Electronic Supplementary Information (ESI)

Supramolecular Recognition of Benzene Homologues in a 2D

Coordination Polymer through Variable Inter-layer π - π Interaction

Yun-Feng Gu,^a Xiao-Ting Liu,^{b,c} Ying Zhang,^a Shu-Ming Zhang,^{*a} Ze Chang^{*b,c} and Xian-He

 $Bu^{b,c}$

 ^a School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
^b School of Materials Science and Engineering, National Institute for Advanced
Materials, TKL of Metal and Molecular-Based Material Chemistry, Nankai University, Tianjin 300350, China.
^c Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China

* Corresponding author. E-mail: smzhang@hebut.edu.cn

& changze@nankai.edu.cn

Materials and measurements

The Single X-ray diffraction spectra were recorded on a Rigaku XtalAB PRO MM007 DW diffractometer at 77K with a Cu-target. Fluorescence measurements were performed on a Hitachi F-7000 fluorescence spectrophotometer. The Power X-ray diffraction (PXRD) spectra were recorded on a Rigaku MiniFlex 600 diffractometer at 40 kV, 15 mA with a Cu-target tube. Thermal gravimetric analysis (TGA) was carried out on a Rigaku TG8121 analyzer in air atmosphere with a heating rate of 10 °C/min from ambient temperature to 800 °C using an empty Al₂O₃ crucible as the reference. The infrared (IR) spectra were recorded on a TENSOR 37 (Bruker) Fourier transform infrared (FT-IR) spectrometer using KBr pellets within the 4000–400 cm⁻¹ region. Elemental analysis (C, H, N) was performed on a Vairo EL Cube (Elementar) analyzer. Simulation of the PXRD pattern was carried out by the single-crystal data and diffraction-crystal module of the Mercury (Hg) program available free of charge via the Internet at http://www.iucr.org.

(1,1'-biphenyl)-2,2',6,6'-tetracarboxylic acid Synthesis:

To pyrene (6.00 g, 29.7 mmol) in CH₂Cl₂ (120 mL) was added MeCN (120 mL) and water (180 mL). To the resulting biphasic solution was added NaIO₄ (60 g, 280 mmol) followed by Ru(III)Cl₃ (240 mg, 1.16 mmol). The solution warmed somewhat as the reaction began but was not vigorous. The reaction was run overnight (~ 16 h) with stirring and was filtered to give a yellow solid. The mixed solid (tetraacid/NaIO₄) was extracted with acetone (750 mL) and the acetone was refiltered to yield a yellow solution. Upon evaporation the product was identified as a mixture of the desired tetraacid and the corresponding dianhydride. The crude product was ground to a fine powder and was refluxed for 1 h in CH₂Cl₂ before being filtered hot. The tetraacid was collected as a white powder. (¹H NMR (300 MHz, DMSO) δ 8.32 (s, 1H), 8.29 (s, 1H), 7.74 (s, 1H), 7.72 (s, 1H), 7.69 (s, 1H).) (Fig. S1)

Complex 1 synthesis

The mixture of Cd(NO₃)₂·4H₂O(0.0313 g, 0.1 mmol), H₄bpta(0.0165 g, 0.05 mmol) and 3-tpt(0.0156g, 0.05mmol) in DMF–H₂O-Ethanol mixed solvents (6ml, v:v:v = 1:1:1) were ultrasonicated in an ultrasonic bath at room temperature and atmospheric pressure for 20 min in a 10 ml glass vials upon heating at 100°C for 4 days. The resulting yellow crystal was isolated by centrifugation, washed with DMF for three times.

Fig. S1. The ¹H NMR Spectrum of (1,1'-biphenyl)-2,2',6,6'-tetracarboxylic acid

Fig. S2 Coordination environment of (a) bpta⁴⁻, (b) 3-tpt and (c) complex 1. And the 3D deposition of complex 1 (d). H atoms are omitted for clarity.

	1			2		3
Formula	C34H24N6O11Cd2		C41H32N6O11Cd2		C42H34N6O11Cd2	
<i>M</i> r (g mol ⁻¹)	911.36		1003.5		1017.5	
Space group	$P2_{1}/c$		$P2_{1}/c$		<i>P</i> 2 ₁ / <i>c</i>	
Crystal system	Monoclinic		Monoclinic		Monoclinic	
a (Å)	16.830(3)		16.0536(2)		17.1153(1)	
b (Å)	18.059(4)		17.8754(2)		18.1270(1)	
c (Å)	15.756(3)		17.8754(2)		15.6893(1)	
α()	90		90		90	
β ()	98.82(3)		102.7310(10)		94.978(1)	
y()	90		90		90	
$V(\text{\AA}^3)$	4732.1(17)		4393.27(8)		4849.23(5)	
Ζ	4		4		4	
<i>Dc</i> (gcm ⁻³)	1.279		1.517		1.394	
R _{int}	0.1792		0.0277		0.0268	
	-21<=h<=21		-20<=h<=20		-21<=h<=21	
limiting indices	-23<=k<=23		-22<=k<=22		-22<=k<=22	
	-20<=l<=20		-19<=l<=19		-19<=l<=19	
Refins collected	44550		24705		28188	
RefIns unique	10729		8700		9618	
GOF on F^2	0.954		0.910		1.011	
<i>R1, wR2</i> [<i>I</i> >2σ(<i>I</i>)]	0.0910	0.2218	0.0279	0.0838	0.0287	0.0633
R1, wR2 [all data]	0.1771	0.1858	0.0313	0.0851	0.0308	0.0642

Table S1. Crystal data and structure refinement summary for complex 1, complex 2, and complex

3.

 $R_{1} = \Sigma ||F_{\rm o}| - |F_{\rm c}|| / \Sigma |F_{\rm o}|; \ wR_{2} = [\Sigma [w(F_{\rm o}^{2} - F_{\rm c}^{2})^{2}] / \Sigma w(F_{\rm o}^{2})^{2}]^{1/2}.$

	Calculated (%)			Found (%)			
	С	Н	Ν	С	Н	Ν	
Complex 1	44.8	2.0	9.2	42.7	2.2	9.7	
Complex 2	49.1	2.6	8.4	46.2	2.7	8.8	
Complex 3	49.6	2.8	8.3	46.7	2.8	8.5	

Table S2. The elemental analysis results of complex1, 2, and 3.

Fig. S3. The torsion angle between the two benzene ring in one bpta⁴⁻ of complex 1, complex 2, and complex 3.

Fig. S4. The solid-state fluorescent spectra of complex 1 and 3-tpt, investigated in room temperature, and the emission peak appears at 554 nm ($\lambda = 418$ nm).

Fig. S5. The intensity of the fluorescence emission in response to different concentration of benzene homologues.