Electronic Supplementary Information for the paper: "Indium Selenide Monolayer: A Two-Dimensional Material with Strong Second Harmonic Generation"

Jing Lin^a, Zhenxing Fang^b, Huilin Tao^a, Yi Li^{a,c}, Xin Huang^{a,c}, Kaining Ding^a, Shuping Huang^a, and Yongfan Zhang^{a,c,*}

^a State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China

^b Department of Physics, Zunyi Normal University, Zunyi, Guizhou, 563006, China

^c Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005, China

* E-mail: zhangyf@fzu.edu.cn

Figure S1 The calculated phonon spectra of (a) M5 model and (b) M6 model

Figure S2 The calculated phonon spectra of different In-Se compounds including (a) In₂Se₃-R3m, (b) In₂Se₃-P6₁, (c) InSe ML, (d) InSe-R3m.

Figure S3 Variation of static SHG coefficient as a function of the cutoff energy of (a) $In_2Se_3-P6_1$, and (b) InSe-ML. The partial charge density maps shown in the insets of (a) are drawn by considering bands in the energy regions from -1.1 eV to VBM and from 4.2 to 7.7 eV, respectively, while in (b) the corresponding energy regions are from -0.5 eV to VBM and from 5.0 to 6.2 eV, respectively.