Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2018

Supporting information for

Synthesis, crystal structure and optical properties of $Me(OH)(HCOO)_2$ (Me = Al, Ga)

Vladimir N. Krasil'nikov, Alexander P. Tyutyunnik, Inna V. Baklanova*, Andrey N. Enyashin, Ivan F. Berger, Vladimir G. Zubkov

Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences 91, Pervomayskaya st., 620990 Ekaterinburg, Russia

*E-mail: baklanova_i@ihim.uran.ru

	Al(OH)(HCOO) ₂ ^a	Ga(OH)(HCOO) ₂ ^b
Space group, #	<i>C</i> 2, 5	<i>C</i> 2, 5
The number of formula units, Z	8	8
Cell constants:		
<i>a</i> , Å	8.8629(2)	8.8746(1)
b, Å	9.9890(2)	10.3291(1)
<i>c</i> , Å	10.2411(1)	10.27870(9)
<i>β</i> , °	106.223(1)	105.7565(6)
<i>V</i> , Å ³	870.56(3)	906.81(2)
D_x , g/cm ³	2.045	2.589
wRp (X-	2.51/1.92/-	2.81/1.23/0.66
ray/Neutron1/Neutron2), %		
Rp (X-ray/Neutron1/Neutron2),	1.86/1.51/-	2.02/0.99/0.53
%		
$R(F^2)$ (X-	2.60/8.79/-	2.82/5.28/1.64
ray/Neutron1/Neutron2), %		
χ^2	2.644	2.124
χ^2 for space group <i>C</i> 2/ <i>c</i> , 15	3.077	2.505
- CCDC 1547202		

Table 1. Structural data for $Me(OH)(HCOO)_2$ (Me = Al, Ga)

b - CCDC 1547304

Table 2.	Atomic coordina	ites and isotr	opic thermal parame	eters ($U_{iso} \times$	100, Å ²) for A	l(OH)(HCOO) ₂ and
Ga(OH)	(HCOO) ₂ (given	in Italic)				
A 4 a ma	Wasalaaff		/1-	-/-	TT *100	_

	Wyckoff		v/b	7/0	U. *100
	4 -	л/и 0.0010(11)	<i>y/0</i>	2/0	
Me(1)	4 <i>c</i>	-0.0018(11)	0.2194(8)	0.2490(8)	1.67(6)
/- \		-0.0020(8)	0.2477(7)	0.2484(6)	1.60(3)
Me(2)	4c	0.2502(10)	-0.0331(10)	0.2478(7)	2.48(7)
		0.2454(7)	-0.0063(7)	0.2501(5)	1.87(4)
O(1)	4c	0.4193(12)	0.0380(8)	0.1935(8)	1.84(3)
		0.4275(9)	0.0715(8)	0.1839(7)	1.59(3)
O(2)	4c	0.3623(12)	-0.1792(11)	0.3211(7)	1.84(3)
		0.3760(17)	-0.1470(13)	0.3323(12)	1.59(3)
O(3)	4c	0.0647(10)	-0.1193(8)	0.2952(8)	1.84(3)
		0.0611(9)	-0.0800(8)	0.2888(8)	1.59(3)
O(4)	4 <i>c</i>	0.1225(12)	0.1120(12)	0.1696(7)	1.84(3)
		0.1318(17)	0.1436(13)	0.1737(12)	1.59(3)
O(5)	4 <i>c</i>	0.1647(10)	0.2344(6)	0.4227(11)	1.84(3)
		0.1583(10)	0.2537(8)	0.4287(11)	1.59(3)
O(6)	4 <i>c</i>	0.5933(10)	-0.1251(6)	0.2064(6)	1.84(3)
		0.5839(12)	-0.0967(6)	0.1747(9)	1.59(3)
O(7)	4 <i>c</i>	0.3105(10)	0.0511(8)	0.4259(9)	1.84(3)
		0.3239(10)	0.0926(6)	0.4197(8)	1.59(3)
O(8)	4 <i>c</i>	-0.0783(11)	0.0570(6)	0.3198(7)	1.84(3)
		-0.0963(12)	0.0850(6)	0.3014(8)	1.59(3)
O(9)	4 <i>c</i>	-0.1499(10)	0.2256(6)	0.0754(11)	1.84(3)
		-0.1779(10)	0.2376(8)	0.0753(11)	1.59(3)
O(10)	4 <i>c</i>	-0.3267(9)	0.3818(8)	0.0809(9)	1.84(3)
		-0.3114(10)	0.4239(6)	0.0648(8)	1.59(3)
C(1)	4 <i>c</i>	-0.0460(11)	-0.0662(6)	0.3322(8)	1.84(3)

