# **Electronic Supplementary Information**

# Dimesitylboryl Functionalised Cyanostilbene Derivatives of Phenothiazine: Distinctive Polymorphism Dependent Emission and Mechanofluorochromism

C. Arivazhagan, Partha Malakar, R. Jagan, Edamana Prasad<sup>\*</sup> and Sundargopal Ghosh<sup>\*</sup> Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.

## **Table of Contents**

| Contents                                                                                                          | Page No. |
|-------------------------------------------------------------------------------------------------------------------|----------|
| I. Experimental Section                                                                                           | S3-S4    |
| II. Syntheses of compounds 1-4                                                                                    | S5-S9    |
| III. Optical Properties                                                                                           | S10-S13  |
| IV. DFT results                                                                                                   | S14-S18  |
| V. Fluorescent Lifetime Studies                                                                                   | S19      |
| VI. Mechanofluorochromic properties of compounds 2, 3YC, 3RC                                                      | S20-S26  |
| and <b>4</b>                                                                                                      |          |
| VII. X-ray Single Crystal Data and Their Packing Modes                                                            | S27-S31  |
| VIII. Plots of <sup>1</sup> H, <sup>11</sup> B{ <sup>1</sup> H}, and <sup>13</sup> C{ <sup>1</sup> H} NMR Spectra | S32-S38  |
| IX. HRMS data for compounds 2-4.                                                                                  | S39-S40  |
| X. References                                                                                                     | S41      |

### I. Experimental Section

### **Materials and methods**

Mes<sub>2</sub>BF,<sup>[1]</sup> and 7-Bromo-10-ethyl-10H-phenothiazine-3-carbaldehyde<sup>[2]</sup> were prepared according to known methods. All other starting materials were purchased from commercials sources and used without further purification. For photophysical studies HPLC grade solvents were used. All synthetic reactions were performed under an argon atmosphere using standard Schlenk line techniques. <sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H} and <sup>11</sup>B{<sup>1</sup>H} NMR spectra were recorded on a Bruker Avance 500 MHz (<sup>1</sup>H, 500 MHz; <sup>13</sup>C, 125 MHz; <sup>11</sup>B, 160 MHz) or Bruker Avance III 400 MHz (<sup>1</sup>H, 400 MHz; <sup>13</sup>C, 100 MHz; <sup>11</sup>B, 128 MHz) NMR spectrometer. HRMS spectra were recorded on Qtof Micro YA263 HRMS instrument.

### General photophysical and other measurements

All measurements were made in standard quartz cuvettes (1 cm × 1 cm). UV-visible absorption spectra were recorded using Jasco V-650, UV-visible spectrophotometer. The emission and excitation spectra were recorded using Jasco FP-6300 or Horiba Jobin Yvon Fluoromax-4 spectrometers. Timeresolved fluorescence measurements were performed on Horiba Jobin Yvon TCSPC lifetime instrument in a time-correlated, single-photon counting arrangement. 405 nm nano-LED was used as light source. The decay data were analyzed using IBH software. A value of  $\chi^2$ , 0.99  $\leq \chi^2 \leq 1.3$  was considered as a good fit.

### **Single Crystal X-ray diffraction**

X-ray diffraction data for the crystals **3YC**, **3RC** and **4** was collected using Bruker Kappa apexII CCD Single Crystal Diffractometer, equipped with graphite monochromated Mo K $\alpha$  ( $\lambda$ =0.71078Å) radiation. Data collection was carried out at 293 K using  $\omega$ - $\phi$  scan modes. The collected frames were integrated followed by Lorentz and Polarization correction using the program SAINT-APEXII software.<sup>[3]</sup> Multi-scan absorption correction has been employed for the data using SADABS program.<sup>[4]</sup> The molecular structure was solved by direct methods procedure using SHELXS-2014/7.<sup>[5]</sup> Initially isotropic refinements of non-hydrogen atoms were carried out followed by full-matrix least squares refinement with anisotropic thermal parameters for non-hydrogen atoms were identified from the difference electron density map and were allowed to ride on the parent atom using suitable constraint, with distance 0.93Å(for aromatic CH) and 0.96Å( for CH<sub>3</sub>) and thermal displacement of U<sub>iso</sub>(H) = 1.2U<sub>eq</sub>(C) and U<sub>iso</sub>(H) = 1.5U<sub>eq</sub>(C) respectively. Some of the disordered methyl hydrogen of **3YC** and **3RC** are fixed as riding hydrogens with two positions rotated from eoch other by 60° with equal occupancy of 0.5. All the interactions and molecular drawings were obtained using the program Mercury (ver. 3.9).

