC=O	
1544 (w)		1585	A	Ι	BRA: vCC, vC=O	
1595 (w)		1594	А	Ι	BRA: δOH , vC=O, vCC _(ring) , TrMP: δNH	
1601 (vw)		1600	A	Ι	TRMP: $\nu CC_{(ring)}$, $\delta CH_{(ring)}$, δNH	
	1621 (s)	1622	Ι	A	TrMP: δ NH, BRA: δ C=C, δ OH	
1620 (w)		1626	A	I	TrMP: δ NH, ν CN, BRA: δ C=C, δ OH	
	1680 (m)	1639	Ι	A	TrMP: δ NH, ν CN, BRA: δ C=C, δ OH	
1637 (w)		1640	A	I	TrMP: δNH, BRA: vCC, vCO	
	2740 (vw)	2579	Ι	A	TrMP: vNH	
2495 (vw)		2598	А	Ι	TrMP: vNH	
2927 (vw)		2957	A	I	$TrMP: v_{(s)}CH_3$	
	2958 (vw)	2958	Ι	А	$TrMP: v_{(s)}CH_3$	

Table S14. Calculated and experimental frequencies for the TrMP·BRA (4) complex (continued).

2964 (vw)		2983	Α	I	$TrMP: v_{(s)}CH_3$
2997 (vw)		2987	Α	I	$TrMP: v_{(s)}CH_3$
	2994 (vw)	2987	Ι	Α	$TrMP: v_{(s)}CH_3$
	3000 (vw)	3029	Ι	А	$TrMP: v_{(ass)}CH_3$
3083 (vw)		3082	А	Ι	$TrMP: v_{(ass)}CH_3$
3109 (w)		3106	А	Ι	BRA: vOH, TrMP: v _(ass) CH ₃
	3105 (vw)	3106	Ι	А	BRA: vOH, TrMP: v _(ass) CH ₃
3167 (m)		3109	А	Ι	BRA: vOH, TrMP: $v_{(ass)}CH_3$
	3120 (vw)	3129	Ι	Α	BRA: vOH
	3183 (vw)	3207	Ι	А	TrMP: vCH _(ring)
3215 (vw)		3208	А	I	TrMP: vCH _(ring)

Table S14. Calculated and experimental frequencies for the TrMP BRA (4) complex (continued).

v-streching, δ -deformation (bending), sc.-scissors, ρ_w -wagging, ρ_r -rocking, π -out of the plane, s-symmetric, ass-asymmetric, vs-very strong, s-strong, m-medium, w-weak, vw-very weak, A-active, I-inactive band

Table S15. Comparison of the hydrogen bonds geometry with tunnelling frequencies and tunnelling activation energiesfor known supramolecular complexes of methyl derivatives of pyrazine.PT-the proton transfer, HB- thehydrogen bond without proton transfer, a,b- the number of protonated nitrogen atoms in pyrazine ring.

Compounds	Type of HB	Type of structure	Numbering of methyl groups	Tunneling frequencies	Activation energy	Literature
TMP·CLA (1:1)	HB _{a,b} O–H…N O–H…N	infinite chain	C(14) C(15) C(14)' C(15)'	±2.2 μeV ±3.7 μeV ±22 μeV ±31 μeV	14.5meV	[1-4]
TMP·H ₂ SQ (1:1)	$\begin{array}{c} HB_a, PT_b\\ O-H\cdots N\\ O^H\cdots N^+ \end{array}$	dimeric unit	C(121) C(131) C(151) C(161)	±1.55 μeV ±4.20 μeV	15.0 meV 13.2 meV	[5,6]
TMP·PIC (1:2)	$PT_{a,b}$ O'-H···N ⁺ O'-H···N ⁺	trimeric unit	C(22) C(23) C(22)' C(23)'	±3.16 μeV ±4.24 μeV	6.9 meV 6.3 meV	[7]
TMP·BrA	$\begin{array}{c} HB_a, PT_b\\ O-H\cdots N\\ O^H\cdots N^+ \end{array}$	dimeric unit	C(21) C(31) C(51) C(61)	only elastic peak		[1]
TrMP·CLA	$\begin{array}{c} HB_{a}, PT_{b}\\ O-H\cdots N\\ O^{-}-H\cdots N^{+}\end{array}$	dimeric unit	C(21) C(31) C(51)	±4. μeV	10.4 meV	present work
TrMP·BRA	HB _a , PT _b O–H…N O–H…N ⁺	dimeric unit	C(21) C(31) C(51)	only elastic peak		present work
2MP·CLA	HB _{a,b} O–H…N O–H…N	infinite chain	C(21)	only elastic peak		present work
2MP·BRA	HB _{a,b} O–H…N O–H…N	infinite chain	C(21)	±13.9 μeV	7.3 meV	present work