The Interesting Fluorine Anion Water Clusters $[F \cdot (H_2O)_n]$ in

Metal Complex Crystal

Fang Fang Jian, *E Liu, Junying Ma

Henan University of Science & Technology Luoyang, 471023, P.R. China. E-mail: ffj2013@163.com

Supporting information

Table of contents	Page
1. Crystallographic data for [Cd(Im)6][F·H2O]2	S-1 ~ S-3
2. Crystallographic data for [Ni(Im)6][F2•(H2O)5]	S-4 ~ S-6
3. Crystallographic data for [Co(Im) ₆][F·NO ₃ ·(H ₂ O) ₄]	S-7 ~ S-10
4. IR spectra	S-11 ~ S-12
5. Solid State of UV spectra	S-13
6. Solid-state fluorescence	S13 ~ S-14

1. Crystallographic data for $[Cd(Im)_6][F \cdot H_2O]_2$

Identification code	qj07113		
Empirical formula	C18 H28 Cd F2 N12 O2	C18 H28 Cd F2 N12 O2	
Formula weight	594.92		
Temperature	296.15 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 9.5545(19) Å	<i>α</i> = 90°.	
	b = 16.926(3) Å	$\beta = 90.72(3)^{\circ}.$	
	c = 7.8873(16) Å	$\gamma = 90^{\circ}.$	
Volume	1275.4(4) Å ³		
Z	2		
Density (calculated)	1.549 Mg/m^3		
Absorption coefficient	0.911 mm ⁻¹		
F(000)	604		
Crystal size	0.23 x 0.21 x 0.15 mm ³		
Theta range for data collection	2.132 to 27.918°.	2.132 to 27.918°.	
Index ranges	-11<=h<=12, -17<=k<=	-11<=h<=12, -17<=k<=22, -9<=l<=10	
Reflections collected	5646	5646	
Independent reflections	2210 [R(int) = 0.0232]	2210 [R(int) = 0.0232]	
Completeness to theta = 25.242°	70.1 %	70.1 %	
Absorption correction	None	None	
Refinement method	Full-matrix least-square	s on F ²	
Data / restraints / parameters	2210 / 0 / 164		
Goodness-of-fit on F ²	0.947		
Final R indices [I>2sigma(I)]	R1 = 0.0248, wR2 = 0.0	R1 = 0.0248, wR2 = 0.0617	
R indices (all data)	R1 = 0.0364, WR2 = 0.0	R1 = 0.0364, wR2 = 0.0661	
Extinction coefficient	0.0305(16)	0.0305(16)	
Largest diff. peak and hole	0.445 and -0.411 e.Å ⁻³	0.445 and -0.411 e.Å ⁻³	

Table 1-1. Crystal data and structure refinement for $[Cd(Im)_6][F \cdot H_2O]_2$.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N2-H2O1W#2	0.86	1.91	2.773(3)	179
N4-H4F1#3	0.86	1.83	2.688(3)	176
N6-H6F1	0.86	1.80	2.607(3)	156
O1W-H1WAF1#4	0.85	1.82	2.668(3)	173
O1W-H1WBF1#5	0.85	1.80	2.619(3)	161

Table 1-2. Hydrogen bonds for [Cd(Im)₆][F·H₂O]₂ [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z #2 x,-y+1/2,z-1/2 #3 x,y,z+1

#4 x-1,y,z+1 #5 x-1,-y+1/2,z+3/2

Fig. S1-1 An ORTEP diagram of [Cd(Im)₆][F·H₂O]₂. Atoms with an additional "A" letter in the atom label are at equivalent position (1-x, -y, -z), the percentage probability chosen for the ellipsoids is 30%.

Fig. S1-2 A view of the crystal packing down the *a* axis for $[Cd(Im)_6][F \cdot H_2O]_2$

Fig. S1-3 View of the crystal packing down the *b* axis for $[Cd(Im)_6][F \cdot H_2O]_2$

Fig. S1-4 View of the crystal packing down the *c* axis for $[Cd(Im)_6][F \cdot H_2O]_2$

Fig. S1-5 View of Cd atomic position for $[Cd(Im)_6][F \cdot H_2O]_2$

2. Crystallographic data for the [Ni(Im)6][F2·(H2O)5]

Table 2-1. Crystal data and structure refinement for $[Ni(Im)_6][F_2 \cdot (H_2O)]$.