### **Theoretical studies**

All calculations (DFT and TD-DFT) were carried out with the program package Gaussian 09 (Rev. C. 01)<sup>[6]</sup> and were performed on a parallel cluster system. The starting geometries for the calculations were those obtained by X-ray crystallography. The ground-state geometries were optimized without symmetry constraints using the B3LYP fuctional<sup>[7]</sup> in combination with the 6-31G(d) basis set.<sup>[8]</sup> The optimized geometries were confirmed to be local minima by performing frequency calculations and obtaining only positive (real) frequencies. Based on these optimized structures, the lowest-energy gas-phase vertical transitions were calculated (singlets, six states) by TD-DFT, using the Coulomb-attenuated functional CAM-B3LYP<sup>[9]</sup> in combination with the 6-31G(d). TD-DFT results were extracted and plotted using GaussSum 3.0 software.<sup>[10]</sup>

### II. Syntheses of compounds 1-4

### 3-bromo-7-(5,5-dimethyl-1,3-dioxan-2-yl)-10-ethyl-10H-phenothiazine (1)



7-bromo-10-ethyl-10H-phenothiazine-3-carbaldehyde (12.50 g, 37.39 mmol), 2,2-methyl-1,3propandiol (7.79 g,74.79 mmol) and a catalytic amount of p-toluenesulfonic acid in toluene (150 mL) was refluxed for 4 h. The reaction mixture was allowed to reach room temperature, extracted with dichloromethane and washed with brine solution. The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and the solvent was removed under vacuum. The crude product was purified by basic alumina column chromatography using 40% dichromethane in hexane yielding the product as colorless crystalline solid (11.64 g, 74 %).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, *δ*): 7.25-7.27 (m, 2H), 7.17-7.2 (m, 2H), 6.80 (d, 1H, *J* = 8.2 Hz), 6.65 (d, 1H, *J* = 9.24 Hz), 5.28 (s, 1H), 3.84 (q, 2H, *J* = 6.9 Hz), 3.73 (d, 2H, *J* = 11.1 Hz), 3.6 (d, 2H, *J* = 10.7 Hz), 1.35 (t, 3H, *J* = 6.9 Hz), 1.26 (s, 3H), 0.77 (s, 3H)

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, δ): 144.8, 144.0, 133.2, 129.8, 129.4, 126.5, 125.3, 125.2, 123.6, 116.1, 114.8, 114.2, 100.94, 77.6, 41.9, 30.1, 23.0, 21.8, 12.7.

### 7-(dimesitylboranyl)-10-ethyl-10H-phenothiazine-3-carbaldehyde, (2)



3-bromo-7-(5,5-dimethyl-1,3-dioxan-2-yl)-10-ethyl-10H-phenothiazine (11.64 g, 27.68 mmol) was dissolved in THF (150 mL), This solution was cooled to -78 °C, and *n*BuLi (19 mL, 30.45 mmol, 1.6 M in hexane) was added dropwise. The reaction mixture was allowed to stir 30 min and then Mes<sub>2</sub>BF (8.16 g, 30.45 mmol) in THF (50 mL) was added at -78 °C dropwise. The color of the solution changed pale yellow to bright green. The reaction mixture slowly allowed to RT and then stirred overnight. The reaction mixture was reduced to one third of its volume and treated with 5% hydrochloric acid solution (THF: 5% HCl; 1:2) heated to 70 °C for 1 hour. During which time, greenish yellow precipitate formed. The reaction mixture allowed to reach room temperature and neutralized using an aqueous solution of NaHCO<sub>3</sub> and extracted with ether. In the separating funnel, green precipitate stayed on the orange color organic layer and clear aqueous layer was discarded. Orange color solution was discarded by decantation from top and the precipitate collected and washed three times with ether to yield compound **2** as bright green powder (6.35 g, 45.5 %). Column chromatography was not required as the product formed in good purity as checked by TLC and NMR.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, δ): 9.78 (s, 1H), 7.62 (dd, 1H, *J* = 1.7, 8.5 Hz), 7.52 (d, 1H, *J* = 1.8 Hz), 7.3 (dd, 1H, *J* = 1.4, 8.2 Hz), 7.21 (d, 1H, *J* = 1.4 Hz), 6.91 (d, 1H, *J* = 8.4 Hz), 6.84 (s, 1H), 6.82 (s, 4H), 3.98 (q, 2H, *J* = 6.9 Hz), 2.31 (s, 6H), 2.02 (s, 12H), 1.46 (t, 3H, *J* = 6.9 Hz).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, δ): 190.0, 149.1, 146.3, 141.2, 140.7, 138.5, 137.2, 135.6, 131.3, 130.0, 128.2, 128.1, 124.3, 121.8, 114.6, 114.6, 42.7, 23.5, 21.2, 12.7.

