Supporting Information

Structural and Energetic Aspects of Adamantane and Memantine Derivatives of Sulfonamide Molecular Crystals: Experimental and Theoretical Characterisation

Alexander P. Voronin^a, Tatiana V. Volkova^a, Andrey B. Ilyukhin^b, Tatiana P. Trofimova^{c,d}, German L. Perlovich^{a,*}

^aG.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo,

Russia;

^bInstitute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia;

^cInstitute of Physiologically Active Compounds, Russian Academy of Sciences, 142432, Chernogolovka, Russia;

^dLomonosov Moscow State University, Faculty of Chemistry, 119991 Moscow, Russia

* To whom correspondence should be addressed:

Telephone: +7-4932-533784; Fax: +7-4932-336237; E-mail glp@isc-ras.ru

Table of Contents

Name	Description	Page no.
1SI	Correlation between $d_{norm}^{\min}(HB)$ and hydrogen bond energies	3
Figure 1SI	¹ H NMR spectra for compounds 5-10	4-9
Figure 2SI	¹³ C NMR spectra for compounds 5-10	10-15
Figure 3SI	DSC curves of compounds 5-10	16
Figure 4SI	IR spectra for compounds 5-10	17
Figure 5SI	ORTEP diagrams for crystals of compounds 4-10	18-21
Figure 6SI	Patterns of hydrogen bonding in crystals of N-adamantanyl-acetamide and	21
	N-(dimethyladamantanyl)-formamide	
Figure 7SI	Molecular packing architectures of crystals 11 and 3	22
Figure 8SI	Molecular packing architectures of crystals 2, 12 and 14	23-24
Figure 9SI	XPac map of unique pairs of crystal structures	25
Figure 10SI	Selected XPac plots of δ_p against δ_a for isostructural compounds within	26-27
	the groups 1-3	
Figure 11SI	Example of the intramolecular C-H···O and C-H··· π contacts detected by	28
F ' 1201		20
Figure 1251	Energies of intramolecular C-H···O and C-H··· π contacts plotted against the angle between phenyl and adamantane fragments	29
Figure 13SI	Correlation between the $N \cdots O$ hydrogen bond distance and the interaction	29
i iguie i soi	energies evaluated using Mayo force field and OTAIMC	2,
Figure 14SI	Correlation between the $d_{norm}^{\min}(HB)$ value and the interatomic distance $D(N \cdots O)$	30
Figure 15SI	$C_{\text{remulation}}$ between $d_{\text{remut}}(HB)$ and $d_{\text{remut}}(HB)$	30
	Correlation between the work value and the hydrogen bond energies	
Eiguro 16SI	2D fingerring rists with decomposition to major contributions into the	21.22
rigule 1051	2D Interprint plots with decomposition to major contributions into the Hirshfold surface of compounds with no hologon stoms in the structure	51-55
Figure 17SI	2D fingerprint plots with decomposition to major contributions into the	21 26
Figure 1751	Lishfold surface of compounds containing the hologon atoms	54-50
Sahama 1SI	Numeration of earbon stoms used in the description of the ¹³ C NMP	27
Scheme 151	spectra	57
Scheme 2SI	Atoms chosen as common set of points for XPac analysis	37
Table 1SI	Crystallographic data for structurally relative compounds taken from CSD	38-40
Tables	Metric parameters and electron-density features at the bond critical points	41-53
2-14SI	of non-covalent interactions in compounds 1-12,14	

S1. Correlation between $d_{norm}^{\min}(HB)$ and hydrogen bond energies

Besides comparing the crystal structures at a qualitative level, Hirshfeld surface analysis can be suitable for constructing quantitative relationships. Thus, the minimum value of d_{norm} in the region of hydrogen bonding, obtained from Hirshfeld surface analysis, displays a linear correlation with the N···O distance in crystal (Figure 8SI). Similar nature of dependencies presented in Figure 8SI and Figure 3 allows to use $d_{norm}^{min}(HB)$ as a descriptor for assessing the hydrogen bond energy obtained from Mayo equation and QTAIMC analysis with accuracy higher than 1 kJ·mol⁻¹ (Figure 9SI).

$$E(HB)_{QTAIMC}[kJ \cdot mol^{-1}] = -(2.4 \pm 1.5) - (47.2 \pm 3.0) \cdot d_{norm}^{\min}(HB)$$
(S1)
R = 0.9826; σ = 0.3 [kJ·mol⁻¹]; n = 11

$$E(HB)_{Mayo}[kJ \cdot mol^{-1}] = -(4.3 \pm 1.2) - (37.8 \pm 2.3) \cdot d_{norm}^{\min}(HB)$$
(S2)
R = 0.9854; σ = 0.2 [kJ·mol⁻¹]; n = 10

The domain of applicability of the considered equations can be estimated using the parameters of compounds 6 and 11 excluded from the dependencies. As can be seen from Table 2 in the main text, the angles \angle (N-H-O) in these compounds are equal to 146 ° and 130 ° respectively, which are anomalously low for hydrogen bonds of this type. Hence, the equations (S1) and (S2) can be considered suitable for estimating the hydrogen bond energies in crystals of adamantane derivatives of sulfonamides with \angle (N-H-O) \ge 162°. Such correlations indicate the consistency of the results of the calculation approaches used.

References

(S1) Perlovich, G. L.; Ryzhakov, A. M.; Tkachev, V. V.; Proshin, A. N. Adamantane derivatives of sulfonamide molecular crystals: structure, sublimation thermodynamic characteristics, molecular packing, and hydrogen bond networks. *CrystEngComm*, 2015, 17, 753-763.

Designed by ADVASP(TM) software, copyright (C) 1999-2000 Umatek International Inc.

Designed by ADVASP(TM) software, copyright (C) 1999-2000 Umatek International Inc.

Designed by ADVASP(TM) software, copyright (C) 1999-2000 Umatek International Inc.

Designed by ADVASP(TM) software, copyright (C) 1999-2000 Umatek International Inc.

Figure 3SI. DSC curves of compounds 5-10 recorded at 10 K min⁻¹.

Figure 4SI. IR spectra for compounds 5(a), 7(b), 8(c), 9(d) and 10(e)

(d)

(e)

(g)

Figure 5SI. ORTEP diagrams for crystals of compounds 4 (a), 5 (b), 6 (c), 7 (d), 8 (e), 9 (f) and 10 (g) drawn at 50% probability level

Figure 6SI. Patterns of hydrogen bonding in crystals of (a) N-adamantanyl-acetamide (refcode: ROLCOK01) and (b) N-(dimethyladamantanyl)-formamide (refcode: VICHAR).

Figure 7SI. Molecular packing architectures of crystals 11 (a) and 3 (b).

a

b

Figure 9SI. XPac map containing the dissimilarity indices X (upper right sector of the matrix) and stretch parameters D (bottom left sector) for 78 unique pairs of crystal structures of adamantane (Ad) and memantine (Me) derivatives with different substituents. The calculations were carried out for a cluster with n = 14 coordinating molecules on the basis of p = 20 non-H atomic positions in a molecule (see Scheme S1). Red, blue and brown boxes within the matrix correspond to identical 3D, 1D and 0D supramolecular constructs, respectively. Different families of 3D isostructural crystals are marked green, orange and yellow.

Figure 10SI. Selected XPac plots of δ_p against δ_a (in °) which indicate the degree of similarity in different crystal structure pairs of isostructural compounds within the group 1 (a), group 2 (b) and group 3 (c). The upper right corner of each plot displays the value of dissimilarity index X.

Figure 11SI. Intramolecular C-H···O (green) and C-H··· π (orange) contacts in considered crystals detected by QTAIMC (exemplified by compound 1).

Figure 12SI. Energies of intramolecular C-H···O and C-H··· π contacts in the considered crystals plotted against the angle between phenyl and adamantane fragments.

Figure 13SI. Correlation between the N···O distance within the hydrogen bond and the interaction energies evaluated using Mayo force field (black points) and QTAIMC (blue points). Compounds excluded from linear correlations are shown red and violet, respectively. The numbering of compounds corresponds to Figure 1.

Figure 14SI. Correlation between the minimal normalised distance from the contact atoms involved into hydrogen bonding to the Hirshfeld surface $d_{norm}^{\min}(HB)$ and the interatomic distance $D(N \cdots O)$. The red points correspond to the compounds with C(4) hydrogen bonds topology, whereas the black points – with $R_2^2(8)$. The numbering of compounds corresponds to Figure 1.

Figure 15SI. Correlation between the minimal normalised distance from the contact atoms involved into hydrogen bonding to the Hirshfeld surface $d_{norm}^{\min}(HB)$ and the energies of hydrogen bonds evaluated using Mayo force field (black points) and QTAIMC (blue points). Compounds 6 and 11 excluded from correlation equations are shown red and violet, respectively. The numbering of compounds corresponds to Figure 1.

Figure 16SI. 2D fingerprint plots with decomposition to major contributions into the Hirshfeld surface of compounds with no halogen atoms in the structure. The numbers in the upper right corner denote the percentage of the particular interaction type.

