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S1. Methodology Section

With a view to understanding the mechanism of molecular conformation and tailor-made 
additives and their effect on asymmetric growth, we derived and expression for rate of growth 
which is controlled by kinetics and thermodynamic of the molecular growth processes. The 
growth of crystals faces,  is usually governed by spiral growth mechanism and given by,1( )hkl
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of driving force.2 Considering the kinetics and thermodynamic aspect of adsorption of host 
molecule in the ledges and impurities/additives at surface, the rate of growth from vapour, 

 in presence of tailor-made auxiliaries can be expressed as3
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where, R, T and  are gas constant, temperature and supersaturation, respectively. The 
adsorption of the additive molecule creates an additional growth barrier during the integration 
of the solute molecules and, thus, advancing steps energy increases with increasing 
concentration of additive. With lattice energy of , bulk enthalpy of fusion , lattE fusionH

coordination number , adsorption energy of host molecule , adsorption energy of hkln /
( )
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additive molecule  and surface coverage , the average step energy,  can /
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be expressed as,
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The third term in the above expression arises due to growth hindrance from adsorption of 

additive molecules at the surface. With saturated mole fraction of solute concentration , eqc
supersaturation,  can be approximated as, 
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At the given temperature, is estimated from the vapour pressure data. In equilibrium, surface eqc
coverage is defined as4,5
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where  and  are Langmuir constant and mole fraction of additive concentration ( )additive hklK additivec

per solute molecule, respectively. The Langmuir constant is given by,2 
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where and  are enthalpies of adsorption and fusion of additive, ( )
ad
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respectively. It is intriguing to note here that, in competitive adsorption model, presence of 
impurity can be seen as a competition between the crystallizing solute molecules and the 
impurity species for the preferential adsorption sites. Keeping in mind that the crystallization 
is a thermally activated process and, as such, usually represented by the Arrhenius equation, 

the effective flux of solute molecules in the presence of additive,  seen by the surface ( )
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may be written in the form,
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The third term in the denominator of eq \* MERGEFORMAT (7) represents growth hindrance 
that occurred due to the adsorption of additive auxiliaries at the crystal surface. The details 
derivation of above growth rate expression has been described in detail elsewhere.3 We have 
already applied the above-described methodology to investigate the effect of biuret on aqueous 
crystallization of the urea crystal. The details of the results are discussed in Ref. 3. 



S2. Supplementary data and figures

S2.1. Symbol and notation of different steps configurations

Following eight different steps configurations (Ȼ1 - Ȼ8) have been created at the surfaces of 
(011) and  faces of α-resorcinol to determine adsorption energy landscape of the host (0 1 1)
molecules in two different orientations of resorcinol molecules say  and , which are 1M 2M

related by the a-glide. Within each pair, molecules  (  and ) and  (  and ) are 1M 1
iM 1

iiM 2M 2
iM 2

iiM
related by the n-glide.  
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S2.2. Optimized structures of surface-additive interface

Figure 1.  Optimized structures of surface-additive interface on which R3(γ)-resorcinol has 
docked in two different orientation, namely (a) Ϻ1 (b) Ϻ2 at (011) face and (c) Ϻ1 (d) Ϻ2 at 

 face.(011)



Figure 2. Same as Figure 1 but for 2-methylresorcinol.

Figure 3. Same as Figure 1 but for orcinol.

Figure 4. Same as Figure 1 but for phloroglucinol.



Figure 5. Same as Figure 1 but for pyrogallol.

Figure 6. Same as Figure 1 but for hydroquinone.



S2.3. 

Table 1. The BSSE-uncorrected adsorption energies (kJ/mol) of the host molecule in different 
steps configurations at the surface of and (011) faces from the vapour phase. The (011)

BSSE-correction to the adsorption energies in the relaxed steps configurations are shown in 
the parenthesises.

 (kJ/mol) in steps configuration/
( )
host surfE hkl

Face

2

2 1 1

iM
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2
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Ȼ7

1
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iiM
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Ȼ8

(011) -38.4      
(-10.1)

(α-phase)

-40.8      
(-13.1)

(α-phase)

-34.1       
(-10.4)

(α-phase)

-36.5       
(-11.2)

(α-phase)

-37.0       
(-12.2)

(α-phase)

-39.2      
(-14.1)

(α-phase)

-34.2       
(-10.9)

(α-phase)

-36.3       
(-11.8)

(α-phase)

(011) -36.1      
(-10.9) 

(α-phase)

-42.5      
(-13.2) 

(α-phase)

-32.3       
(-10.2)  

(α-phase)

-38.7       
(-12.2)  

(α-phase)

-40.1       
(-9.7)    

(β-phase)

-44.8      
(-12.2) 

(β-phase)

-35.4       
(-9.0)    

(β-phase)

-39.0       
(-11.4)  

(β-phase)



Table 2. The BSSE-uncorrected adsorption energy (kJ/mol) of different conformers of 
resorcinol and tailor-made auxiliaries at and (011) faces of α-resorcinol crystal from (011)
vapour. The BSSE-correction to the adsorption energies in the relaxed steps configurations 

are shown in the parenthesises

(kJ mol-1) in /
( )
additive surfE hkl

orientation

Conformers/tailor-
made auxiliaries

Enthalpy of 
fusion (kJ/mol)

Face (hkl)

  Ϻ1 Ϻ2

(0 1 1) -24.0 (-9.2) -23.7 (-9.3)R2(β) conformer 20.9

(011) -21.4 (-5.9) -26.1 (-8.7)
(0 1 1) -24.1 (-8.4) -24.3 (-8.8)R3(γ) conformer 18.9

(011) -24.2 (-7.6) -29.2 (-10.0)
(0 1 1) -29.1 (-10.4) -26.7 (-9.2)2-methylresorcinol 19.5

(011) -25.6 (-8.8) -23.5 (-8.4)
(0 1 1) -26.3 (-9.3) -28.1 (-10.2)Orcinol 19.5

(011) -24.5 (-6.9) -22.9 (-8.8)
(0 1 1) -28.3 (-9.4) -25.2 (-9.0)Phloroglucinol 23.1

(011) -25.5 (-8.2) -25.0 (-9.1)
(0 1 1) -29.2 (-10.8) -30.9 (-11.9)Pyrogallol 23.1

(011) -32.6 (-11.2) -27.9 (-10.4)
(0 1 1) -27.9 (-10.6) -27.0 (-10.5)Hydroquinone 17.3

(011) -21.5 (-5.9) -24.4 (-8.5)
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S2.4. 

Figure 7. Effect of (a) γ-phase conformer of resorcinol, (b) orcinol, (c) phloroglucinol, (d) pyrogallol and (e) hydroquinone admixture on the 
growth rate of and (011) faces of α-resorcinol crystal from vapour as function of additive concentration and supersaturation at (011)

saturation temperature 91 oC.



Figure 8 Ratio of impure and pure growth rate of (a) γ-phase conformer of resorcinol, (b) orcinol, (c) phloroglucinol, (d) pyrogallol and (e) 
hydroquinone admixture and (011) faces of α-resorcinol containing as function of additive concentration and supersaturation at (011)

saturation temperature 91 oC.



Figure 9.  Vapour growth anisotropy (R(0-1-1)/R(011)) along polar axis of α-resorcinol crystal containing (a) γ-phase conformer of resorcinol, (b) 
orcinol, (c) phloroglucinol, (d) pyrogallol and (e) hydroquinone admixture at saturation temperature 91 oC and 60 oC.