<sup>11</sup>B{<sup>1</sup>H} NMR (160 MHz, CDCl<sub>3</sub>, δ): 78.8.

**HRMS:** calcd. m/z for C<sub>33</sub>H<sub>35</sub>BNOS<sup>+</sup> [M+H]<sup>+</sup>, 504.2532; found, 504.2531.

## (Z)-2-(4-bromophenyl)-3-(7-(dimesitylboranyl)-10-ethyl-10H-phenothiazin-3yl)acrylonitrile (3)



Compound **2** (503 mg, 1 mmol) and 4-bromophenyl acetonitrile (196 mg, 1 mmol) were mixed in 20 mL of ethanol. To this mixture three drops of 1N NaOH solution was added and refluxed vigorously for 4 h. The reaction mixture was allowed to cool to room temperature. Formed yellow precipitate was filtered through G4 frit. After column chromatography using silica gel with the eluent of 2% ethylacetate in hexane yielded the product as red colored solid (0.59 g, 86 %).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, *δ*): 7.80 (dd, 1H, *J* = 2.0, 8.7 Hz), 7.48-7.55 (m, 4H), 7.45 (d, 1H, *J* = 2.1 Hz), 7.31-7.33 (m, 2H), 7.23 (d, 1H, *J* = 1.4 Hz), 6.88 (d, 1H, *J* = 8.6 Hz), 6.83 (s, 4H), 6.81 (s, 1H), 3.97 (q, 2H, *J* = 6.9 Hz), 2.32 (s, 6H), 2.04 (s, 12H), 1.46 (t, 3H, *J* = 6.9 Hz).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, δ): 146.7, 145.7, 141.3, 140.8, 140.7,140.1, 138.4, 137.3, 135.6, 133.6, 132.1, 128.5, 128.5, 128.2, 128.1, 127.2, 124.1, 122.9, 121.6, 118.0, 114.9, 114.3, 107.7, 42.5, 23.5, 21.25, 12.7.

<sup>11</sup>B{<sup>1</sup>H} NMR (160 MHz, CDCl<sub>3</sub>, δ): 78.8.

**HRMS**: calcd. m/z for C41H39BBrN2S<sup>+</sup> [M+H]<sup>+</sup>, 681.2110; found, 681.2094.

### (Z)-2-(4-bromophenyl)-3-(10-ethyl-10H-phenothiazin-3-yl)acrylonitrile (4)



10-ethyl-phenothiazine-3-carbaldehyde (1.5 g, 5.87 mmol) and 4-bromophenyl acetonitrile (1.2 equiv.) were mixed in 30 mL of ethanol. To this mixture three drops of 1N NaOH solution were added and refluxed vigorously for 4 h. The reaction mixture was allowed to cool to room temperature. The yellow precipitate formed was filtered through G4 frit. After column chromatography using silica gel with the eluent of 2% ethylacetate in hexane yielded the product as red colored solid (2.1 g, 82.4 %).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, *δ*): 7.66 (dd, 1H, *J* = 6.6, 10.8 Hz), 7.36-7.43 (m, 5H), 7.20 (s, 1H), 7.02-7.06 (m, 1H), 6.98 (dd, 1H, *J* = 1.5, 7.6 Hz), 6.83 (td, 1H, *J* = 1.0, 14.9 Hz), 6.73-6.77 (m, 2H), 3.82 (q, 2H, *J* = 6.9 Hz), 1.32 (t, 3H, *J* = 6.9 Hz).

<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, δ): 413.4, 141.0, 133.7, 132.1, 128.8, 128.3, 127.5, 127.5, 127.4, 127.4, 127.3, 127.2, 127.2, 127.1, 124.2, 123.1, 123.8, 118.0, 115.2, 114.7, 114.6, 107.2, 42.2, 12.8. HRMS: calcd. m/z for C<sub>23</sub>H<sub>18</sub>N<sub>2</sub>SBr<sup>+</sup> [M+H]<sup>+</sup>, 433.0374; found, 433.0354.

### Synthesis of different polymorphs of compound 3

500 mg of compound **3** was dissolved in 10 mL mixture of DCM and hexane in the ratio of 2/8 volume and kept at room temperature for 2 days. As shown in Fig. S1, different types of polymorphs formed. The solution was decanted and **3YA** was scratched from the inner surface of the test tube using semi-micro spatula. Whereas, **3YC** and **3RC** were separated using long needles. Using this technique, polymorphs **3YA** and **3RC** were separated in good amount. In order to collect good amount of **3YC**, the separated **3YC** from the test tube was seeded into the solution mixture (DCM and hexane, 2/8 volume ratio) in round bottom flask (Fig. S1, right). More **3YC** was formed in overnight, if any solution left was decanted and the crystals were isolated.