Figure 17SI. 2D fingerprint plots with decomposition to major contributions into the Hirshfeld surface of compounds containing the halogen atoms. The numbers in the upper right corner denote the percentage of the particular interaction type.

Scheme 1SI. Numeration of carbon atoms used in the description of the 13 C NMR spectra.

Scheme 2SI. Atoms chosen as common set of points for XPac analysis.

CSD refcode	Space group	a/ Å	b/ Å	c/ Å	α/°	β/ °	γ/ °	Z'	HB type**	Reference
Adamantane-s	substituted carb	oxamides								
ADIQOV	$P2_1/c$	11.898(4)	9.901(9)	27.230(5)	90	101.02(2)	90	2	chain	1
BUDVIG	C2/c	32.257(7)	9.4353(19)	9.5328(19)	90	101.69(3)	90	1	chain	2
EROTIP	Pbca	9.3656(2)	13.7515(3)	18.7917(4)	90	90	90	1	chain	3
FISNEA	$P2_1/c$	6.832(2)	22.995(4)	10.200(3)	90	102.06(2)	90	1	chain	4
FISNEA	$P2_1/c$	6.832(2)	22.995(4)	10.200(3)	90	102.06(2)	90	1	chain	4
HALQER	P-1	6.433(3)	6.769(3)	17.241(12)	85.67(5)	84.39(5)	63.00(5)	1	non-HB	5
HUGYAK	C2/m	10.9958(10)	6.8120(4)	18.2231(16)	90	94.155(11)	90	0.5	non-HB	6
KAJROD	C2/c	27.6104(11)	9.6240(4)	9.0499(4)	90	97.735(3)	90	1	chain	7
KAJROD01	Iba2	9.862(2)	28.095(5)	8.664(3)	90	90	90	1	chain	8
KIZRUH	Сc	22.796(8)	9.847(3)	13.788(4)	90	108.889(9)	90	2	chain	9
LEHYAZ	$P2_1/c$	13.070(2)	8.9422(11)	9.3904(11)	90	109.819(8)	90	1	chain	10
LIPCAP	$P2_1/c$	15.818(4)	8.225(2)	10.423(2)	90	108.897(18)	90	1	other	11
LOJXUE	$P2_1/n$	9.5310(19)	10.785(2)	34.013(7)	90	91.11(3)	90	2	chain	12
PAKMOF	$P2_1/c$	9.2233(3)	11.9184(3)	13.3437(3)	90	113.630(2)	90	1	chain	13
PUFJEG	Pccn	30.708(7)	9.7927(2)	10.0203(6)	90	90	90	1	chain	2
RAPNII	$Pna2_1$	9.2558(12)	13.0186(17)	13.4684(18)	90	90	90	1	chain bif.	14
ROLCOK01	C2/c	24.312(5)	9.464(2)	9.454(3)	90	90.06(2)	90	1	chain	15
SIVXUS	$P2_1/a$	8.72428(14)	21.0562(3)	14.1745(2)	90	102.6122(17)	90	1	chain	16
TIHHID	$P2_1/c$	15.5349(5)	8.4134(3)	10.0678(3)	90	94.753(2)	90	1	chain	17
USOFIT	C2/c	27.3649(9	9.4960(3)	10.0932(3)	90	97.371(3)	90	1	chain	18
VASHOO	Pccn	9.8846(2)	27.5538(6)	9.9296(2)	90	90	90	2	chain	19
VICHAR	P-1	6.8308(11)	7.5584(11)	12.480(2)	104.658(18)	96.18(2)	102.556(19)	1	dimer	20
VUXCOI	Pbca	13.173(3)	13.173(3)	25.804(5)	90	90	90	2	dimer	21

 Table 1SI. Crystallographic data* for structurally relative compounds taken from CSD

Table 1SI (con	Cable 1SI (continuation)										
Adamantane de	erivatives of	thiourea									
CIXJEA	$P2_1/n$	21.627(5)	7.7396(18)	21.627(5)	90	107.09	90	2	dimer NHS	22	
CIXKUR	$P2_1/n$	7.2067(7)	17.2759(16)	27.553(3)	90	94.185(2)	90	2	dimer NHS	22	
CIXLAY	$P2_1/c$	12.6285(10)	9.8576(8)	14.1746(11)	90	107.507(2)	90	1	dimer NHS	22	
EQIDAL	P-1	7.6584(7)	10.2121(8)	13.1295(11)	108.228(6)	97.789(7)	92.502(7)	1	dimer NHO	23	
EVOWIX	P-1	6.7936(2)	10.3125(3)	12.8879(4)	103.973(2)	92.063(2)	94.913(3)	1	dimer NHS	24	
EVOWOD	$P2_{1}2_{1}2_{1}$	6.4252(2)	18.3151(6)	29.3226(10)	90	90	90	2	dimer NHS	24	
ILESOJ	Pbca	12.0579(7)	11.1213(5)	21.9741(13)	90	90	90	1	dimer NHS	25	
PAVBIZ	P-1	7.3985(9)	10.4953(13)	12.4094(15)	65.554(2)	79.372(2)	89.766(2)	1	dimer NHO	26	
PIBLAP	$P2_1/c$	14.4926(11)	18.3737(12)	6.6101(5)	90	93.526(6)	90	1	dimer NHS	27	
RIJNOP	P2/c	14.0594(9)	6.8628(6)	17.7672(12)	90	92.086(5)	90	1	dimer NHO	27	
UXIBUA	Pbca	17.2134(6)	8.2251(2)	22.5220(7)	90	90	90	1	chain bif.	28	

*Space group, metric parameters of the unit cell (angstroms and degrees), the number of molecules in asymmetric unit (Z') and pattern of hydrogen bonding (for notation, see below)

**chain – C(4) chain based on N-H···O bonds between amide groups; non-HB – structure with no intermolecular hydrogen bonds; other – substituents participate in hydrogen bonding; chain bif. – C(4) chains based on bifurcated hydrogen bonds formed by two N-H groups and a single O=C groups of (thio)urea moiety; dimer – centrosymmetric $R_2^2(8)$ dimer based on N-H···O bonds between amide groups; dimer NHS – centrosymmetric $R_2^2(8)$ dimer based on N-H···O bonds between amide groups; dimer NHS – centrosymmetric $R_2^2(8)$ dimer based on N-H···O bonds between amide groups; dimer NHS – centrosymmetric $R_2^2(8)$ dimer based on N-H···O bonds between amide groups; dimer NHS – centrosymmetric $R_2^2(8)$ dimer based on N-H···O bonds occurring in carbonylthioureas.

References:

1. E. Torres, R. Fernandez, S. Miquet, M. Font-Bardia, E. Vanderlinden, L. Naesens and S. Vazquez, ACS Med. Chem. Lett., 2012, 3, 1065-1069.

2. W.SiMa, Acta Cryst., 2009, E65, o2492.

3. O. K. Onajole, T. Govender, H. G. Kruger and G. E. M. Maguire, Acta Cryst., 2011, E67, 01444.

4. A. E. Prozorovskii, V. A. Tafeenko, V. B. Ribakov, E. A. Shokova and V. V. Kovalev, Zh. Strukt. Khim., 1987, 28(2), 243-251.

5. J. K. Maurin, W. Lasek, A. Gorska, T. Switaj, A. B. Jakubowska and Z. Kazimierczuk, Chem. Biodiversity, 2004, 1, 1498-1512.

6. A. A. Fokin, A. Merz, N. A. Fokina, H. Schwertfeger, S. L. Liu, J. E. P. Dahl, R. M. K. Carlson and P. R. Schreiner, Synthesis, 2009, 909-912.

