Electronic Supplementary Information (ESI)

A water stable microporous metal-organic framework based on rod SBUs: synthesis, structure and adsorption properties

Jiaqi Yuan,^a Li Mu,^b Jiantang Li,^a Lirong Zhang,^a Guanghua Li,^a Qisheng Huo^a and Yunling Liu^{a,*}

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China Jilin University, Changchun 130012, P. R. China. E-mail: zlr@jlu.edu.cn; yunling@jlu.edu.cn; Fax: +86-431-85168624; Tel: +86-431-85168614

S1. Calculation procedures of selectivity from IAST

The measured experimental data is excess loadings (q^{ex}) of the pure components CO₂, CH₄ and C₂H₆ for compound **1**, which should be converted to absolute loadings (q) firstly.

$$q = q^{ex} + \frac{pV_{pore}}{ZRT}$$

Here Z is the compressibility factor. The Peng-Robinson equation was used to estimate the value of compressibility factor to obtain the absolute loading, while the measure pore volume $0.509 \text{ cm}^3 \text{ g}^{-1}$ is also necessary.

The dual-site Langmuir-Freundlich equation is used for fitting the isotherm data at 298 K.

$$q = q_{m_1} \times \frac{b_1 \times p^{1/n_1}}{1 + b_1 \times p^{1/n_1}} + q_{m_2} \times \frac{b_2 \times p^{1/n_2}}{1 + b_2 \times p^{1/n_2}}$$

Here p is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), q is the adsorbed amount per mass of adsorbent (mol kg⁻¹), q_{m1} and q_{m2} are the saturation capacities of sites 1 and 2 (mol kg-1), b_1 and b_2 are the affinity coefficients of sites 1 and 2 (1/kPa), n_1 and n_2 are the deviations from an ideal homogeneous surface.

The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2, perhaps in the presence of other components too, can be formally defined as

$$S = \frac{q_1/q_2}{p_1/p_2}$$

 q_1 and q_2 are the absolute component loadings of the adsorbed phase in the mixture. These component loadings are also termed the uptake capacities. We calculate the values of q_1 and q_2 using the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz.

S2. Supporting Figures

Fig. S1 PXRD patterns of compound **1** for simulated, as-synthesized and EtOH-exchanged samples. The differences in reflection intensity are probably due to preferred orientations in the powder sample.

Fig. S2 N_2 isotherms for compound 1 at 77 K under 1 bar.

Fig. S3 Infrared spectra for compound 1 and the organic HIBA ligand.

Fig. S4 Space-filling view of the structure of compound **1** showing multiple pores in different directions (regardless of van der Waals radii).

Fig. S5 Thermogravimetric analysis curves of compound 1 for the as-synthesized and EtOH exchanged samples.

Fig. S6 Qst of CH4 for compound 1 calculated by MicroActive soft.

Fig. S8 The linear fitting curve for calculating BET surface areas of compound 1.

Fig. S9 Thermal ellipsoid (30%) plot of the hydrogen bonded framework of compound 1.

Fig. S10 Topology simplification of compound 1

Fig. S11 N_2 isotherms for water-treated compound 1 at 77 K under 1 bar.

Fig. S12 SEM images (left) and optical photos (right) of compound **1**. From top to bottom is before (a) and after thermal (b), water (c), acid (d) and base treatment (e).

Compound	1
Formula	$C_{28}H_{34}Cu_3N_6O_{10}$
F_w	805.23
Temp (K)	293(2) K
Crystal system	Monoclinic
Space group	C2/c
a (Å)	15.225(3)
b (Å)	19.518(4)
c (Å)	10.927(2)
α (°)	90
β (°)	93.42(3)
γ (°)	90
$V(Å^3)$	3241.3(11)
Z	4
D _c (Mg m ⁻³)	1.650
Absorption coefficient (mm ⁻¹)	2.015
F(000)	1644
Reflections collected/unique (Rint)	10463 / 2952 [R(int) = 0.0236]
Goodness on fit	1.088
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0192, $wR2 = 0.0522$
R indices (all data)	R1 = 0.0217, $wR2 = 0.0530$

S3. Supporting TablesTable S1. Crystal data and structure refinements for compound 1.

 $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|. \ wR_2 = \left[\sum \left[w \left(F_o^2 - F_c^2\right)^2\right] / \sum \left[w \left(F_o^2\right)^2\right]\right]^{1/2}$

Since the highly disordered cations and guest molecules were trapped in the channels of compound 1 and could not be modeled properly, the PLATON/SQUEEZE was applied to remove their diffraction contribution. The final formula of compound 1 was derived from crystallographic data combined with elemental and thermogravimetric analysis data. Thus, there is "Alert level A" about "check chemical formula weight" in the "checkCIF/PLATON report" files for compound 1.