**Fig. S1.** Photograph of the preparation of different types of polymorphs of **3**. (a) in test tube (b) in round bottom flask.

### **III. Optical Properties**



Fig. S2. Absorption spectra of compounds 2 (top), 3 (bottom left) and 4 (bottom right) in various solvents (10  $\mu$ M)



**Fig. S3.** Fluorescence spectra of compounds **2** (top), **3** (bottom left) and **4** (bottom right) in various solvents (10  $\mu$ M). All spectra were recorded with the excitation wavelength of 400 nm.







**Fig. S4.** Fluorescence images of compounds **2** (top), **3** (bottom left) and **4** (bottom right) in solvents with different polarities under UV excitation at 365 nm.

| Compound | Solvent     | $\lambda_{abs}/nm$ | $\lambda_{em}/nm (\Phi_{F})^{[a]}$ | Stokes shift/cm <sup>-1</sup> |
|----------|-------------|--------------------|------------------------------------|-------------------------------|
|          | Cyclohexane | 290, 318 (sh), 401 | 509 (0.59)                         | 5291                          |
|          | Toluene     | 295, 320 (sh), 412 | 532 (0.47)                         | 5474                          |
|          | THF         | 293, 319 (sh), 412 | 531 (0.51)                         | 5439                          |
| 2        | DCM         | 295, 320 (sh), 412 | 538 (0.43)                         | 5445                          |
|          | CHCl₃       | 296, 320 (sh), 415 | 540 (0.43)                         | 5577                          |
|          | EtOH        | 295, 320 (sh), 412 | 541 (0.04)                         | 5579                          |
|          | MeOH        | 294, 319 (sh), 411 | 540 (0.04)                         | 5812                          |
|          | MeCN        | 293, 318 (sh), 410 | 541 (0.43)                         | 5905                          |
|          | Cyclohexane | 320, 438           | 545 (0.43)                         | 4482                          |
|          | Toluene     | 322, 446           | 575 (0.30)                         | 5030                          |
|          | THF         | 320, 443           | 589 (0.27)                         | 5595                          |
| 3        | DCM         | 320, 443           | 598 (0.23)                         | 5850                          |
|          | CHCl₃       | 321, 443           | 588 (0.25)                         | 5566                          |
|          | EtOH        | 319, 440           | 600 (0.11)                         | 6060                          |
|          | MeOH        | 318, 437           | 607 (0.08)                         | 6408                          |
|          | MeCN        | 317, 436           | 610 (0.13)                         | 6542                          |
|          | Cyclohexane | 317, 417           | 525 (0.35)                         | 4933                          |
|          | Toluene     | 318, 424           | 566 (0.20)                         | 5917                          |
|          | THF         | 316, 419           | 590 (0.17)                         | 6917                          |
| 4        | DCM         | 314, 419           | 602 (0.13)                         | 7255                          |
|          | CHCl₃       | 316, 423           | 586 (0.12)                         | 6575                          |
|          | EtOH        | 315, 419           | 604 (0.06)                         | 7310                          |
|          | MeOH        | 313, 415           | 615 (0.03)                         | 7836                          |
|          | MeCN        | 313, 413           | 617 (0.07)                         | 8005                          |

 Table S1. Photophysical properties of 2, 3 and 4 in various solvents

<sup>[a]</sup>Quantum yields measured using fluorescein (0.1 M NaOH,  $\Phi_{\rm F}$  = 0.89) solution as reference.



Figure S5. Ground state DFT optimized structure of 2



Figure S6. Ground state DFT optimized structure of 3YC (left) and 3RC (right)



Fig. S7. Ground state DFT optimized structure of 4

### **IV. DFT results**





Fig. S8. Frontier molecular orbitals of 2-4

**Table S2.** TD-DFT calculated electronic transition configurations for **2-4** along with their corresponding excitation energies and oscillator strengths.<sup>[a]</sup>