7. A. S. K. Hashmi, J. P. Weyrauch, W. Frey and J. W. Bats, Org. Lett., 2004, 6, 4391-4394

8. W. Frey, S. Schetter, F. Rominger and A. S. K. Hashmi, Acta Cryst., 2008, E64, 01495.

9. Y.-Y. Zhu, H.-P. Yi, C. Li, X.-K. Jiang and Z.-T. Li, Cryst. Growth Des., 2008, 8, 1294-1300.

10. Y.-X. Yang, J.-N. Zhang and X.-H. Song, Q. Li, Jiegou Huaxue, 2006, 25, 473.

- 11. T. Chang, K. Pieterse, M. A. C. Broeren, H. Kooijman, A. L. Spek, P. A. J. Hilbers and E. W. Meijer, Chem. Eur. J., 2007, 13, 7883-7889.
- 12. H. Schwertfeger, C. Wurtele, M. Serafin, H. Hausmann, R. M. K. Carlson, J. E. P. Dahl and P. R. Schreiner, J. Org. Chem., 2008, 73, 7789-7792.
- 13. B. Osmialowski, E. Kolehmainen, S. Ikonen, K. Ahonen and M. Lofman, J. Mol. Struct., 2011, 1006, 678-683.
- 14. F. A. M. Al-Omary, L. S. Al-Rasheed, H. A. Ghabbour and A. A. El-Emam, Z. Kristallogr.-New Cryst. Struct., 2017, 232, 37-39.
- 15. H.-H. Prohl, A. Blaschette and P. G. Jones, Acta Cryst., 1997, C53, 1434-1436.
- 16. M. Djordevic, D. Jeremic, M. V. Rodic, V. Simic, I. Brceski and V. M. Leovac, Polyhedron, 2014, 68, 234-240.
- 17. B. Osmialowski, E. Kolehmainen, S. Ikonen, A. Valkonen, A. Kwiatkowski, I. Grela and E. Haapaniemi, J. Org. Chem., 2012, 77, 9609-9619.
- 18. B. Dziuk, B. Osmialowski, K. Ejsmont and B. Zarychta, IUCr Data, 2016, 1, x161258.
- 19. B. Os'mialowski, E. Kolehmainen, R. Dobosz, R. Gawinecki, R. Kauppinen, A. Valkonen, J. Koivukorpi and K. Rissanen, J. Phys. Chem. A, 2010, 114, 10421-10426.
- 20. L. Wanka, C. Cabrele, M. Vanejews and P. R. Schreiner, Eur. J. Org. Chem., 2007, 1474-1490.
- 21. R. Hrdina, F. M. Metz, M. Larrosa, J.-P. Berndt, Y. Y. Zhygadlo, S. Becker and J. Becker, Eur. J. Org. Chem., 2015, 6231-6236.
- 22. A. Saeed, U. Florke and M. F. Erben, J. Mol. Struct., 2014, 1065, 150-159.
- 23. A. Saeed, M. Bolte, M. F. Erben and H. Perez, CrystEngComm, 2015, 17, 7551-7563.
- 24. A. Saeed, Z. Ashraf, M. F. Erben, J. Simpson, J. Mol. Struct., 2017, 1129, 283-291.
- 25. L. H. Al-Wahaibi, H. A. Ghabbour, G. A. E. Mostafa, M. S. Almutairi and A. A. El-Emam, Z. Kristallogr.-New Cryst. Struct., 2016, 231, 593-595.
- 26. S. K. Mohamed, A.-A. M. Jaber, S. Saeed, K. S. Ahmad and W.-T. Wong, Acta Cryst., 2012, E68, o1597.
- 27. A. Saeed, M. F. Erben, M. Bolte, Spectrochim. Acta A, 2013, 102, 408-413.
- 28. F. A. M. Al-Omary, H. A. Ghabbour, H. AlRabiah, E. S. Al-Abdullah and A. A. El-Emam, Z. Kristallogr.-New Cryst. Struct., 2016, 231, 707-709.

Interaction	D(D···A)/ Å D(H···A)/ Å	∠(D-H-A)/ °	$ ho_{ m b}$ / a.u.	$\nabla^2 ho_{ m b}$ / a.u.	G₀/ a.u.	$E_{\rm int}/{\rm kJ}{\cdot}{\rm mol}^{-1}$
C13-H132O2a	3.126 2.395	122.88	0.013	0.043	0.010	11.1**
C5-H5···O1 ^b	3.205 2.492	122.20	0.010	0.035	0.008	8.7
С3-Н3…О2с	3.360 2.441	141.59	0.010	0.033	0.007	8.3
C12-H121O1°	3.522 2.434	171.13	0.010	0.032	0.007	8.2
C6-H6····O1 ^b	3.224 2.556	118.96	0.007	0.030	0.006	7.0
C8-H82…C2 ^a	3.400 2.473	118.19	0.007	0.027	0.005	5.8**
H2···H5 ^d	2.245	-	0.007	0.027	0.005	5.8
N1-H1…C6 ^d	3.669 2.664	169.52	0.008	0.023	0.005	5.3
H4…H11 ^e	2.246	-	0.007	0.024	0.005	5.2
$H132{\cdots}H101^{\rm f}$	2.295	-	0.006	0.023	0.004	5.0
$H14\cdots H101^{f}$	2.376	-	0.006	0.021	0.004	4.5
H131…H162 ^d	2.269	-	0.006	0.020	0.004	4.5
C12-H122O2d	3.671 2.776	138.49	0.005	0.019	0.004	4.4
H11···H161g	2.368	-	0.006	0.020	0.004	4.3
C10-H102…C1°	3.969 2.903	164.10	0.006	0.018	0.004	4.0
$H151\cdots H9^{h}$	2.487	-	0.005	0.017	0.003	3.6
$C4 \cdots O1^i$	3.448	-	0.004	0.015	0.003	3.4
C8-H82…C6 ^j	3.819 2.951	136.39	0.005	0.015	0.003	3.2
С9-Н9…С5°	3.731 2.955	128.00	0.005	0.014	0.003	3.1
$H6 \cdots H121^{i}$	2.533	-	0.004	0.015	0.003	3.1
C15-H152O2 ^j	3.969 2.930	157.87	0.004	0.014	0.003	3.0
$H132\cdots H152^{f}$	2.591	-	0.004	0.013	0.002	2.6
$H4\cdots H14^k$	2.518	-	0.004	0.012	0.002	2.5
$H161\cdots H3^{l}$	2.564	-	0.003	0.012	0.002	2.5
$C8-H81\cdots N1^i$	4.054 3.154	139.79	0.003	0.010	0.002	2.3
$C6-H6\cdots C3^m$	4.162 3.104	165.14	0.003	0.010	0.002	2.1
$H81\cdots H122^{i}$	2.655	-	0.003	0.009	0.002	1.9
				E_{latt}	∕ kJ·mol ⁻¹	108.4

Table 2SI. Metric parameters and electron-density features at the bond critical points of non-covalent interactions^{*} in compound 1.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D= O, N, C and A= O, N, C, angle \angle (D-H-A), electron density in bond CP ρ_{b} , Laplacian of electron density in bond CP $\nabla^2 \rho_{b}$, local kinetic energy in bond CP G_b , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in E_{latt} evaluation.

Symmetry codes: a) x,y,z; b) 2-x,1-y,-1/2+z; c) -1/2+x,1-y,z; d) 1.5-x,y,1/2+z; e) 1-x,1-y,-1/2+z; f) 1/2+x,-y,z; g) 1-x,-y,1/2+z; h) 1-x,-y,-1/2+z; i) 1.5-x,y,-1/2+z; j) -1/2+x,-y,z; k) 1.5-x,1+y,-1/2+z; l) x,1+y,z; m) 1/2+x,1-y,z.

Interaction	D(D···A)/ Å D(H···A)/ Å	∠(D-H-A)/ °	$ ho_{ m b}$ / a.u.	$\nabla^2 ho_{ m b}$ / a.u.	$G_{\rm b}$ / a.u.	$E_{\rm int}/{\rm kJ}{\cdot}{\rm mol}^{-1}$
N1-H1…O1ª	2.887 1.864	174.62	0.030	0.092	0.023	25.8
C12-H12B····O2 ^b	3.206 2.494	121.47	0.011	0.036	0.008	9.1**
C2-H2····O1 ^a	3.481 2.463	155.51	0.010	0.032	0.007	8.3
H13A…H10A ^c	2.026	-	0.010	0.033	0.007	7.9
C3-H3····O2 ^d	3.347 2.491	135.02	0.008	0.030	0.007	7.4
C18-H18C····O1 ^e	3.239 2.756	106.31	0.007	0.027	0.005	6.2
C8-H8A…C1 ^b	3.235 2.797	103.58	0.008	0.028	0.005	6.1**
$H16A\cdots H13B^{f}$	2.149	-	0.008	0.026	0.005	5.9
H17A…H13A ^c	2.287	-	0.007	0.025	0.005	5.3
$C14\text{-}H14 \cdots C3^{\mathrm{f}}$	3.636 2.731	139.69	0.007	0.024	0.005	5.2
C15-H15A…O2 ^c	3.317 2.757	111.28	0.006	0.023	0.005	5.2
C18-H18C…O2 ^e	3.754 2.718	157.55	0.006	0.021	0.004	5.1
C10-H10B····C3 ^d	3.788 2.728	162.46	0.007	0.022	0.004	4.9
C16-H16B····O1e	3.343 2.861	106.57	0.005	0.021	0.004	4.8
H6A…H15A ^c	2.297	-	0.006	0.022	0.004	4.7
$H8B\cdots H16A^{f}$	2.386	-	0.005	0.017	0.003	3.6
H18B…H17A ^d	2.421	-	0.005	0.016	0.003	3.5
H15B····H8A ^c	2.385	-	0.005	0.016	0.003	3.4
H13B····H18Bf	2.421	-	0.005	0.016	0.003	3.3
C4-H4···O2 ^d	3.573 2.986	114.28	0.004	0.015	0.003	3.3
$H2\cdots H16B^{f}$	2.525	-	0.004	0.015	0.003	3.1
H17B····H6A ^c	2.601	-	0.004	0.014	0.003	3.0
H4…H12A ^d	2.527	-	0.004	0.014	0.003	2.9
H15B····H10A ^c	2.542	-	0.004	0.013	0.002	2.7
C17-H17B····C6 ^g	4.122 3.026	176.28	0.004	0.012	0.002	2.7
$H17C\cdots H5^{h}$	2.772	-	0.003	0.012	0.002	2.5
H14···H12B ^c	2.590		0.003	0.011	0.002	2.3
$E_{\text{latt}}/\text{ kJ}\cdot\text{mol}^{-1}$						

Table 3SI. Metric parameters and electron-density features at the bond critical points of non-covalent interactions^{*} in compound **2**.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D= O, N, C and A= O, N, C, angle \angle (D-H-A), electron density in bond CP ρ_{b} , Laplacian of electron density in bond CP $\nabla^2 \rho_{b}$, local kinetic energy in bond CP G_b , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in E_{latt} evaluation.