Identification code	ai0794		
Empirical formula	C18 H34 F2 N12 Ni O5	C18 H34 F2 N12 Ni O5	
Formula weight	595.28	595.28	
Temperature	293.15 K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pnma		
Unit cell dimensions	a = 8.9000(18) Å	<i>α</i> = 90°.	
	b = 21.140(4) Å	β= 90°.	
	c = 15.030(3) Å	$\gamma = 90^{\circ}.$	
Volume	2827.8(10) Å ³		
Z	4		
Density (calculated)	1.398 Mg/m ³		
Absorption coefficient	0.750 mm ⁻¹		
F(000)	1248		
Crystal size	0.3 x 0.25 x 0.23 mm ³	0.3 x 0.25 x 0.23 mm ³	
Theta range for data collection	1.662 to 28.330°.	1.662 to 28.330°.	
Index ranges	-11<=h<=11, -28<=k<=	-11<=h<=11, -28<=k<=28, -20<=l<=19	
Reflections collected	36520	36520	
Independent reflections	3569 [R(int) = 0.0254]	3569 [R(int) = 0.0254]	
Completeness to theta = 25.242°	100.0 %	100.0 %	
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²	
Data / restraints / parameters	3569 / 0 / 185	3569 / 0 / 185	
Goodness-of-fit on F ²	1.036	1.036	
Final R indices [I>2sigma(I)]	R1 = 0.0274, wR2 = 0.0	R1 = 0.0274, wR2 = 0.0775	
R indices (all data)	R1 = 0.0418, wR2 = 0.0	R1 = 0.0418, wR2 = 0.0869	
Extinction coefficient	0.0029(4)		
Largest diff. peak and hole	0.198 and -0.248 e.Å ⁻³	0.198 and -0.248 e.Å ⁻³	

S-4

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N2-H2F2#2	0.86	1.80	2.6537(15)	170
N4-H4F1#3	0.86	1.90	2.7553(15)	177
N6-H6O1W#3	0.86	1.94	2.7954(16)	179
O1W-H1WAO5W	0.81	1.87	2.652(2)	162
O1W-H1WBF2#4	0.84	1.74	2.577(2)	170
O2W-H2WAF1	0.82	1.87	2.671(2)	164
O2W-H2WBF1#5	0.88	1.87	2.745(2)	172
O3W-H3WAF2#4	0.74	2.10	2.840(3)	177
O3W-H3WBF1#6	0.85	1.96	2.813(3)	178
O4W-H4WAO2W	0.85	2.01	2.853(3)	173
O4W-H4WBO3W	0.72	2.19	2.908(3)	174
O5W-H5WAF2	0.74	2.01	2.756(2)	178
O5W-H5WBO4W#4	0.83	1.91	2.741(3)	171

Table 2-2. Hydrogen bonds for $[Ni(Im)_6][F_2 \cdot (H_2O)]$ [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y,-z #2 -x+1,-y,-z #3 x+1/2,y,-z+1/2 #4 x-1/2,y,-z+1/2 #5 x+1/2,y,-z+3/2 #6 x-1/2,y,-z+3/2

Fig. S2-1 An ORTEP diagram of $[Ni(Im)_6][F_2 \cdot (H_2O)_5]$. The percentage probability chosen for the

ellipsoids is 30%.

Fig. S2-2 A view of the crystal packing down the *a* axis for $[Ni(Im)_6][F_2 \cdot (H_2O)_5]$

Fig. S2-3 A view of the crystal packing down the *b* axis for $[Ni(Im)_6][F_2 \cdot (H_2O)_5]$

Fig. S2-4 A view of the crystal packing down the *c* axis for $[Ni(Im)_6][F_2 \cdot (H_2O)_5]$

Fig. S2-5 View of Ni atomic position for $[Ni(Im)_6][F_2 \cdot (H_2O)_5]$

3. Crystallographic data for the [Co(Im)₆][F·NO₃·(H₂O)₄]

Table 3-1. Crystal data and structure refinement for $[Co(Im)_6][F \bullet NO_3 \bullet (H_2O)_4]$.

