Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information for the Manuscript

A Flexible Doubly Interpenetrated Metal–Organic Framework with Gate $Opening \ Effect \ for \ Highly \ Selective \ C_2H_2/C_2H_4 \ Separation \ at \ Room$ Temperature

Di-Ming Chen, Xiao-Hui Liu, Jia-Hui Zhang and Chun-Sen Liu*

Henan Provincial Key Lab of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China

Corresponding Author E-mail: chunsenliu@zzuli.edu.cn

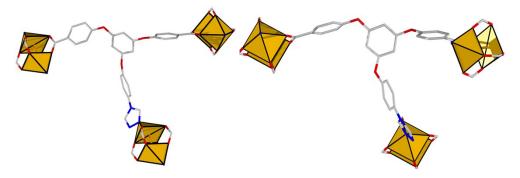


Fig. S1 View for the coordination surroundings for the H_2TPPB ligand.

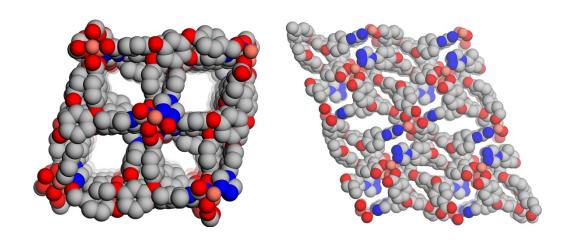


Fig. S2 View for the two different pore structures of 1.

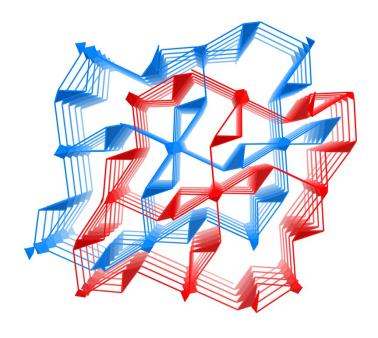


Fig. S3 The simplified 2-fold interpenetrated rtl-type (3,6)-connected net for 1.

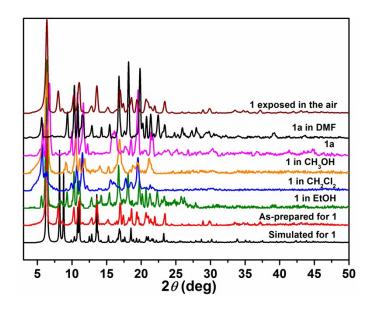


Fig. S4 PXRD patterns of 1.

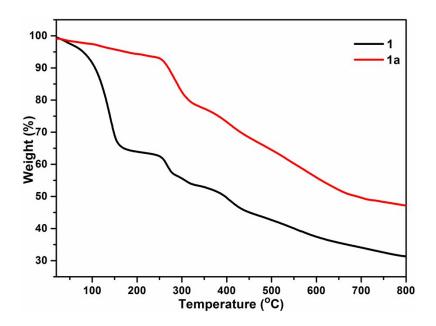


Fig. S5 Thermogravimetric curves of 1.

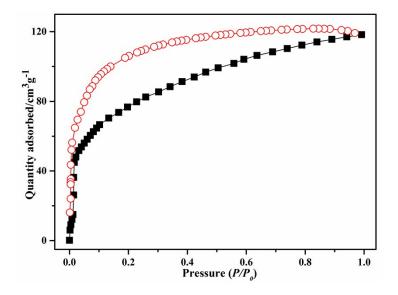
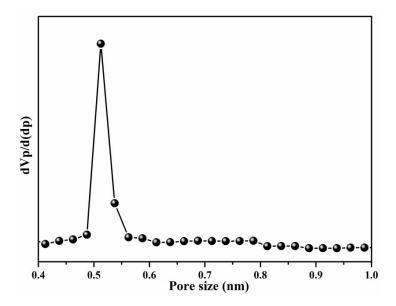



Fig. S6 The CO₂ sorption isotherm at 195 K.

Fig. S7 The pore size distributing of 1a derived from the CO2 sorption isotherm at 195 K.

Calculation of Sorption Heat for C₂H₂ and C₂H₄ Uptake Using Virial Fitting.

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i$$

The above virial expression was used to fit the combined isotherm data for 1a at 273 and 298 K, where P is the pressure, N is the adsorbed amount, T is the temperature, ai and bi are virial coefficients, and m and N are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and R is the universal gas constant.

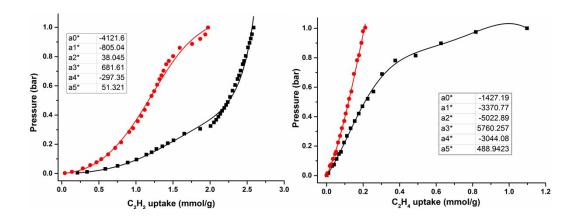


Fig. S8 Virial fitting for the C_2H_2 and C_2H_4 adsorption isotherms of 1a.

Prediction of the C₂H₂/C₂H₄ Adsorption Selectivity by IAST.

We adopt the ideal adsorbed solution theory (IAST) based upon the experimental single gas adsorption measurements as listed in the main text, including C_2H_2 and C_2H_4 at 298 K, which is commonly used to predict binary mixture adsorption selectivity. Before calculation of the sorption and separation properties, the adsorption isotherms were fitted using single-site Langmuir (SSL) models:

SSL:
$$q = \frac{q_{sat}bp}{1+bp}$$

Using the pure component isotherm fits, the adsorption selectivity is defined by:

$$S_{ads} = (q_1/q_2)/(p_1/p_2)$$

Where q_i is the amount of i adsorbed and p_i is the partial pressure of i in the mixture.

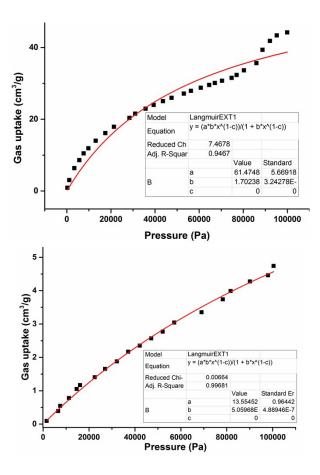


Fig. S9 The SSL fitting for the C_2H_2 and C_2H_4 adsorption isotherms of 1a.

Table. S1 Crystal data and structure refinement for 1.

Empirical formula	$C_{56}H_{34}Cu_2N_6O_{14}$
Formula weight	44.78
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	12.1088(4)
$b/ m \AA$	16.9597(8)
$c/ ext{Å}$	19.1362(4)
α/°	111.443(4)
eta / $^{\circ}$	91.846(3)
γ/°	95.794(3)
Volume/Å ³	3629.0(2)
Z	51
$ ho_{ m calc}$ g/cm ³	1.045
μ /mm ⁻¹	1.173
Radiation	$CuK\alpha (\lambda = 1.54184)$
Goodness-of-fit on F^2	0.974
Final <i>R</i> indexes [$I >= 2\sigma(I)$]	$R_1 = 0.0832, WR_2 =$
	0.2366
Final R indexes [all data]	$R_1 = 0.0935, WR_2 =$
	0.2573
Largest diff. peak/hole / e	1.14/-0.74
Å-3	
CCDC number	1547691