Symmetry codes: a) 1-x,1-y,1-z; b) x,y,z; c) 1.5-x,1/2+y,1/2-z; d) 1/2+x,1/2-y,1/2+z; e) 1+x,y,z; f) 2-x,1-y,1-z; g) 1/2+x,1/2-y,-1/2+z; h) 1.5-x,-1/2+y,1/2-z.

Interaction	D(D···A)/ Å D(H···A)/ Å	∠(D-H-A)/ °	$ ho_{ m b}$ / a.u.	$\nabla^2 ho_{ m b}$ / a.u.	$G_{\rm b}$ / a.u.	$E_{\rm int}/~{\rm kJ}{\cdot}{\rm mol}^{-1}$
N1-H1…O1ª	2.949 1.952	166.94	0.025	0.073	0.019	21.3
C13-H132…O2 ^b	2.926 2.347	111.37	0.015	0.054	0.012	13.6**
C12-H122…O1 ^a	3.343 2.456	137.73	0.010	0.034	0.008	8.6
H11…H102 ^c	2.127	-	0.009	0.029	0.006	6.7
$H101\cdots H131^{d}$	2.214	-	0.007	0.025	0.005	5.6
$C3 \cdots O2^d$	3.187	-	0.006	0.024	0.005	5.5
C2-H2…N1 ^b	3.736 2.790	160.96	0.008	0.022	0.005	5.5
C12-H122···Cl1e	3.624 2.866	126.77	0.006	0.023	0.004	4.9
$\rm H6{\cdots}H162^{f}$	2.235	-	0.006	0.022	0.004	4.7
$H161\cdots H81^{f}$	2.442	-	0.006	0.022	0.004	4.7
$H161\cdots H9^{f}$	2.383	-	0.005	0.019	0.004	4.2
C16-H162…O2 ^g	3.417 2.866	111.40	0.005	0.018	0.004	4.2
$H101\cdots H14^{d}$	2.557	-	0.005	0.018	0.003	3.9
C8-H81…C1 ^b	3.549 2.952	114.85	0.005	0.017	0.003	3.8**
$H9\cdots H132^{g}$	2.418	-	0.005	0.017	0.003	3.7
H161…H132g	2.436	-	0.005	0.017	0.003	3.6
C11-H11···Cl1e	3.740 3.092	118.73	0.005	0.016	0.003	3.5
$C15-H151\cdots Cl1^{f}$	4.175 3.120	163.53	0.004	0.014	0.003	3.0
$H101\cdots H152^{d}$	2.567	-	0.004	0.014	0.003	2.9
$H11\cdots H5^{h}$	2.561	-	0.004	0.013	0.003	2.9
$H9\cdots H14^{d}$	2.570	-	0.004	0.013	0.003	2.8
$H152\cdots H5^{h}$	2.509	-	0.004	0.013	0.003	2.8
$C14-H14\cdots C5^{f}$	3.817 3.034	129.22	0.004	0.013	0.002	2.8
$H121\cdots H5^{h}$	2.529	-	0.004	0.013	0.002	2.8
$H152\cdots H152^{i}$	2.707	-	0.004	0.013	0.002	2.8
$Cl1\cdots C2^{j}$	3.752	-	0.004	0.012	0.002	2.7
H82…H131 ^d	2.564	-	0.004	0.013	0.002	2.7
$C16-H162\cdots C4^{f}$	3.961 3.065	139.89	0.004	0.012	0.002	2.6
$H102\cdots H6^{f}$	2.626	-	0.003	0.012	0.002	2.5
H151…H11°	2.648	-	0.003	0.012	0.002	2.5
C4···C4 ^j	3.689	-	0.003	0.010	0.002	2.3
				E_{latt}	/ kJ·mol ⁻¹	133.1

Table 4SI. Metric parameters and electron-density features at the bond critical points of non-covalent interactions^{*} in compound **3**.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D= O, N, C and A= O, N, C, Cl, angle \angle (D-H-A), electron density in bond CP ρ_{b} , Laplacian of electron density in bond CP $\nabla^2 \rho_b$, local kinetic energy in bond CP G_b , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in E_{latt} evaluation.

Symmetry codes: a) -x,-1/2+y,1/2-z; b) x,y,z; c) 1-x,1-y,1-z; d) x,-1+y,z; e) x,1/2-y,1/2+z; f) 1-x,1/2+y,1/2-z; g) 1-x,-1/2+y,1/2-z; h) x,1.5-y,1/2+z; i) 1-x,2-y,1-z; j) -x,1-y,-z.

Interaction	D(D····A)/ Å D(H····A)/ Å	∠(D-H-A)/ °	$ ho_{ m b}$ / a.u.	$\nabla^2 ho_{ m b}$ / a.u.	$G_{\rm b}$ / a.u.	$E_{\rm int}/{\rm kJ}\cdot{\rm mol}^{-1}$
N1-H1…O1 ^a	2.881 2.077	171.23	0.028	0.090	0.022	24.9
C12-H121O2 ^b	3.201 2.556	121.20	0.010	0.035	0.008	8.8**
C15-H152O2 ^c	3.543 2.628	156.72	0.008	0.028	0.006	7.2
C5-H5…O1 ^d	3.428 2.703	133.64	0.008	0.028	0.006	6.7
H161…H151 ^e	2.288	-	0.009	0.029	0.006	6.6
$C17$ -H171 \cdots O2 ^f	3.634 2.736	158.32	0.008	0.026	0.006	6.4
H152…H6 ^c	2.363	-	0.008	0.028	0.006	6.3
C5-H5···O2 ^d	3.710 2.767	171.86	0.007	0.024	0.005	5.8
H82…H9 ^g	2.429	-	0.006	0.022	0.004	4.8
H9···H9g	2.530	-	0.006	0.022	0.004	4.8
H181…H121°	2.432	-	0.006	0.022	0.004	4.7
H9····H102 ^g	2.483	-	0.006	0.021	0.004	4.5
C18-H181O2 ^c	3.700 2.862	148.13	0.005	0.019	0.004	4.3
C2-H2····O1 ^a	3.792 2.942	152.08	0.005	0.018	0.004	4.0
$C8-H81\cdots Cl^h$	4.038 3.117	154.88	0.005	0.017	0.003	3.6
C10-H101C5g	3.963 2.990	174.05	0.005	0.015	0.003	3.3
$C18$ -H183 \cdots C3 ⁱ	3.661 3.027	123.38	0.005	0.015	0.003	3.2
H162…H182 ^e	2.598	-	0.004	0.015	0.003	3.1
$H2\cdots H173^{j}$	2.674	-	0.004	0.014	0.003	2.9
C16-H162…Cl ^h	4.098 3.199	150.51	0.004	0.014	0.003	2.9
$H3\cdots H173^{j}$	2.712	-	0.004	0.013	0.002	2.7
$C3\cdots Cl^h$	3.776	-	0.004	0.011	0.002	2.5
$C3 \cdots C3^h$	3.645	-	0.003	0.011	0.002	2.5
$C18\text{-}H182\cdots Cl^i$	4.021 3.311	128.88	0.003	0.011	0.002	2.4
H172…H6 ^c	2.811	-	0.003	0.011	0.002	2.3
C17-H172···Clg	4.304 3.336	163.30	0.003	0.010	0.002	2.2
$E_{\text{latt}}/\text{kJ}\cdot\text{mol}^{-1}$						124.5

Table 5SI. Metric parameters and electron-density features at the bond critical points of non-covalent interactions^{*} in compound **4**.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D= O, N, C and A= O, N, C, Cl, angle \angle (D-H-A), electron density in bond CP ρ_{b} , Laplacian of electron density in bond CP $\nabla^2 \rho_b$, local kinetic energy in bond CP G_b , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in E_{latt} evaluation.

Symmetry codes: a) -x,-y,-z; b) x,y,z; c) 1-x,-1/2+y,1/2-z; d) x,1/2-y,1/2+z; e) x,-1/2-y,-1/2+z; f) 1-x,-y,-z; g) 1-x,-y,1-z; h) -x,-y,1-z; i) -x,-1/2+y,1/2-z; j) -1+x,y,z.

