
Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Biomimetic mineralization of Hydroxyapatite Crystal in the Presence of Zwitterionic Polymer

Meng Xu^a, Feng Ji^a, Zhihui Qin^a, Dianyu Dong^a, Xinlu Tian^a, Rui Niu^a, Da Sun^d, Fanglian Yao*, ^{a,b}, Junjie Li^{*,c}

- a) School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. Email: yaofanglian@tju.edu.cn.
- b) Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, 300072, China.
- c) Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy
- of Military Medical Science, Beijing 100850, China. Email: li41308@aliyun.com.
- d) Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA

Figure S1. ¹H NMR spectra of CBAA-ester, PCBAA-ester and PCBAA.

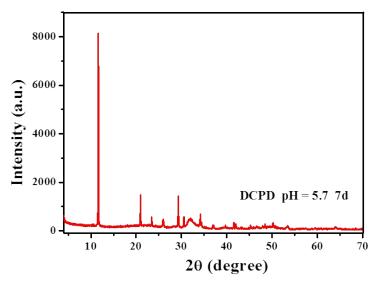
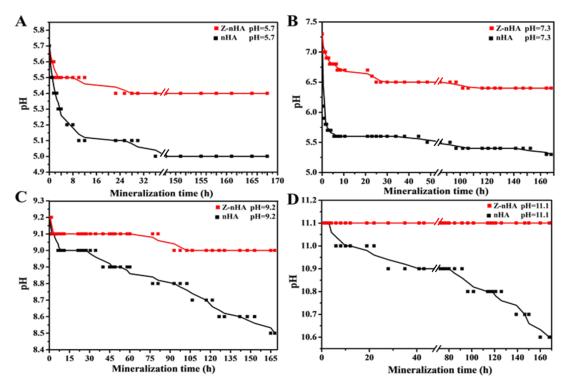
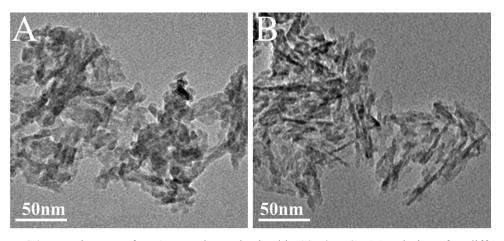




Figure S2. XRD spectra of nHA generated in water at 7 d at pH = 5.7.

Figure S3. The variation of pH value along time with and without PCBAA at values of (A) 5.7, (B) 7.3, (C) 9.2 and (D) 11.1.

Figure S4. TEM images of nHA crystals synthesized in 10 g/L PCBAA solution after different reaction time at 37 °C: (A) 72 h, (B) 120 h.

Table S1. The average sizes of c-axis and a-axis calculated from (002) and (300) faces of apatite respectively at different mineralization time.

Mineralization Time (h)	Crystal Size (nm)		
	c-axis	a-axis	c/a
0.5	27.23	9.40	2.90
2	31.50	9.57	3.29
5	23.57	9.37	2.52
12	15.13	7.60	1.99
24	16.17	23.07	0.70
72	16.43	23.83	0.69
120	18.90	27.33	0.69
168	19.33	19.91	0.97