Electronic supplementary information (ESI):

Aromatic sulfonium polyoxomolybdates: tuning the photochromic properties through substitutions on the counter ion moiety

Ashwani Kumar,^a Chullikkattil P. Pradeep*^a

Figure S1. ¹H, ¹³C and ¹⁹F NMR spectra of DMTST in D_2O .

Figure S2. HR-MS of DMTST.

Figure S3. IR spectrum of DMTST.

Figure S4. ¹H, ¹³C and ¹⁹F NMR spectra of BMPMST in D₂O.

Figure S6. IR spectrum of BMPMST.

Figure S7. DSC curves of (a) DMTST and (b) BMPMST.

Figure S8. Polarised optical microscopic images of (a) DMTST and (b) BMPMST under crossed polariser at room temperature.

Figure S9. ¹H and ³¹P NMR spectra of hybrid 1 in DMSO-*d*₆.

Figure S10. IR spectrum of hybrid 1.

Figure S11. The negative ion mode ESI-MS of hybrid 1 in MeCN.

Figure S12. Zoom-in of the peak centered at m/z 919.9391 in the ESI-MS of hybrid 1 to show its 2^- charge state.

No.	Ion (hybrid 1)	Charge	m/z calculated	m/z observed
1	H[PMo ₁₂ O ₄₀] ²⁻ .H ₂ O	2-	920.62	919.93
2	H(DMTS)[PMo ₁₂ O ₄₀] ¹⁻	1-	1976.34	1975.95
3	$(DMTS)_2[PMo_{12}O_{40}]^{1-}$	1-	2129.43	2129.03

 Table S1. Detailed assignment of mass spectral data for hybrid 1.

Figure S13. ¹H and ³¹P NMR spectra of hybrid 2 in DMSO-*d*₆.

Figure S14. IR spectrum of hybrid 2.

Figure S15. The negative ion mode ESI-MS of hybrid 2 in MeCN.

Figure S16. Zoom-in of the peak centered at m/z 996.0076 in the ESI-MS of hybrid 2 to show its 2^- charge state.

 Table S2. Detailed assignment of mass spectral data for hybrid 2.

No.	Ion (hybrid 2)	Charge	m/z calculated	m/z observed
1	H[PMo ₁₂ O ₄₀] ^{2–} .H ₂ O	2-	920.62	920.37
2	(MPDS)[PM0 ₁₂ O ₄₀] ²⁻	2-	995.65	996.00
3	$H(MPDS)[PMo_{12}O_{40}]^{1-}$	1-	1992.31	1991.80

Figure S17. ¹H and ³¹P NMR spectra of hybrid 3 in DMSO-*d*₆.

Figure S18. IR spectrum of hybrid 3.

Figure S19. Zoom-in of the peak centered at m/z 996.0620 in the ESI-MS of hybrid 3 to show its 2^- charge state.

Table S3. Detailed	l assignment of	mass spectral	data for hybrid 3.
--------------------	-----------------	---------------	--------------------

No.	Ion (hybrid 3)	Charge	m/z calculated	m/z observed
1	$H[PMo_{12}O_{40}]^{2-}$	2-	911.62	911.01
2	(HMPDS)[PMo ₁₂ O ₄₀] ²⁻	2-	995.65	996.06
3	H(HMPDS)[PMo ₁₂ O ₄₀] ¹⁻	1-	1992.31	1992.14
4	$(HMPDS)_2[PMo_{12}O_{40}]^{1-}$	1-	2160.38	2160.25

Figure S22. The negative ion mode ESI-MS of hybrid 4 in MeCN.

Figure S23. Zoom-in of the peak centered at m/z 966.4539 in the ESI-MS of hybrid 4 to show its 2^- charge state.

 Table S4. Detailed assignment of mass spectral data for hybrid 4.

No.	Ion (hybrid 4)	Charge	m/z calculated	m/z observed
1	Na[PMo ₁₂ O ₄₀] ²⁻	2-	922.62	922.99
2	K[PMo ₁₂ O ₄₀] ²⁻ .4H ₂ O	2-	966.62	966.45
3	H(BMPMS)[PMo ₁₂ O ₄₀] ¹⁻	1-	2034.34	2034.14

	Hybrid 1	Hybrid 2	Hybrid 4
Empirical	$C_{27}H_{39}Mo_{12}O_{40}PS_3$	C27H39M012O43PS3	C36H57M012O43PS3
formula			
Formula	2282.01	2330.01	2456.25
weight			
T/K	293(2)	150.01(10)	149.99(10)
Wavelength/Å	0.71073	0.71073	1.54184
Crystal	trigonal	trigonal	triclinic
system			
Space group	R-3	R-3	P-1
a (Å)	20.3393(3)	20.1657(6)	12.4149(7)
b (Å)	20.3393(3)	20.1657(6)	12.6395(6)
<i>c</i> (Å)	23.9935(4)	24.1757(8)	23.2868(9)
α (°)	90.00	90.00	95.806(4)
β (°)	90.00	90.00	95.886(4)
γ (°)	120.00	120.00	115.353(5)
$V(Å^3)$	8596.0(3)	8514.0(4)	3241.7(3)
Z	6	6	2
D _c (Mg m ⁻³)	2.645	2.727	2.516
μ (mm ⁻¹)	2.767	2.800	20.380
F (000)	6528.0	6672.0	2368.0
Crystal size	0.342x0.167x0.	0.271x0.136x0.	0.165 imes 0.127 imes
(mm ³)	068	114	0.072
2 <i>θ</i> (°)	4 to 56.76°	4.04 to 56.46°	7.74 to 133.96°
Reflections	5544	5396	21623
collected			
Independent	4121[R(int) =	4083[R(int)=	11367[R(int)
reflections	0.0170]	0.0209]	=0.0443]
Data /	4121/0/253	4083/0/262	11367/0/865
restraints /			
parameters			
Goodness-of-	1.110	1.159	1.050
fit on F ²			
Final R	R1 = 0.0682,	R1 = 0.0860,	R1 = 0.0420, wR2
indices [I	wR2 = 0.1424	wR2 = 0.1780	= 0.1072
$>2\sigma(I)$			
R indices (all	R1 = 0.0741,	R1 = 0.0894,	R1 = 0.0500,
data)	wR2 = 0.1463	wR2 = 0.1797	wR2 = 0.1141
Largest diff.	3.59 and -1.42	4.82 and -2.37	4.07/-1.22
peak and hole			
$(e.Å^{-3})$			