Interaction	D(D…A)/ Å D(H…A)/ Å	∠(D-H-A)/ °	$ ho_{ m b}$ / a.u.	$ abla^2 ho_{ m b}$ / a.u.	$G_{\rm b}$ / a.u.	$E_{\rm int}/{\rm kJ}\cdot{\rm mol}^{-1}$
N1-H1…O1 ^a	2.963 2.160	163.09	0.024	0.069	0.018	20.1
C12-H12…O2 ^b	2.927 2.382	113.63	0.015	0.053	0.012	13.6**
C8-H6…O1 ^a	3.378 2.568	141.47	0.009	0.032	0.007	8.2
C3···O2 ^c	3.168	-	0.007	0.025	0.005	5.8
H8····H20 ^d	2.323	-	0.007	0.025	0.005	5.6
C2-H2…N1 ^a	3.728 2.822	161.21	0.008	0.022	0.005	5.5
H15…H18 ^e	2.469	-	0.006	0.023	0.004	4.9
C8-H6…Br1 ^f	3.658 3.008	125.83	0.007	0.021	0.004	4.9
H19…H13°	2.517	-	0.006	0.022	0.004	4.8
C2-H2···O1ª	3.736 2.901	148.00	0.005	0.020	0.004	4.7
H17…H5 ^e	2.513	-	0.006	0.020	0.004	4.3
C9-H8···Br1 ^f	3.777 3.140	122.65	0.006	0.018	0.004	4.1
C15-H17…O2 ^e	3.416 2.956	110.06	0.004	0.017	0.003	3.9
C13-H15…C1 ^b	3.542 2.979	115.79	0.005	0.017	0.003	3.8**
H19…H11°	2.630	-	0.005	0.018	0.003	3.8
C10-H9…Br1 ^g	4.202 3.263	167.27	0.006	0.016	0.003	3.7
H16…H18 ^e	2.579	-	0.005	0.017	0.003	3.6
H18····H12 ^e	2.561	-	0.005	0.017	0.003	3.5
H12…H16 ^e	2.555	-	0.005	0.016	0.003	3.5
$C2\cdots Br1^h$	3.772	-	0.005	0.013	0.003	3.2
$H10\cdots H10^{i}$	2.712	-	0.004	0.014	0.003	3.1
C15-H17…C4 ^g	3.927 3.092	144.33	0.004	0.014	0.003	3.0
H8····H4 ^j	2.673	-	0.004	0.014	0.003	2.9
H19…H10 ^c	2.726	-	0.004	0.014	0.003	2.9
H16…H11°	2.649	-	0.004	0.013	0.002	2.8
C11-H11C5 ^g	3.813 3.096	128.71	0.004	0.012	0.002	2.7
H7…H4 ^j	2.719	-	0.004	0.013	0.002	2.7
H20…H5 ^e	2.729	-	0.003	0.012	0.002	2.6
H14…H13°	2.807	-	0.003	0.012	0.002	2.5
$O1\cdots Br1^h$	3.845	-	0.003	0.011	0.002	2.4
$C4\cdots C4^h$	3.704	-	0.003	0.011	0.002	2.3
H10····H4 ^j	2.776	-	0.003	0.011	0.002	2.3
				E_{latt}	′ kJ·mol ⁻¹	130.4

Table 6SI. Metric parameters and electron-density features at the bond critical points of non-covalent interactions^{*} in compound **5**.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D= O, N, C and A= O, N, C, Br, angle \angle (D-H-A), electron density in bond CP ρ_{b} , Laplacian of electron density in bond CP $\nabla^2 \rho_b$, local kinetic energy in bond CP G_b , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in E_{latt} evaluation.

Symmetry codes: a) 1-x,1/2+y,1/2-z; b) x,y,z; c) x,1+y,z; d) -x,1-y,-z; e) -x,1/2+y,1/2-z; f) x,1.5y,-1/2+z; g) -x,-1/2+y,1/2-z; h) 1-x,1-y,1-z; i) -x,-y,-z; j) x,1/2-y,-1/2+z.

Interaction	D(D····A)/ Å D(H····A)/ Å	∠(D-H-A)/ °	$ ho_{ m b}$ / a.u.	$\nabla^2 ho_{ m b}$ / a.u.	$G_{\rm b}$ / a.u.	$E_{\rm int}/~{\rm kJ}{\cdot}{\rm mol}^{-1}$
N1-H1A…O1ª	2.882 2.000	143.79	0.023	0.071	0.018	20.1
C12-H12A···O2 ^b	3.192 2.490	124.11	0.011	0.037	0.008	9.3**
C15-H15A…O2 ^c	3.570 2.552	155.20	0.008	0.027	0.006	6.7
H6A…H15A ^c	2.105	-	0.008	0.028	0.006	6.5
C18-H18C····O2 ^d	3.634 2.613	125.22	0.008	0.025	0.006	6.2
C5-H5A…O2 ^e	3.675 2.591	173.58	0.007	0.025	0.005	6.2
$H9A{\cdots}H9A^{\rm f}$	2.345	-	0.007	0.028	0.005	6.1
C5-H5A…O1e	3.464 2.664	129.84	0.007	0.025	0.005	6.0
$C1 \cdots C8^{b}$	3.272	-	0.007	0.027	0.005	<i>6</i> . <i>0</i> **
H15B····H16B ^g	2.182	-	0.008	0.026	0.005	6.0
O1…O1ª	3.288	-	0.006	0.023	0.005	5.7
$H8A{\cdots}H9A^{\rm f}$	2.246	-	0.007	0.025	0.005	5.6
$H17B \cdots H12A^{d}$	2.241	-	0.006	0.021	0.004	4.6
C2-H2A…O1	3.743 2.745	152.28	0.005	0.019	0.004	4.5
H9A…H10B	2.375	-	0.006	0.020	0.004	4.4
C17-H17B···O2 ^c	3.707 2.743	147.33	0.005	0.019	0.004	4.4
$C8-H8B\cdots Br^h$	4.128 3.115	155.00	0.006	0.016	0.003	3.6
$C10-H10A\cdots C5^{f}$	3.939 2.856	172.74	0.005	0.016	0.003	3.5
$C17$ -H17 A ··· $C3^{i}$	3.719 2.940	128.70	0.005	0.015	0.003	3.2
C16-H16A…Br ^h	4.170 3.171	152.78	0.005	0.014	0.003	3.2
$H18B\cdots H3A^{j}$	2.572	-	0.004	0.014	0.003	2.9
H17C···H16A ^g	2.521	-	0.004	0.013	0.002	2.8
C18-H18A \cdots Br ^f	4.307 3.260	161.74	0.005	0.012	0.002	2.8
$C3\cdots Br^h$	3.861	-	0.004	0.011	0.002	2.7
C17-H17C…Br ⁱ	4.098 3.359	126.26	0.004	0.012	0.002	2.6
H18B…H2A ^j	2.690	-	0.003	0.012	0.002	2.6
$C6\cdots Br^k$	3.653	-	0.004	0.010	0.002	2.4
$O1\cdots Br^k$	3.909	-	0.003	0.011	0.002	2.4
C13-H13A…Br ⁱ	4.145 3.392	127.38	0.004	0.011	0.002	2.4
H18C····H12B ^d	2.838	-	0.003	0.010	0.002	2.2
$C13$ -H13B \cdots Br ^h	4.274 3.306	148.69	0.003	0.010	0.002	2.2
H17C···H10B ^c	2.777	-	0.003	0.009	0.002	1.9
				E_{latt}	kJ·mol ⁻¹	136.3

Table 7SI. Metric parameters and electron-density features at the bond critical points of noncovalent interactions^{*} in compound 6.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D= O, N, C and A= O, N, C, Br, angle \angle (D-H-A), electron density in bond CP ρ_{b} , Laplacian of electron density in bond CP $\nabla^2 \rho_b$, local kinetic energy in bond CP G_b , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in Elatt evaluation.

Symmetry codes: a) 2-x,1-y,1-z; b) x,y,z; c) 1-x,-1/2+y,1/2-z; d) 1-x,1-y,1-z; e) x,1.5-y,-1/2+z; f) 1-x,1-y,-z; g) x,1/2-y,1/2+z; h) 2-x,1-y,-z; i) 2-x,-1/2+y,1/2-z; j) -1+x,y,z; k) x,1.5-y,1/2+z.

