Electronic Supplementary Information (ESI) for

Direct synthesis of an aliphatic amine functionalized metal-organic framework for efficient CO₂ removal and CH₄ purification

Ning-Yu Huang, Zong-Wen Mo, Lu-Jian Li, Wei-Jian Xu, Hao-Long Zhou, Dong-Dong Zhou, Pei-Qin Liao*, Jie-Peng Zhang* and Xiao-Ming Chen

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

*E-mail: liaopq3@mail.sysu.edu.cn; zhangjp7@mail.sysu.edu.cn

Supplementary Index

Additional experimental details.

Scheme S1 Representation of the column breakthrough experiment.

Figure S1. Coordination environments of α -Zn and β -Zn.

Figure S2. Comparison of the PXRD patterns of α -Cu, α -Zn and β -Zn.

Figure S3. PXRD patterns of α-Cu.

Figure S4. PXRD patterns of α-Zn.

Figure S5. PXRD patterns of β-Zn.

Figure S6. TG curves of α -Zn, β -Zn and α -Cu.

Figure S7. N₂ adsorption and desorption isotherms of α -Zn and β -Zn at 77 K.

Figure S8. The CO₂ binding mode of β -Zn revealed by computational simulations.

Figure S9. CO₂ adsorption and desorption isotherms of α -Zn and β -Zn.

Figure S10. CH₄ adsorption and desorption isotherms of α -Zn and β -Zn.

Figure S11. Virial fitting of CO₂ adsorption data for (a) α -Zn and (b) β -Zn.

Figure S12. Virial fitting of CH₄ adsorption data for (a) α -Zn and (b) β -Zn.

Figure S13. IAST CO₂/CH₄ selectivity of α -Zn and β -Zn.

Figure S14. Breakthrough curves expressed using time (min) as abscissa.

Figure S15. Breakthrough curves expressed using specific time (min g⁻¹) as abscissa.

Figure S16. Time-dependent gas retention in the breakthrough columns.

Figure S17. Repeated breakthrough curves in breakthrough experiments of β -Zn.

Figure S18. Breakthrough curves of α -Zn for 1:99 and 1:999 CO₂/CH₄ (*v*/*v*) mixtures.

Table S1. Crystallographic data and structural refinement details.

Table S2. The parameters of the breakthrough columns.

Table S3. Comparison of the CH₄ purification productivities of α -Zn and β -Zn.

Table S4. Comparison of the IAST CO₂/CH₄ selectivity of MOFs.

Table S5. Comparison of the experimental CO₂/CH₄ adsorption selectivity of MOFs.

Table S6. Comparison of the experimental CO₂/CH₄ adsorption selectivity.

Additional experimental details

Calculation of Adsorption Enthalpy (Q_{st}). The Clausius-Clapeyron equation was employed to calculate the experimental adsorption enthalpy at each adsorption amount *n*:

$$\left[\frac{\partial \ln p}{\partial (1/T)}\right]_n = -\frac{Q_{st}}{R} \tag{S-1}$$

Where p is the pressure, T is the temperature and R is the universal gas constant.

Method 1: direct calculation from isotherm data points:

$$Q_{st} = (\ln p_2 - \ln p_1) \frac{RT_1T_2}{T_2 - T_1}$$
(S-2)

Method 2: Virial fitting:

$$\ln p = \ln n + \frac{1}{T} \sum_{i=0}^{m} a_i n^i + \sum_{j=0}^{l} b_j n^j$$
(S-3)

Where a_i and b_i are virial coefficients and m and l are the number of coefficients used to describe the isotherms.

The adsorption enthalpy is obtained from the following equation derived from the Clausius-Clapeyron equation.

$$Q_{st} = -R \left[\frac{\partial \ln p}{\partial \left(\frac{1}{T} \right)} \right]_n = -R \sum_{i=0}^m a_i n^i$$
(S-4)

Breakthrough Experiments. The breakthrough experiments were carried out using the reported set up,^{1, 2} in which the sample column was filled with powder sample with negligible pressure drop observed. The column parameters are listed in Table S2. Before the breakthrough experiment, the column was activated by passing He and heated at 373 K for 5 hours, and then cooled to the measurement temperature of 298(1) K. Ultra-high-purity CH₄ and CO₂ were mixed in the pipeline to give the mixed gas (40:60 CO₂/CH₄ and 10:90 CO₂/CH₄; flow rate 1.0 cm³ min⁻¹). The gas stream at the outlet of the column was collected by a six-way valve and analyzed online by a gas chromatography (Agilent 7890A) with a TCD detector (G3440A) and a PLOT/Q column. The detection limit of TCD is 1 ppm, which is calibrated by commercially mixed gas (1 ppm CH₄, N₂ as balanced gas). The error of TCD is lower than 1% RSD based on the equipment index.

The flow rate of gas mixture at the inlet, which was controlled by mass flow controllers, was defined as v_i . Prior to the breakthrough experiments, gas mixture was directly introduced to GC and the detected peak area was defined as S_i . During breakthrough experiments, the gas mixture at the outlet was introduced to GC and the detected peak area was defined as S_0 . Therefore, the relative flow rate at the outlet was $v_i^*(S_0/S_i)$. For example, when the flow rate at the inlet was 1.0 mL min⁻¹, the flow rate at the outlet was $(S_0/S_i)^*1.0$ mL min⁻¹.

The calculation methods for the gas adsorption capacity and gas purification productivity were reported in our previous studies.^{1, 2}

v = stop valve; g = pressure gauge; c = sample packed column

MFC = Mass Flow Controller

Scheme S1 Representation of the column breakthrough experiment.