| Compounds | Excited | Transition Configurations                 | Excitation Energy (nm, | Oscillator |
|-----------|---------|-------------------------------------------|------------------------|------------|
|           | State   |                                           | eV)                    | Strengths  |
|           | 1       | HOMO->LUMO (84%)                          | 340.84 (3.63)          | 0.4248     |
|           | 2       | H-8->LUMO (25%), H-8->L+1 (50%)           | 308.42 (4.01)          | 0.0091     |
|           | 3       | H-1->LUMO (68%), H-1->L+1 (23%)           | 302.30 (4.10)          | 0.1394     |
|           | 4       | H-2->LUMO (17%), HOMO->L+1 (63%)          | 295.85 (4.19)          | 0.1638     |
|           | 5       | H-2->LUMO (46%), H-2->L+1 (15%), HOMO-    | 281.95 (4.39)          | 0.0787     |
|           |         | >L+1 (11%)                                |                        |            |
| 2         | 6       | H-5->LUMO (22%), HOMO->L+2 (35%), HOMO-   | 276.98 (4.47)          | 0.0031     |
|           |         | >L+3 (15%)                                |                        |            |
|           | 7       | H-3->LUMO (57%), H-3->L+1 (19%)           | 270.90 (4.57)          | 0.0824     |
|           | 8       | H-4->LUMO (56%), H-4->L+1 (20%)           | 266.63 (4.65)          | 0.0289     |
|           | 9       | H-5->LUMO (18%), H-5->L+1 (12%), HOMO-    | 262.12 (4.73)          | 0.078      |
|           |         | >L+1 (11%), HOMO->L+2 (19%), HOMO->L+3    |                        |            |
|           |         | (11%)                                     |                        |            |
|           | 10      | H-5->LUMO (23%), HOMO->L+3 (30%)          | 256.43 (4.83)          | 0.6173     |
|           | 1       | HOMO->LUMO (88%)                          | 402.49 (3.08)          | 0.9622     |
|           | 2       | HOMO->L+1 (68%)                           | 323.98 (3.82)          | 0.2855     |
|           | 3       | H-2->LUMO (40%), H-1->L+1 (25%)           | 303.26 (4.08)          | 0.2561     |
|           | 4       | H-2->LUMO (26%), H-1->L+1 (50%)           | 302.19 (4.10)          | 0.4026     |
|           | 5       | H-3->L+1 (21%), HOMO->L+2 (49%)           | 290.21 (4.27)          | 0.3019     |
| 3         | 6       | H-3->L+1 (38%)                            | 283.61 (4.37)          | 0.0333     |
|           | 7       | H-4->LUMO (11%), H-4->L+1 (48%)           | 271.92 (4.55)          | 0.0902     |
|           | 8       | H-6->L+1 (12%), H-4->L+1 (17%), HOMO->L+4 | 268.02 (4.62)          | 0.0297     |
|           |         | (13%)                                     |                        |            |
|           | 9       | H-5->LUMO (14%), H-5->L+1 (61%)           | 266.66 (4.64)          | 0.024      |
|           | 10      | H-6->LUMO (44%)                           | 258.30 (4.80)          | 0.0816     |
|           | 1       | HOMO->LUMO (98%)                          | 479.12 (2.58)          | 0.5824     |
|           | 2       | H-1->LUMO (91%)                           | 354.52 (3.49)          | 0.5748     |
|           | 3       | HOMO->L+1 (85%)                           | 335.95 (3.69)          | 0.197      |
|           | 4       | H-2->LUMO (82%)                           | 314.17 (3.94)          | 0.0419     |
|           | 5       | HOMO->L+3 (58%), HOMO->L+4 (28%)          | 301.99 (4.10)          | 0.0553     |
| 4         | 6       | HOMO->L+2 (84%)                           | 295.05 (4.20)          | 0.0181     |
|           | 7       | HOMO->L+3 (20%), HOMO->L+4 (49%), HOMO-   | 288.05 (4.30)          | 0.0211     |
|           |         | >L+5 (13%)                                |                        |            |
|           | 8       | H-4->LUMO (10%), H-3->LUMO (28%), HOMO-   | 278.12 (4.45)          | 0.0401     |
|           |         | >L+5 (41%)                                |                        |            |
|           | 9       | H-5->LUMO (78%)                           | 273.53 (4.53)          | 0.0052     |
|           | 10      | H-4->LUMO (72%)                           | 271.98 (4.55)          | 0.0274     |

[a] Components with greater than 10 % contribution shown.



**Fig. S9.** Calculated absorption spectra of **2** (top), **3** (bottom left) and **4** (bottom right) (first 10 excited states); TD-CAM-B3LYP/6-31G(d) PCM=THF