Interaction	D(D···A)/ Å D(H···A)/ Å	∠(D-H-A)/ °	$ ho_{ m b}$ / a.u.	$\nabla^2 ho_{ m b}$ / a.u.	G₀/ a.u.	$E_{\rm int}/{\rm kJ}\cdot{\rm mol}^{-1}$
N1-H1···O2 ^a	3.136 2.144	163.54	0.017	0.049	0.013	14.3
C13…O2 ^b	2.985	-	0.011	0.041	0.009	9.9**
С3-Н3…О2с	3.167 2.443	112.53	0.010	0.036	0.008	9.0
$F1\cdots F1^d$	2.803	-	0.005	0.034	0.007	8.2
C13-H14O1e	3.518 2.502	153.95	0.008	0.028	0.006	7.1
$C6-H5\cdots F2^{f}$	3.329 2.553	127.76	0.006	0.028	0.006	6.4
C8-H6…O1 ^a	3.647 2.614	156.71	0.007	0.024	0.005	5.9
C13-H15F3 ^g	3.311 2.625	119.93	0.006	0.026	0.005	5.8
C2-H2…N1 ^a	3.770 2.688	175.33	0.007	0.022	0.005	5.4
C2-H2···O2 ^c	3.290 2.717	123.20	0.005	0.023	0.005	5.1
C8-H7…C1 ^b	3.495 2.779	122.64	0.007	0.022	0.004	5.1**
H3····H5 ^c	2.230	-	0.006	0.022	0.004	4.7
$C15-H18\cdots C1^{h}$	3.838 2.854	149.25	0.006	0.021	0.004	4.7
$C11-H11\cdots O1^{h}$	3.718 2.757	146.04	0.006	0.020	0.004	4.6
C12-H12····O1e	3.722 2.774	144.67	0.005	0.019	0.004	4.4
$H9\cdots H13^{i}$	2.410	-	0.005	0.020	0.004	4.2
H2····H12 ^e	2.420	-	0.005	0.019	0.004	4.0
C14-H16…F1 ^g	3.762 2.771	150.09	0.004	0.018	0.003	3.9
C14-H16···F3 ^g	3.539 2.872	119.23	0.003	0.018	0.003	3.7
$C3\cdots F3^j$	3.321	-	0.004	0.017	0.003	3.6
$H3\cdots H10^k$	2.401	-	0.005	0.016	0.003	3.3
C9-H8…F1 ¹	3.824 2.878	144.37	0.003	0.015	0.003	3.1
$C9-H8\cdots F1^{j}$	3.767 2.865	141.64	0.003	0.014	0.003	2.9
$C5\cdots F2^j$	3.461	-	0.003	0.013	0.002	2.8
C8-H7…F3 ^j	3.679 2.938	124.99	0.003	0.014	0.002	2.8
H19…H20 ^m	2.567	-	0.004	0.013	0.002	2.8
$H9\cdots H11^{i}$	2.586	-	0.004	0.013	0.002	2.7
N1…O1 ^e	3.691	-	0.003	0.012	0.002	2.7
C12-H13…O1 ^a	4.043 3.142	139.82	0.003	0.011	0.002	2.3
H17···H9 ^c	2.586	-	0.003	0.011	0.002	2.2
H16…H8c	2.588	-	0.003	0.010	0.002	2.2
$C10-H10\cdots C6^{h}$	4.120 3.125		0.003	0.010	0.002	2.2
H6…H14 ^c	2.608	-	0.003	0.010	0.002	2.1
$H19\cdots H4^{g}$	2.604	-	0.003	0.010	0.002	2.0
$H11\cdots H17^{n}$	2.680	-	0.003	0.009	0.002	1.9
				E_{latt}	/ kJ·mol ⁻¹	142.8

Table 8SI. Metric parameters and electron-density features at the bond critical points of non-covalent interactions^{*} in compound 7.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D= O, N, C, F and A= O, N, C, F, angle \angle (D-H-A), electron density in bond CP ρ_{b} , Laplacian of electron density in bond CP $\nabla^2 \rho_{b}$, local kinetic energy in bond CP G_{b} , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in E_{latt} evaluation.

Symmetry codes: a) 1.5-x,1/2+y,1.5-z; b) x,y,z; c) x,1+y,z; d) 1-x,y,1/2-z; e) 1.5-x,-1/2+y,1.5-z; f) x,-1+y,z; g) 1-x,-y,1-z; h) x,-y,1/2+z; i) 1.5-x,1/2-y,2-z; j) 1-x,1-y,1-z; k) x,1-y,-1/2+z; l) x,1-y,1/2+z; m) 1-x,y,1.5-z; n) 1.5-x,-1/2-y,2-z.

Interaction	D(D…A)/ Å D(H…A)/ Å	∠(D-H-A)/ °	$ ho_{ m b}$ / a.u.	$\nabla^2 ho_{ m b}$ / a.u.	$G_{\rm b}$ / a.u.	$E_{\rm int}/{\rm kJ}\cdot{\rm mol}^{-1}$
N1-H1····O2 ^a	2.965 1.966	167.44	0.023	0.072	0.018	20.1
C18-H18B····F3 ^b	3.391 2.335	163.00	0.009	0.038	0.009	9.6
C13-H13…F2°	3.428 2.365	164.86	0.009	0.036	0.008	9.1
C12-H11···O1 ^d	3.218 2.527	120.38	0.010	0.035	0.008	8.7**
$H14\cdots H14^{b}$	2.174	-	0.009	0.035	0.007	7.8
C8-H6…F1 ^e	3.251 2.503	124.92	0.007	0.032	0.007	7.6
$C18-H18C\cdots O1^{f}$	3.615 2.620	151.59	0.008	0.025	0.005	6.2
O2···O2 ^a	3.235	-	0.006	0.024	0.005	6.1
C2-H2···O2 ^a	3.620 2.611	153.74	0.007	0.024	0.005	6.0
$O2\cdots F1^{g}$	3.092	-	0.005	0.025	0.005	5.9
$H8\cdots H5^{h}$	2.167	-	0.007	0.024	0.005	5.5
C10-H8…O1 ^h	3.689 2.681	153.71	0.006	0.021	0.005	5.1
H12····H14 ^b	2.371	-	0.006	0.021	0.004	4.6
$C5-H4\cdots O1^i$	3.821 2.735	175.42	0.006	0.019	0.004	4.5
$C17-H17C\cdots O1^{h}$	3.746 2.756	151.05	0.005	0.018	0.004	4.2
$C5-H4\cdots O2^i$	3.647 2.832	131.64	0.005	0.018	0.004	4.1
H9···H18 ^j	2.353	-	0.006	0.019	0.004	4.0
C3-H3···F3°	3.366 2.865	108.06	0.004	0.019	0.003	3.9
$H11\cdots H17C^{h}$	2.328	-	0.005	0.018	0.003	3.8
C17-H17B…F2 ^e	3.687 2.811	137.37	0.004	0.018	0.003	3.7
$H18A\cdots H3^k$	2.532	-	0.004	0.015	0.003	3.1
C16-H17…F2 ^c	3.815 2.911	140.54	0.003	0.014	0.003	2.9
$H10\cdots H18A^{f}$	2.587	-	0.004	0.013	0.003	2.8
C17-H17A…C3 ^e	3.825 3.035	129.83	0.004	0.012	0.002	2.7
$H11\cdots H18C^{f}$	2.645	-	0.003	0.012	0.002	2.6
С15-Н15…С5ь	4.114 3.045	167.20	0.004	0.011	0.002	2.3
$\rm H16\cdots H17B^{h}$	2.748	-	0.003	0.010	0.002	2.1
$E_{\text{latt}}/\text{ kJ}\cdot\text{mol}^{-1}$						140.1

Table 9SI. Metric parameters and electron-density features at the bond critical points of non-covalent interactions^{*} in compound **8**.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D= O, N, C, F and A= O, N, C, F, angle \angle (D-H-A), electron density in bond CP ρ_b , Laplacian of electron density in bond CP $\nabla^2 \rho_b$, local kinetic energy in bond CP G_b , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in E_{latt} evaluation.

Symmetry codes: a) 1-x,1-y,1-z; b) -x,1-y,-z; c) 1-x,1-y,-z; d) x,y,z; e) 1-x,1/2+y,1/2-z; f) -x,1-y,1-z; g) x,1/2-y,1/2+z; h) -x,1/2+y,1/2-z; i) x,1/2-y,-1/2+z; j) x,1.5-y,1/2+z; k) -1+x,y,z.

Interaction	D(D…A)/ Å D(H…A)/ Å	∠(D-H-A)/ °	$ ho_{ m b}$ / a.u.	$ abla^2 ho_{ m b}$ / a.u.	G₀/ a.u.	$E_{\rm int}/ {\rm kJ} \cdot {\rm mol}^{-1}$
N1-H1…O1ª	2.947 1.970	160.65	0.024	0.071	0.018	20.7
C13-H15…O2 ^b	2.949 2.379	110.90	0.014	0.050	0.011	12.7**
C12-H13…O1a	3.363 2.465	138.93	0.010	0.033	0.007	8.3
H10···H11°	2.158	-	0.008	0.028	0.006	6.4
C2-H2···N1 ^a	3.765 2.708	163.50	0.007	0.021	0.005	5.2
$C3\cdots O2^d$	3.228	-	0.006	0.022	0.004	5.0
H19…H5 ^e	2.209	-	0.006	0.023	0.004	5.0
H9…H14 ^d	2.284	-	0.006	0.023	0.004	4.9
$C12-H13\cdots O3^{f}$	3.584 2.746	133.46	0.006	0.021	0.004	4.9
C16-H20···C8 ^g	3.763 2.791	148.63	0.006	0.023	0.004	4.9
$O4 \cdots O4^h$	3.174	-	0.004	0.019	0.004	4.7
$C15-H17\cdots O3^i$	3.774 2.764	154.21	0.005	0.018	0.004	4.1
H8····H20 ^e	2.402	-	0.005	0.019	0.004	4.1
$C10-H9\cdots O3^{f}$	3.651 2.794	135.47	0.005	0.018	0.004	4.1
$C12\text{-}H13\cdots O4^{\rm f}$	3.485 2.905	113.52	0.004	0.018	0.004	4.0
C15-H18…O3 ^g	3.861 2.824	159.22	0.005	0.017	0.003	3.9
$C6 \cdots O4^j$	3.351	-	0.004	0.017	0.003	3.8
H9···H16 ^d	2.558	-	0.005	0.018	0.003	3.8
C16-H19O2e	3.470 2.904	112.48	0.004	0.017	0.003	3.8
$C12$ -H12 \cdots O3 ⁱ	3.803 2.862	148.45	0.004	0.016	0.003	3.7
H8···H15 ^e	2.436	-	0.005	0.017	0.003	3.6
С8-Н7…С1 ^ь	3.570 2.986	114.01	0.005	0.016	0.003	3.6**
H20····H15 ^e	2.429	-	0.005	0.017	0.003	3.6
$C3-H3\cdots O4^h$	3.791 2.808	150.13	0.004	0.015	0.003	3.3
H11···H18 ^c	2.516	-	0.004	0.014	0.003	3.1
H9···H17 ^d	2.569	-	0.004	0.013	0.003	2.8
C14-H16C5 ^g	3.809 3.019	129.76	0.004	0.013	0.002	2.8
H8····H16 ^d	2.587	-	0.004	0.013	0.002	2.8
$C2\cdots O3^k$	3.496	-	0.003	0.012	0.002	2.7
C11- $H11$ ···O4 ^f	3.782 3.068	123.70	0.003	0.012	0.002	2.7
H10···H5 ^e	2.600	-	0.004	0.013	0.002	2.7
C16-H19····C4 ^g	3.937 3.052	138.82	0.004	0.012	0.002	2.7
$H17 \cdots H17^{l}$	2.736	-	0.004	0.012	0.002	2.5
H6…H14 ^d	2.606	-	0.003	0.012	0.002	2.4
$C4\cdots C4^k$	3.656	-	0.004	0.010	0.002	2.4
$H12\cdots H4^{i}$	2.597	-	0.003	0.011	0.002	2.4
$H17\cdots H4^{i}$	2.602	-	0.003	0.011	0.002	2.3
H7···H8 ^e	2.657	-	0.003	0.010	0.002	2.0
				Elott	kJ·mol ⁻¹	152.3