a - CCDC 1547303

		-0.0506(11)	-0.0305(6)	0.3257(11)	1.59(3)
C(2)	4c	0.2826(11)	0.1614(8)	0.4746(8)	1.84(3)
		0.2775(11)	0.1848(8)	0.4798(8)	1.59(3)
C(3)	4 <i>c</i>	0.2693(11)	0.2951(8)	0.9808(9)	1.84(3)
		0.2797(13)	0.3188(7)	0.9850(7)	1.59(3)
C(4)	4 <i>c</i>	0.4419(11)	-0.0029(6)	0.7912(9)	1.84(3)
		0.4416(10)	0.0230(6)	0.8164(12)	1.59(3)
H(1)	4 <i>c</i>	0.613(3)	0.370(1)	0.616(4)	1.84(3)
		0.616(1)	0.4068(9)	0.622(1)	1.59(3)
H(2)	4 <i>c</i>	0.364(3)	0.194(2)	0.572(3)	1.84(3)
		0.357(2)	0.217(1)	0.5769(9)	1.59(3)
H(3)	4c	0.334(3)	0.270(3)	0.087(1)	1.84(3)
		0.338(2)	0.301(1)	0.0932(8)	1.59(3)
H(4)	4c	0.351(1)	0.0720(8)	0.794(4)	1.84(3)
		0.350(1)	0.0906(9)	0.829(1)	1.59(3)
H(5)	4c	0.158(4)	0.282(3)	0.606(3)	1.84(3)
		0.125(3)	0.321(1)	0.586(1)	1.59(3)
H(6)	4 <i>c</i>	0.396(2)	0.620(1)	0.9211(9)	1.84(3)
		0.379(2)	0.643(1)	0.916(1)	1.59(3)

Thermal parameters of oxygen, carbon and hydrogen atoms were constrained as a single variable.

Table 3. Selected interatomic distances d (Å) for Al(OH)(HCOO)2 and Ga(OH)(HCOO)2 (given in Italic)Interatomic distancesInteratomic distances

interatonnie anstantees			
Me(1)-O(2)	1.876(12) <i>1.899(17)</i>	Me(2)-O(1)	1.877(11) 2.078(10)
Me(1)-O(4)	1.878(12) 1.911(17)	Me(2)-O(2)	1.807(11) 1.907(15)
Me(1)-O(5)	1.975(13) 2.008(12)	Me(2)-O(3)	2.032(11) <i>1.941(9)</i>
Me(1)-O(6)	1.876(11) 2.013(13)	Me(2)-O(4)	1.875(12) 1.897(16)
Me(1)-O(8)	1.973(11) 2.018(12)	Me(2)-O(7)	1.943(13) <i>1.976(10)</i>
Me(1)-O(9)	1.893(14) 2.026(11)	Me(2)-O(10)	1.859(13) <i>1.970(10)</i>
Average	1.912	Average	1.899
Average	1.979	Average	1.962

Fig. S1. The SEM image of the crystal aggregates of Al(OH)(HCOO)₂ produced by heating of aluminum nitrate solution in diluted formic acid at 80°C.

Fig. S2. The SEM image of Ga(OH)(HCOO)₂ crystals produced by evaporation of gallium nitrate solution in diluted formic acid at 60°C.

Fig. S3. The thermogravimetric analysis (TG, DTA) of hydrated basic aluminum formate $Al(OH)(HCOO)_2 \cdot 0.5H_2O$.

Fig. S4. The thermogravimetric analysis (TG, DTA) of the basic gallium formate Ga(OH)(HCOO)₂.

Movie 1 (separate file movie1.mpg or link <u>https://youtu.be/FmbFAMaYYuk</u>): Self-consistent charge densityfunctional tight-binding molecular dynamics simulation (MD using SCC-DFTB method) of the kinetic stability of defect I within the crystal of Al(OH)(HCOO)₂ at temperature 300 K during 0.2 ns. Only a fragment of crystal is shown with the defect on forefront (framed on the figure). The stable defect I is represented by formate anion decomposed after a possible **intra**chain H migration on OH group and CO molecule.

Movie 2 (separate file movie2.mpg or link <u>https://youtu.be/w3z95fIoaPI</u>): Self-consistent charge densityfunctional tight-binding molecular dynamics simulation (MD using SCC-DFTB method) of the kinetic stability of defect II within the crystal of Al(OH)(HCOO)₂ at temperature 300 K during 0.2 ns. Only a fragment of crystal is shown with the defect on forefront (framed on the figure). The stable defect II is represented by neutral molecule HCOOH after a possible **intra**chain H migration from the neighboring OH group. Molecule HCOOH acts mostly as a bidentate ligand, yet, a short-living (~ 40 ps) monodentate conformer can be registered using this MD simulation.

Movie 3 (separate file movie3.mpg or link <u>https://youtu.be/ikOZo29aRmU</u>): Self-consistent charge densityfunctional tight-binding molecular dynamics simulation (MD using SCC-DFTB method) of the kinetic stability of an unstable defect within the crystal of Al(OH)(HCOO)₂ at temperature 300 K during 0.2 ns. The defect is represented by neutral molecule HCOOH after possible **inter**chain H migration from the nearest OH group of neighboring molecular-like chain. The first 1 ps of the movie is slowed down to visualize the H migration from the defect, leading to the formation of perfect crystal lattice. A spontaneous **inter**chain H migration within perfect crystal is unlikely (crossed arrow on the figure).