### **V. Fluorescent Lifetime Studies**

**Table S3.** Photophysical properties and fluorescence decay parameters of compounds (2-4) in cyclohexane solution<sup>[a]</sup>

| Compounds | Absorption      | Fluorescence                                       | Stokes shift               | Lifetime           | K <sub>r</sub> <sup>[c]</sup> | K <sub>nr</sub> <sup>[c]</sup> |
|-----------|-----------------|----------------------------------------------------|----------------------------|--------------------|-------------------------------|--------------------------------|
|           | $\lambda_{abs}$ | $\lambda_{ m em} \left( arPsi_{ m F}  ight)^{[a]}$ | [nm] ([cm <sup>-1</sup> ]) | <\approx >[b] (ns) | (S <sup>-1</sup> )            | (s <sup>-1</sup> )             |
|           | [nm]            | [nm]                                               |                            |                    |                               |                                |
| 2         | 401             | 509 (0.59)                                         | 108 (5291)                 | 6.4                | $0.9 	imes 10^8$              | $0.6 	imes 10^8$               |
| 3         | 438             | 545 (0.43)                                         | 107 (4482)                 | 3.9                | $1.1 	imes 10^8$              | $1.4 	imes 10^8$               |
| 4         | 417             | 525 (0.35)                                         | 108 (4933)                 | 2.6                | $1.3 	imes 10^8$              | $2.5 	imes 10^8$               |

[a] The fluorescence quantum yields measured using fluorescein (0.1 M NaOH,  $\Phi_F = 0.89$ ) solution as reference. [b] The average lifetime was calculated using the following equation:  $\langle \tau \rangle = \alpha_1 \tau_1 + \alpha_2 \tau_2$ . [c] The rate constants for radiative (k<sub>r</sub>) and nonradiating decay (k<sub>nr</sub>) were calculated from the  $\Phi_F$  and  $\tau$  values according to the formulae kr =  $\Phi_F/\tau$  and knr =  $(1-\Phi_F)/\tau$ .



Fig. S10. Lifetime profiles of compounds 2 (top), 3 (bottom left) and 4 (bottom right) in cyclohexane solution.



VI. Mechanofluorochromic properties of compounds 2, 3YC, 3RC and 4

**Fig. S11.** Normalized PL spectra of **2** under different conditions (left) and Powder XRD diffractions of **2** under different conditions (right).



Fig. S12. Color changes of compound 2 upon grinding and fuming process under daylight.



**Fig. S13.** Normalized PL spectra of **3YA** (top left), **3YC** (top right) and **3RC** (bottom) under different conditions.



Fig. S14. Powder XRD diffractions of 3YA, 3YC and 3RC under different conditions.



**Fig. S15.** Color changes of compound **3YA** upon grinding and fuming process under UV light irradiation at 365 nm.



**Fig. S16.** Color changes of compound **3YC** upon grinding and fuming process under UV light irradiation at 365 nm.



**Fig. S17.** Color changes of compound **3RC** upon grinding and fuming process under UV light irradiation at 365 nm.



**Fig. S18.** Normalized PL spectra of **4** under different conditions (left) and Powder XRD diffractions of **4** under different conditions (right).



**Fig. S19.** Color changes of compound **4** upon grinding and fuming process under UV light irradiation at 365 nm.



Fig. S20. TGA thermogram of 2-4 recorded under nitrogen at a heating rate of 10 °C min<sup>-1</sup>.



**Fig. S21.** DSC thermogram of as prepared compound **3** recorded under nitrogen at a scan rate of 10 °C min<sup>-1</sup>.



Fig. S22. DSC thermogram of **3RC** crystals recorded under nitrogen at a scan rate of 10 °C min<sup>-1</sup>.



Fig. S23. DSC thermogram of 3YA crystals recorded under nitrogen at a scan rate of 10 °C min<sup>-1</sup>.



Fig. S24. DSC thermogram of 3YC crystals recorded under nitrogen at a scan rate of 10 °C min<sup>-1</sup>.