Table 10SI. Metric parameters and electron-density features at the bond critical points of non-covalent interactions^{*} in compound 9.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D=O, N, C and A=O, N, C, angle $\angle(D-H-A)$, electron density in bond CP ρ_{b} , Laplacian of electron density in bond CP $\nabla^2 \rho_b$, local kinetic energy in bond CP G_b , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in E_{latt} evaluation.

Symmetry codes: a) -x,1/2+y,1/2-z; b) x,y,z; c) 1-x,1-y,1-z; d) x,1+y,z; e) 1-x,1/2+y,1/2-z; f) x,1.5-y,1/2+z; g) 1-x,-1/2+y,1/2-z; h) -x,2-y,-z; i) x,1/2-y,1/2+z; j) x,-1+y,z; k) -x,1-y,-z; l) 1-x,-y,1-z.

Interaction	D(D····A)/ Å D(H···A)/ Å	∠(D-H-A)/ °	$ ho_{ m b}$ / a.u.	$\nabla^2 ho_{ m b}$ / a.u.	$G_{\rm b}$ / a.u.	$E_{\rm int}/{\rm kJ}{\cdot}{\rm mol}^{-1}$
N1-H1…O1ª	2.897 1.896	168.31	0.027	0.086	0.021	23.8
C8-H6···O4 ^b	3.434 2.407	156.55	0.010	0.033	0.008	8.6
C15-H16…O2 ^c	3.479 2.440	159.17	0.010	0.032	0.007	8.4
C12-H11O2 _d	3.267 2.592	119.34	0.009	0.032	0.007	7.7**
H8····H8e	2.183	-	0.009	0.033	0.007	7.4
C8-H7···O2 ^d	3.340 2.691	117.77	0.008	0.031	0.006	7.2**
C17-H19…O4 ^f	3.526 2.599	142.46	0.007	0.025	0.005	6.1
H16…H5 ^c	2.148	-	0.007	0.026	0.005	5.9
C18-H22…O2 ^g	3.612 2.648	147.19	0.007	0.024	0.005	5.9
C2-H2···O1ª	3.639 2.637	152.66	0.007	0.023	0.005	5.7
$H15\cdots H17^{h}$	2.250	-	0.007	0.024	0.005	5.3
$C5-H4\cdots O2^i$	3.750 2.665	174.70	0.006	0.021	0.005	5.1
H20…H11℃	2.219	-	0.006	0.022	0.004	4.9
H7···H8 ^e	2.334	-	0.006	0.022	0.004	4.8
$C5-H4\cdots O1^i$	3.545 2.785	126.78	0.005	0.020	0.004	4.6
$C6 \cdots O3^j$	3.195	-	0.005	0.019	0.004	4.4
С17-Н20…О2с	3.700 2.757	144.76	0.005	0.019	0.004	4.3
C18-H24O3e	3.814 2.733	171.51	0.005	0.018	0.004	4.2
$C3\cdots O4^{b}$	3.367	-	0.004	0.016	0.003	3.6
C16-H18…O4 ^b	3.748 2.862	138.53	0.004	0.016	0.003	3.6
С10-Н9…С5е	3.920 2.860	164.37	0.005	0.016	0.003	3.5
$O1 \cdots O3^j$	3.431	-	0.003	0.015	0.003	3.3
$C17-H21\cdots C3^{f}$	3.677 2.946	124.72	0.005	0.015	0.003	3.2
$H23\cdots H3^k$	2.608	-	0.004	0.014	0.003	2.9
H19…H10 ^c	2.604	-	0.004	0.013	0.002	2.7
$H23\cdots H12^{g}$	2.600	-	0.004	0.012	0.002	2.5
$H23\cdots H2^k$	2.698	-	0.003	0.012	0.002	2.4
H24···H5 [℃]	2.650	-	0.003	0.011	0.002	2.3
$H11\cdots H22^{g}$	2.705	-	0.003	0.011	0.002	2.2
				E_{latt}	∕ kJ·mol ⁻¹	141.7

Table 11SI. Metric parameters and electron-density features at the bond critical points of non-covalent interactions^{*} in compound **10**.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D=O, N, C and A=O, N, C, angle $\angle(D-H-A)$, electron density in bond CP ρ_{b} , Laplacian of electron density in bond CP $\nabla^2 \rho_b$, local kinetic energy in bond CP G_b , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in E_{latt} evaluation.

Symmetry codes: a) -x,-y,-z; b) -x,-y,1-z; c) 1-x,-1/2+y,1/2-z; d) x,y,z; e) 1-x,-y,1-z; f) -x,-1/2+y,1/2-z; g) 1-x,-y,-z; h) x,-1/2-y,1/2+z; i) x,1/2-y,1/2+z; j) x,1/2-y,-1/2+z; k) 1+x,y,z.

Interaction	D(D…A)/ Å D(H…A)/ Å	∠(D-H-A)/ °	$ ho_{\rm b}$ / a.u.	$ abla^2 ho_{ m b}$ / a.u.	G₀/ a.u.	$E_{\rm int}/{\rm kJ}{\cdot}{\rm mol}^{-1}$
N1-H1…O1 ^a	2.924 1.905	170.59	0.027	0.082	0.020	23.1
C3-H3B····O2 ^b	3.041 2.314	122.25	0.015	0.050	0.012	13.2**
H8A…H3A ^c	2.129	-	0.011	0.040	0.008	9.1
C12-H12A…O1 ^a	3.474 2.489	150.33	0.010	0.032	0.007	8.2
H8A…H7A ^c	2.163	-	0.010	0.036	0.007	8.1
C4-H4A…O1 ^a	3.362 2.550	130.03	0.008	0.029	0.006	7.0
C12-H12A…N1 ^a	3.595 2.624	148.99	0.009	0.025	0.006	6.4
H8B ····H16A ^d	2.254	-	0.007	0.025	0.005	5.5
H9B····H9B ^e	2.422	-	0.007	0.025	0.005	5.4
$H9A\cdots H5A^{f}$	2.240	-	0.007	0.024	0.005	5.4
C13····O2 ^c	3.228	-	0.006	0.021	0.004	5.0
C2-H2B····C11 ^b	3.389 2.864	109.34	0.007	0.022	0.004	4.9^{**}
C10-H10B····O2 ^d	3.285 2.804	106.34	0.005	0.021	0.004	4.9
C10-H10A···C2 ^g	3.857 2.784	165.86	0.006	0.022	0.004	4.8
C10-H10B····C14g	3.651 2.741	140.16	0.007	0.022	0.004	4.8
C17-H1A···C13 ^h	3.734 2.800	142.89	0.007	0.021	0.004	4.7
C7-H7A···C15 ^g	3.599 2.784	131.10	0.007	0.021	0.004	4.6
H9B…H15A ⁱ	2.267	-	0.006	0.021	0.004	4.6
H9A…H1C ^g	2.312	-	0.006	0.019	0.004	4.2
C6-H6A…O2 ^d	3.588 2.895	121.18	0.004	0.018	0.003	3.9
H10B…H16A ^d	2.363	-	0.005	0.018	0.003	3.8
H6A…H2B ^d	2.340	-	0.005	0.018	0.003	3.8
H6A…H10A ^g	2.443	-	0.005	0.018	0.003	3.8
$H8B\cdots H5A^{f}$	2.437	-	0.005	0.017	0.003	3.6
H1B····H16A ^c	2.535	-	0.004	0.014	0.003	3.0
C13-H13A…O1°	3.840 3.014	133.78	0.004	0.013	0.003	2.9
$H6A\cdots H3B^{d}$	2.584	-	0.003	0.012	0.002	2.5
$H4B\cdots H15A^{i}$	2.589	-	0.003	0.012	0.002	2.4
				E _{lott} /	kJ·mol ⁻¹	145.4

Table 12SI. Metric parameters and electron-density features at the bond critical points of non-covalent interactions^{*} in compound 11.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D= O, N, C and A= O, N, C, angle \angle (D-H-A), electron density in bond CP ρ_{b} , Laplacian of electron density in bond CP $\nabla^2 \rho_b$, local kinetic energy in bond CP G_b , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in E_{latt} evaluation.