Identification code	qj07114	
Empirical formula	C18 H32 Co F N13 O7	
Formula weight	620.49	
Temperature	293.15 К	
Wavelength	0.71073 Å	
Crystal system	Hexagonal	
Space group	P63/m	
Unit cell dimensions	a = 8.9720(13) Å	$\alpha = 90^{\circ}$.
	b = 8.9720(13) Å	β= 90°.
	c = 21.077(4) Å	$\gamma = 120^{\circ}.$
Volume	1469.3(5) Å ³	
Z	2	
Density (calculated)	1.402 Mg/m ³	
Absorption coefficient	0.649 mm ⁻¹	
F(000)	646	
Crystal size	0.23 x 0.21 x 0.19 mm ³	
Theta range for data collection	1.932 to 28.240°.	
Index ranges	-11<=h<=11, -11<=k<=9, -26<=l<=28	
Reflections collected	9619	
Independent reflections	1251 [R(int) = 0.0323]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	1251 / 0 / 66	
Goodness-of-fit on F ²	1.053	
Final R indices [I>2sigma(I)]	R1 = 0.0398, wR2 = 0.1113	
R indices (all data)	R1 = 0.0542, $wR2 = 0.1200$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.331 and -0.668 e.Å ⁻³	

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N2-H2O1#6	0.86	1.90	2.757(2)	173
O2W-H2WBO1#6	0.85	1.90	2.715(3)	161

Table 3-2. Hydrogen bonds for $[Co(Im)_6][F \cdot NO_3 \cdot (H_2O)_4]$ [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z	#2 y,-x+y,-z	#3 x-y,x,-z	#4 -x+y,-x,z
#5 -y,x-y,z	#6 -y+1,x-y,z	#7 -x+y+1,-	x+1,z

Fig. S3-1 An ORTEP diagram of $[Co(Im)_6][F \cdot NO_3 \cdot (H_2O)_4]$. The carbon atoms and nitrogen atoms with an additional "A" letter in the atom label are at equivalent position (-x, -y, -z), the carbon atoms and nitrogen atoms with an additional "B" letter in the atom label are at equivalent position (-y+x, +x, -z), the oxygen atom with an additional "A" letter in the atom label is at equivalent position (1-y, +x-y, +z), the oxygen atom with an additional "B" letter in the atom label is at equivalent position (1-y, +x-y, +z), the oxygen atom with an additional "B" letter in the atom label is at equivalent position (1+y-z, 1-x, +z), the percentage probability chosen for the ellipsoids is 30%.

Fig. S3-2 A view of the crystal packing down the *a* axis for $[Co(Im)_6][F \cdot NO_3 \cdot (H_2O)_4]$

Fig. S3-3 view of the crystal packing down the *b* axis for $[Co(Im)_6][F \cdot NO_3 \cdot (H_2O)_4]$

Fig. S3-4 view of the crystal packing down the *c* axis for $[Co(Im)_6][F \cdot NO_3 \cdot (H_2O)_4]$

Fig. S3-5 View of $[F \cdot (H_2O)_4]_n^{n-1}$ 2-membered ring overlap with $[NO_3 \cdot (H_2O)_4]_n^{n-1}$ 18-membered ring in the parallel manner

Fig. S3-6 View of Ni atomic position for $[Co(Im)_6][F \cdot NO_3 \cdot (H_2O)_4]$.

4. IR spectra

Fig. S4-1 The IR spectra of (1). (a) Sample at 150°C. (b) Sample at 300°C. (c) Sample at 450° C.

Fig. S4-4 The IR spectra of imidazole

S-12

5. Solid State of UV spectra for compounds (1), (2) and (3)

Fig. S5-1 The solid state of UV spectra

6. Solid-state fluorescence

Fig. S6-1 The solid-state fluorescence for compound (1).

Fig. S6-2 The solid-state fluorescence for compound (2).

Fig. S6-3 The solid-state fluorescence for compound (3).

S-14