Table S5. The crystallographic data and structure refinement parameters of hybrids 1, 2 and 4.

Figure S24. UV-Vis diffuse reflectance spectra: Kubelka-Munk (K-M) function *vs* energy (eV) plots of hybrids **1–4**.

Figure S25. Kubelka-Munk (K-M) transformed reflectivity of (a) hybrid **2** and (b) hybrid **3** after irradiation with 350 nm UV lamp at various time intervals. Inset: the color change after various intervals of time.

Figure S26. Powder X-band EPR spectra (recorded at 293 K) for (a) hybrid **3** and (b) hybrid **4** after irradiation with 350 nm UV lamp at 9.451, 9.452 GHz spectrometer frequencies respectively.

Figure S27. Reflectivity vs time plots for hybrids 1-4.

	Hybrid 1	Hybrid 2	Hybrid 3	Hybrid 4
$\lambda_{\max}(nm)^p$	710	710	700	730
$R^{\lambda max}(0)^q$	0.533	0.693	0.576	0.608
R ^{2r}	0.997	0.997	0.994	0.995
b ^s	0.063	0.728	0.129	0.363
\mathbb{R}^{2r}	0.998	0.999	0.999	0.999
\mathbf{B}^{t}	0.347	0.956	0.540	0.699
$t_{1/2}^{u}$	15.87	1.37	7.75	2.75

Table S6. Optical characteristics and coloration kinetics parameters of hybrids 1-4.

^{*p*}Photo-induced absorption band wavelength.

^{*q*}Reflectance value before UV irradiation (t = 0) at λ_{max} .

'Regression coefficient.

^sSalient coloration kinetic parameter.

^{*t*}Coloration kinetics parameters for the linear relation $[R_{\lambda max}(t)-R_{\lambda max}(\infty)]^{-1} = Bt + A.$

"Half life time (min.) of photochromic process.

Table S7. Comparison of the minimum coloration kinetics half-life times of some reported photochromic hybrid POMs.

Sr.	Hybrid POM	Minimum coloration	Reference
NO.		Kinetic half life time $(t_{1/2})$ obtained	
1	(MPDS) ₃ [PMo ₁₂ O ₄₀] (Hybrid 2)	1.37 min	Present work
2	$(MPDS)_4[Mo_8O_{26}]$	0.33 min	Ref. 1
3	NaKMo ₆ (Ale-4Py) ₂	0.37 min	Ref. 2
4	(H ₂ DABCO) ₂ (HDMA) _{0.5} Na _{0.75} (H ₃ O) _{0.75}	0.8 min	Ref. 3
	$[Mo_8O_{27}]$ ·3H ₂ O		
5	$(APDS)_4[SiMo_{12}O_{40}]$	1.01 min	Ref. 4
6	(Mo ₆ –Ale)	2.87 min	Ref. 5
7	$Rb_{0.75}(NH_4)_{5.25}[(Mo_3O_8)_2O(O_3PC(CH_2S(CH_3)_2))]$	4.84 min	Ref. 6
	$-OPO_3)_2] \cdot 8H_2O$		
8	$Na_7(N(C_4H_9)_4)[(Mo_3O_8)_4(O_3PC(C_3H_6NH_3)(O)P)]$	7.40 min	Ref. 7
	$O_{3}_{4}].43H_{2}O$		

References

- 1 A. Kumar, A. K. Gupta; M. Devi, K. E. Gonsalves and C. P. Pradeep, *Inorg. Chem.*, 2017, **56**, 10325.
- 2 O. Oms, T. Benali, J. Marrot, P. Mialane, M. Puget, H. Serier-Brault, P. Deniard, R. Dessapt and A. Dolbecq, *Inorganics*, 2015, **3**, 279.
- 3 R. Dessapt, M. Collet, V. Coue, M. Bujoli-Doeuff, S. Jobic, C. Lee and M.-H. Whangbo, *Inorg. Chem.*, 2009, **48**, 574.
- 4 A. Kumar, M. Devi, N. Mamidi, K. E. Gonsalves and C. P. Pradeep, Chem. Eur. J., 2015, 21, 18557.
- 5 H. E. Moll, A. Dolbecq, I. M. Mbomekalle, J. Marrot, P. Deniard, R. Dessapt and P. Mialane, *Inorg. Chem.*, 2012, **51**, 2291.
- 6 K. Hakouk, O. Oms, A. Dolbecq, H. E. Moll, J. Marrot, M. Evain, F. Molton, C. Duboc, P. Deniard, S. Jobic, P. Mialane and R. Dessapt, *Inorg. Chem.*, 2013, **52**, 555.
- 7 J.-D. Compain, P. Deniard, R. Dessapt, A. Dolbecq, O. Oms, F. Secheresse, J. Marrot and P. Mialane, *Chem. Commun.*, 2010, **46**, 7733.