## VII. X-ray Single Crystal Data and Their Packing Modes

| Compounds                                   | ЗҮС                                                              | 3RC                                                    | 4                                                                |
|---------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|
| Empirical formula                           | C41H38BBrN2S                                                     | C <sub>41</sub> H <sub>38</sub> BBrN <sub>2</sub> S    | C <sub>23</sub> H <sub>17</sub> BrN <sub>2</sub> S               |
| Formula weight                              | 681.51                                                           | 681.51                                                 | 433.35                                                           |
| Temperature/K                               | 293(2)                                                           | 293(2)                                                 | 293(2)                                                           |
| Crystal system                              | triclinic                                                        | monoclinic                                             | monoclinic                                                       |
| Space group                                 | P-1                                                              | P21/c                                                  | P21/n                                                            |
| a/Å                                         | 8.151(7)                                                         | 9.6323(7)                                              | 10.5728(2)                                                       |
| b/Å                                         | 14.060(12)                                                       | 13.5037(11)                                            | 13.7128(3)                                                       |
| c/Å                                         | 16.644(13)                                                       | 52.648(4)                                              | 13.8757(3)                                                       |
| α/°                                         | 97.54(3)                                                         | 90                                                     | 90                                                               |
| β/°                                         | 93.66(3)                                                         | 93.701(2)                                              | 108.5420(10)                                                     |
| γ/°                                         | 102.91(3)                                                        | 90                                                     | 90                                                               |
| Volume/Å <sup>3</sup>                       | 1835(3)                                                          | 6833.7(9)                                              | 1907.31(7)                                                       |
| Z                                           | 2                                                                | 8                                                      | 4                                                                |
| $\rho_{calc}g/cm^3$                         | 1.234                                                            | 1.325                                                  | 1.509                                                            |
| µ/mm <sup>-1</sup>                          | 1.207                                                            | 1.296                                                  | 2.275                                                            |
| F(000)                                      | 708                                                              | 2832                                                   | 880                                                              |
| Crystal size/mm <sup>3</sup>                | 0.300 × 0.250 × 0.200                                            | $0.250 \times 0.150 \times 0.120$                      | $0.150 \times 0.150 \times 0.100$                                |
| Radiation                                   | ΜοΚα (λ = 0.71073)                                               | ΜοΚα (λ = 0.71073)                                     | ΜοΚα (λ = 0.71073)                                               |
| 20 range for data collection/°              | 6.012 to 54.636                                                  | 6.088 to 50                                            | 5.84 to 50                                                       |
| Index ranges                                | $-10 \le h \le 10, -17 \le k \le 18,$<br>$-21 \le l \le 21$      | -11 ≤ h ≤ 11, -16 ≤ k ≤ 16,<br>-56 ≤ l ≤ 62            | -12 ≤ h ≤ 12, -16 ≤ k ≤<br>16, -16 ≤ l ≤ 16                      |
| Reflections collected                       | 45663                                                            | 83419                                                  | 31753                                                            |
| Independent reflections                     | 8114 [R <sub>int</sub> = 0.0559, R <sub>sigma</sub><br>= 0.0499] | 11009 [ $R_{int} = 0.0624$ ,<br>$R_{sigma} = 0.0799$ ] | 3348 [R <sub>int</sub> = 0.0668,<br>R <sub>sigma</sub> = 0.0331] |
| Data/restraints/parameters                  | 8114/0/418                                                       | 11009/0/829                                            | 3348/0/244                                                       |
| Goodness-of-fit on F <sup>2</sup>           | 1.018                                                            | 1.132                                                  | 1.132                                                            |
| Final R indexes [I>=2σ (I)]                 | R <sub>1</sub> = 0.0511, wR <sub>2</sub> = 0.1092                | R <sub>1</sub> = 0.0774, wR <sub>2</sub> = 0.1302      | R <sub>1</sub> = 0.0505, wR <sub>2</sub> = 0.1025                |
| Final R indexes [all data]                  | R <sub>1</sub> = 0.1066, wR <sub>2</sub> = 0.1298                | R <sub>1</sub> = 0.1186, wR <sub>2</sub> = 0.1415      | $R_1 = 0.0913, WR_2 = 0.1335$                                    |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.43/-0.62                                                       | 0.54/-0.62                                             | 0.67/-0.54                                                       |
| Crystal Pictures                            |                                                                  |                                                        |                                                                  |

 Table S4. Crystallographic data collection and refinement parameter for 3YC, 3RC and 4

Single crystal X-ray structure and packing of the corresponding compounds



**Fig. S25.** The molecular structure of **3YC**. Atomic displacement ellipsoids are drawn at 50% probability. Disordered hydrogen atoms on the methyl groups have been removed for clarity. Color codes: black = carbon; grey = hydrogen; blue = nitrogen; green = boron; yellow = sulfur; brown = bromine.



Fig. S26. Crystal packing mode as well as short contacts of 3YC



**Fig. S27.** The molecular structure of **3RC**. Atomic displacement ellipsoids are drawn at 50% probability. Disordered hydrogen atoms on the methyl groups have been removed for clarity. Color codes: black = carbon; grey = hydrogen; blue = nitrogen; green = boron; yellow = sulfur; brown = bromine.



Fig. S28. Crystal packing mode as well as short contacts of 3RC



**Fig. S29.** The molecular structure of **4**. Atomic displacement ellipsoids are drawn at 30% probability. Color codes: black = carbon; grey = hydrogen; blue = nitrogen; yellow = sulfur; brown = bromine.