Symmetry codes: a) -x,1/2+y,1/2-z; b) x,y,z; c) x,1+y,z; d) 1-x,1/2+y,1/2-z; e) 1-x,-y,1-z; f) 1-x,1-y,1-z; g) 1-x,-1/2+y,1/2-z; h) -x,1-y,-z; i) x,1/2-y,1/2+z.

Interaction	D(D···A)/ Å D(H···A)/ Å	∠(D-H-A)/ °	$ ho_{ m b}$ / a.u.	$ abla^2 ho_{ m b}$ / a.u.	$G_{\rm b}$ / a.u.	$E_{\rm int}/{\rm kJ}\cdot{\rm mol}^{-1}$
N1-H1…O1ª	2.900 1.892	171.28	0.027	0.086	0.021	23.8
C12-H12B····O2 ^b	3.134 2.431	120.97	0.012	0.041	0.009	10.6^{**}
C3-H3····O2 ^c	3.504 2.513	150.86	0.008	0.028	0.006	7.0
C19-H27…O1°	3.465 2.647	131.41	0.007	0.026	0.006	6.3
C16-H16A…O2 ^d	3.584 2.662	142.03	0.007	0.024	0.005	5.9
C8-H8B····C1 ^b	3.270 2.847	103.07	0.007	0.026	0.005	5.8**
C5-H5O2e	3.524 2.698	133.28	0.006	0.023	0.005	5.3
H5…H8B ^e	2.190	-	0.007	0.024	0.005	5.3
C18-H15…O2 ^d	3.609 2.705	140.14	0.006	0.021	0.004	5.0
C16-H16A…O1d	3.579 2.780	130.04	0.006	0.021	0.004	5.0
$C2-H2\cdots C19^{f}$	3.631 2.794	133.56	0.006	0.021	0.004	4.5
C15-H15A····C3 ^d	3.873 2.785	176.86	0.006	0.018	0.004	4.1
C6-H6C2e	3.617 2.899	123.61	0.005	0.018	0.003	3.9
H16…H9 ^h	2.385	-	0.005	0.017	0.003	3.7
$H26\cdots H3^{i}$	2.413	-	0.005	0.017	0.003	3.6
$H10B\cdots H27^{g}$	2.484	-	0.005	0.016	0.003	3.5
$H6 \cdots H16^{h}$	2.466	-	0.005	0.016	0.003	3.3
H16A…H27 ^g	2.392	-	0.004	0.016	0.003	3.2
$H25 \cdots H22^{j}$	2.413	-	0.005	0.015	0.003	3.2
C2-H2····O1 ^a	3.905 2.918	150.93	0.004	0.015	0.003	3.2
H22····H12A ^j	2.431	-	0.005	0.015	0.003	3.1
H15B····H13B ^j	2.438	-	0.005	0.015	0.003	3.1
H15B····H15B ^j	2.459	-	0.005	0.015	0.003	3.1
$C17-H24\cdots C5^{f}$	4.084 3.022	165.04	0.005	0.013	0.003	3.0
$H15 \cdots H21^{h}$	2.618	-	0.004	0.014	0.003	3.0
$C18-H15\cdots C4^{f}$	3.753 3.124	117.48	0.004	0.012	0.002	2.6
$H13A\cdots H9^{h}$	2.569	-	0.004	0.011	0.002	2.3
H15B····H12A ^j	2.631	-	0.003	0.010	0.002	2.2
H10A…H5 ^e	2.650	-	0.003	0.010	0.002	2.2
$H25\cdots H13B^{j}$	2.636	-	0.003	0.010	0.002	2.1
				E_{latt}	kJ·mol ⁻¹	126.6

Table 13SI. Metric parameters and electron-density features at the bond critical points of non-covalent interactions^{*} in compound 12.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D= O, N, C and A= O, N, C, angle \angle (D-H-A), electron density in bond CP ρ_{b} , Laplacian of electron density in bond CP $\nabla^2 \rho_b$, local kinetic energy in bond CP G_b , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in E_{latt} evaluation.

Symmetry codes: a) 1-x,1-y,1-z; b) x,y,z; c) -1/2+x,1/2-y,-1/2+z; d) 1/2+x,1/2-y,-1/2+z; e) 1-x,-y,1-z; f) 1/2-x,1/2+y,1/2-z; g) 1+x,y,z; h) 1.5-x,1/2+y,1/2-z; i) 1/2-x,-1/2+y,1/2-z; j) 2-x,1-y,1-z.

Interaction	D(D···A)/ Å D(H···A)/ Å	∠(D-H-A)/ °	$ ho_{ m b}$ / a.u.	$ abla^2 ho_{ m b}$ / a.u.	$G_{\rm b}$ / a.u.	$E_{\rm int}/{\rm kJ}{\cdot}{\rm mol}^{-1}$
N1-H1…O1ª	2.891 1.883	171.60	0.027	0.088	0.021	23.9
С12-Н121…О2 ^ь	3.159 2.452	121.39	0.012	0.040	0.009	10.2**
C3-H3…O2 ^c	3.361 2.358	152.35	0.011	0.036	0.009	9.7
$C2-H2\cdots F^d$	3.377 2.417	146.30	0.008	0.032	0.007	7.9
C5-H5···O2 ^e	3.338 2.555	128.10	0.008	0.028	0.006	6.8
$C18-H182\cdots O2^{f}$	3.537 2.726	130.98	0.005	0.021	0.004	4.8
C15-H152C3 ^g	3.840 2.775	165.83	0.007	0.020	0.004	4.6
$C16-H161\cdots O2^{f}$	3.602 2.827	129.63	0.005	0.019	0.004	4.3
H6…H6 ^e	2.464	-	0.005	0.021	0.004	4.3
H3····H121℃	2.334	-	0.005	0.020	0.004	4.2
$H181\cdots H9^{h}$	2.395	-	0.005	0.018	0.003	3.8
$C16-H161\cdots O1^{f}$	3.597 2.939	119.15	0.004	0.016	0.003	3.6
$H151\cdots H151^{i}$	2.380	-	0.005	0.017	0.003	3.6
$H183\cdots H172^{i}$	2.365	-	0.005	0.017	0.003	3.5
H5…H121 ^e	2.400	-	0.004	0.015	0.003	3.2
$H132\cdots H9^{h}$	2.447	-	0.004	0.014	0.003	3.0
$H102\cdots H102^{j}$	2.716	-	0.004	0.014	0.003	2.9
$C18-H182\cdots C5^{h}$	3.766 3.040	124.56	0.004	0.013	0.002	2.8
$C10$ -H101 \cdots C4 ^g	4.024 3.002	156.48	0.004	0.012	0.002	2.7
C17-H173…C6 ^g	4.100 3.015	174.44	0.004	0.012	0.002	2.6
C16-H162…C17 ^c	4.129 3.060	167.21	0.004	0.012	0.002	2.6
$H183{\cdots}H123^{\rm i}$	2.532	-	0.004	0.012	0.002	2.5
$H151\cdots H131^{i}$	2.557	-	0.004	0.012	0.002	2.4
H5…H82 ^e	2.637	-	0.003	0.011	0.002	2.2
H5…H102 ^e	2.661	-	0.003	0.010	0.002	2.1
H151…H123 ⁱ	2.727	-	0.003	0.009	0.002	1.8
				E _{latt} /	115.9	

Table 14SI. Metric parameters and electron-density features at the bond critical points of non-covalent interactions^{*} in compound 14.

*Distance between the donor and acceptor atoms $D(D \cdots A)$ and between the hydrogen and acceptor atom $D(H \cdots A)$, where D= O, N, C and A= O, N, C, angle \angle (D-H-A), electron density in bond CP ρ_{b} , Laplacian of electron density in bond CP $\nabla^2 \rho_b$, local kinetic energy in bond CP G_b , energy of intermolecular interaction E_{int} obtained using eq. (3). All solid-state calculations are performed in B3LYP-D2/6-31G(d,p) approximation.

**Intramolecular contacts do not count in Elatt evaluation.

Symmetry codes: a) 1-x,-y,1-z; b) x,y,z; c) -1/2+x,1/2-y,-1/2+z; d) 1/2-x,-1/2+y,1/2-z; e) 1-x,1-y,1-z; f) 1/2+x,1/2-y,-1/2+z; g) 1+x,y,z; h) 1.5-x,-1/2+y,1/2-z; i) 2-x,-y,1-z; j) 2-x,1-y,1-z.