Table S2. Selected bond lengths [Å] and angles [°] for compound 1.

Compound 1					
Cu(1)-O(3)#1	1.9471(12)	Cu(1)-O(3)	1.9471(12)		
Cu(1)-O(4)	2.1362(13)	Cu(1)-O(4)#1	2.1362(13)		
Cu(1)-O(1)#1	2.2043(13)	Cu(1)-O(1)	2.2043(13)		
Cu(2)-O(2)	1.9386(11)	Cu(2)-O(3)	1.9749(12)		
Cu(2)-N(2)#2	1.9792(14)	Cu(2)-O(3)#3	1.9819(12)		
Cu(2)-O(4)#3	2.4148(14)	Cu(2)-Cu(2)#3	3.0407(6)		
O(3)-Cu(2)#3	1.9818(12)	O(4)-Cu(2)#3	2.4148(14)		
N(2)-Cu(2)#4	1.9792(14)	O(3)#1-Cu(1)-O(3)	179.33(7)		
O(3)#1-Cu(1)-O(4)	95.33(5)	O(3)-Cu(1)-O(4)	84.30(5)		
O(3)#1-Cu(1)-O(4)#1	84.30(5)	O(3)-Cu(1)-O(4)#1	95.33(5)		
O(4)-Cu(1)-O(4)#1	112.91(7)	O(3)#1-Cu(1)-O(1)#1	91.31(5)		

O(3)-Cu(1)-O(1)#1	89.18(5)	O(4)-Cu(1)-O(1)#1	81.58(5)	
O(4)#1-Cu(1)-O(1)#1	165.15(5)	O(3)#1-Cu(1)-O(1)	89.18(5)	
O(3)-Cu(1)-O(1)	91.31(5)	O(4)-Cu(1)-O(1)	165.15(5)	
O(4)#1-Cu(1)-O(1)	81.58(5)	O(1)#1-Cu(1)-O(1)	84.18(7)	
O(2)-Cu(2)-O(3)	93.84(5)	O(2)-Cu(2)-N(2)#2	89.24(5)	
O(3)-Cu(2)-N(2)#2	164.52(5)	O(2)-Cu(2)-O(3)#3	169.52(5)	
O(3)-Cu(2)-O(3)#3	79.56(5)	N(2)#2-Cu(2)-O(3)#3	99.29(5)	
O(2)-Cu(2)-O(4)#3	98.12(5)	O(3)-Cu(2)-O(4)#3	108.21(5)	
N(2)#2-Cu(2)-O(4)#3	86.31(5)	O(3)#3-Cu(2)-O(4)#3	76.53(5)	
O(2)-Cu(2)-Cu(2)#3	133.19(4)	O(3)-Cu(2)-Cu(2)#3	39.87(3)	
N(2)#2-Cu(2)-Cu(2)#3	136.98(4)	O(3)#3-Cu(2)-Cu(2)#3	39.70(3)	
O(4)#3-Cu(2)-Cu(2)#3	92.93(3)	C(10)-O(1)-Cu(1)	128.80(11)	
C(10)-O(2)-Cu(2)	125.02(11)	Cu(1)-O(3)-Cu(2) 104.42(5)		
Cu(1)-O(3)-Cu(2)#3	109.58(6)	Cu(2)-O(3)-Cu(2)#3	100.44(5)	
Cu(1)-O(3)-H(3A)	99.3(18)	Cu(2)-O(3)-H(3A)	118.3(19)	
Cu(2)#3-O(3)-H(3A)	123.4(19)	C(11)-O(4)-Cu(1)	121.07(12)	
C(11)-O(4)-Cu(2)#3	134.51(12)	Cu(1)-O(4)-Cu(2)#3	89.51(5)	
C(1)-N(2)-Cu(2)#4	128.19(12)	C(3)-N(2)-Cu(2)#4	125.86(12)	
Symmetry transformations used to generate equivalent atoms:				

#1 -x+1,y,-z+1/2 #2 x-1/2,-y+1/2,z+1/2 #3 -x+1,-y+1,-z+1 #4 x+1/2,-y+1/2,z-1/2

Table S3. The refined parameters for the Dual-site Langmuir-Freundlich equations fit for the pure isotherms of CO₂, CH₄ and C₂H₆ for compound 1 at 298 K.

	q _{m1}	b1	n ₁	q _{m2}	b ₂	n ₂	R ²
CO ₂	0.03951	0.01434	2.54669	1.55648	0.00452	1.36442	0.99996
CH ₄	0.00544	5.90407E-5	2.9435	2.85019	0.00101	1.00496	0.99994
C_2H_6	0.96431	0.08232	1.09639	1.45667	0.012	0.57208	0.99999