Fig. S30. Crystal packing mode as well as short contacts of 4

Table S5. Intermolecular contacts details for 3YC

| Donor – H…Acceptor         | D – H | Н…А  | D…A      | D – H…A |
|----------------------------|-------|------|----------|---------|
| C32-H32FCg(π) <sup>i</sup> | 0.96  | 2.77 | 3.626(2) | 148     |
| C28π(C8) <sup>i</sup>      | -     | -    | 3.34(4)  | -       |

*Symmetry codes:* (i) 1-x, 2-y,1-z; Cg(π)= C7/C8/C9/C10/C11/C12

| Table S6. | Intermolecular | contacts | details | for <b>3RC</b> |
|-----------|----------------|----------|---------|----------------|
|-----------|----------------|----------|---------|----------------|

| Donor – H…Acceptor            | D – H | Н…А  | D…A      | D – H…A |
|-------------------------------|-------|------|----------|---------|
| C74-H74N4 <sup>i</sup>        | 0.93  | 2.59 | 3.436(3) | 169     |
| C33-H33N2 <sup>ii</sup>       | 0.93  | 2.58 | 3.400(2) | 166     |
| C40-H40N2 <sup>ii</sup>       | 0.93  | 2.60 | 3.486(2) | 159     |
| C25-H25Aπ(C79) <sup>ii</sup>  | 0.97  | 2.84 | 3.432(2) | 120     |
| С25-Н25Вπ(С80) <sup>іі</sup>  | 0.97  | 2.88 | 3.336(2) | 110     |
| С66-Н66Аπ(С39) <sup>ііі</sup> | 0.97  | 2.84 | 3.24(2)  | 105     |
| С66-Н66Вл(С40) <sup>ііі</sup> | 0.97  | 2.89 | 3.24(2)  | 102     |
| C24-H24π(C44) <sup>iv</sup>   | 0.97  | 2.78 | 3.636(2) | 153     |

*Symmetry codes:* (i) 1-x, ½+y, ½-z; (ii) -x, ½+y, ½-z; (iii) -x, -½+y, ½-z; (i) -1+x, 1+y, z

### Table S7. Intermolecular contacts details for 4

| Donor – H…Acceptor      | D – H | Н…А  | D…A      | D – H…A |
|-------------------------|-------|------|----------|---------|
| C11-H11N1               | 0.93  | 2.62 | 3.453(6) | 150     |
| C22-H22AS1 <sup>i</sup> | 0.97  | 2.89 | 3.835(6) | 166     |

*Symmetry codes:* (i) -x+½, y+½, -z+3/2



## VIII. Plots of <sup>1</sup>H, <sup>11</sup>B{<sup>1</sup>H}, and <sup>13</sup>C{<sup>1</sup>H} NMR Spectra

 $^{13}C{^{1}H}$  NMR spectrum of **1** (CDCl<sub>3</sub>, 100 MHz).





<sup>13</sup>C{<sup>1</sup>H} DEPT-135 NMR spectrum of **2** (CDCl<sub>3</sub>, 100 MHz).



<sup>1</sup>H NMR spectrum of **3** (CDCl<sub>3</sub>, 400 MHz).



 $^{13}\text{C}\{^1\text{H}\}$  DEPT-135 NMR spectrum of  $\boldsymbol{3}$  (CDCl\_3, 100 MHz).







 $^{13}\text{C}\{^{1}\text{H}\}$  DEPT-135 NMR spectrum of 4 (CDCl<sub>3</sub>, 100 MHz).

### IX. HRMS data for compounds 2-4.



### HRMS spectrum of compound 2



### HRMS spectrum of compound 3



HRMS spectrum of compound 4

#### X. References:

- 1. A. Ito, Y. Kang, S. Saito, E. Sakuda, N. Kitamura, *Inorg. Chem.*, **2012**, *51*, 7722–7732.
- 2. Z. Iqbal, W.-Q. Wu, H. Zhang, P.-L. Hua, X. Fang, D.-B. Kuang, L. Wang, H. Meier, D. Cao, *Dyes Pigm.*, **2013**, *99*, 299-307.
- 3. SMART/SAINT; Bruker AXS, Inc., Madison, WI, 2004.
- 4. G. M. Sheldrick, SADABS, Bruker Nonius Area Detector Scaling and Absorption Correction, version 2.05; University of Gottingen: Gottingen, Germany, **1999**.
- 5. G. M. Sheldrick, SHELXL-2014/7: *Program for the Solution of Crystal Structures*, University of Gottingen, Göttingen, Germany, 2014.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 1988, 37, 785–789; c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627.
- a) G. A. Petersson, M. A. Al-Laham, *J. Chem. Phys.*, **1991**, 94, 6081–6090; b) G. A. Petersson,
   A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, *J. Chem. Phys.*, **1988**, 89, 2193–2218.
- 9. T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett., 2004, 393, 51–57.
- 10. N. M. O'Boyle, A. L. Tenderholt and K. M. Langner, J. Comput. Chem., 2008, 29, 839–845.