Figure S1 (a) Perspective views of the coordination environments of α -Zn. Symmetry codes: a = -x, 1-y, -z; b = -x, 1-y, 1-z; c = 2/3+x-y, 1/3+x, 1/3-z; d = -1/3-x+y, 1/3-x, 1/3+z; e = x, y, 1+z; (b) Perspective views of the coordination environments of β -Zn. Symmetry codes: a = 2/3-x+y, 4/3-x, -2/3+z; b = 1+x-y, x, 1-z; c = 5/3-x, 4/3-y, 1/3-z; d = 4/3-y, 2/3+x-y, 2/3+z; e = y, 1-x+y, -z; f = 1/3+x-y, -1/3+x, 2/3-z; g = 2/3-x+y, 4/3-x, 1/3+z; h = 1+x-y, x, -z.

Figure S2 Comparison of PXRD patterns of α -Cu, α -Zn and β -Zn.

Figure S3 PXRD patterns of α-Cu.

Figure S4 PXRD patterns of α-Zn.

Figure S5 PXRD patterns of β-Zn.

Figure S6 TG curves of α -Zn, β -Zn and α -Cu.

Figure S7 Nitrogen adsorption (solid) and desorption (open) isotherms of α -Zn and β -Zn at 77 K.

Figure S8. The CO₂ binding mode of β -Zn revealed by computational simulations.

Figure S9 CO₂ adsorption (solid) and desorption (open) isotherms of (a) α -Zn and (b) β -Zn.

Figure S10 CH₄ adsorption (solid) and desorption (open) isotherms of (a) α -Zn and (b) β -Zn.

Figure S11. Virial fitting of CO₂ sorption data for (a) α -Zn and (b) β -Zn.

Figure S12. Virial fitting of CH₄ sorption data for (a) α -Zn and (b) β -Zn.

Figure S13 IAST CO₂/CH₄ selectivity of (a) α -Zn and (b) β -Zn.

Figure S14 Breakthrough curves of (a) Fig. 3a, (b) Fig. 3b, (c) Fig. 4a and (d) Fig. 4b expressed using time (min) as abscissa.

Figure S15 Breakthrough curves of (a) Fig. 3a, (b) Fig. 3b, (c) Fig. 4a and (d) Fig. 4b expressed using specific breakthrough time (min g⁻¹) as abscissa.

Figure S16 Time-dependent gas retention of the breakthrough columns, obtained by integration of the breakthrough curves of experiments of (a) Fig. 3a, (b) Fig. 3b, (c) Fig. 4a and (d) Fig. 4b.

Figure S17. Repeated breakthrough curves in breakthrough experiments of β -Zn for 40:60 CO₂/CH₄ (*v*/*v*) mixtures at 298 K and 1 bar. Lines are drawn to guide the eye. *F*_i and *F*_o are the flow rates of each gas at the inlet and outlet, respectively. The column was regenerated by passing He at 298 K for 12 hours.

Figure S18. Breakthrough curves (solid) and composition at outlet (open) in breakthrough experiments of α -Zn for (a) 1:99 and (b) 1:999 CO₂/CH₄ (ν/ν) mixtures at 298 K and 1 bar. Lines are drawn to guide the eye. C_i and C_o are the concentrations of each gas at the inlet and outlet, respectively. Dashed lines highlight the composition at 0.001%, corresponding to the composition of other gases at 99.999%.

Compound	α-Zn	β-Zn	α -Cu ¹
Formula	$C_{16}H_{13}NO_4Zn$	$C_{48}H_{39}N_3O_{12}Zn_3\\$	$C_{16}H_{13}CuNO_4$
Formula weight	348.64	1045.93	364.84
Space group	<i>R</i> -3	<i>R</i> -3	<i>R</i> -3
Temperature (K)	203	203	223
a/Å	41.740(4)	42.4897(8)	41.28(2)
c/Å	9.958(1)	10.4000(4)	9.864(4)
V/Å ³	15025(4)	16260.4(9)	14556.7
Ζ	18	9	18
$ ho_{ m calc}$ (g cm ⁻³)	0.694	0.961	/
reflns coll.	27125	29635	/
unique reflns	5169	5024	/
μ (mm ⁻¹)	1.093	1.515	/
R _{int}	0.0354	0.0384	/
$R_1 [I > 2\sigma(I)]^{[a]}$	0.0411	0.0608	/
$wR_2 [I > 2\sigma(I)]^{[b]}$	0.1282	0.2030	/
R_1 (all data)	0.0419	0.0708	/
wR_2 (all data)	0.1292	0.2140	/
GOF	1.098	1.093	/

Table S1 Crystallographic data and structural refinement details

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

Materials			Column	Sample	Sample	Sample	Gas in dead	Sample
&	Gas	Gas retention	volume	weight	density	volume	space	uptake
mixed-gas		(mmol g ·)	(mmol)	(g)	(g cm ⁻³)	(cm ³)	(mmol g ⁻¹)	(mmol g ⁻¹)
α-Zn	CH ₄	0.638					0.276	0.362
10:90	CO_2	0.147	0.306	0.837	0.694	1.206	0.031	0.116
α-Zn	CH ₄	0.428					0.184	0.244
40:60	CO_2	0.505					0.123	0.382
β-Zn	CH ₄	0.276					0.133	0.143
10:90	CO_2	0.518	0.240	1 705	0.061	1 957	0.015	0.503
β-Zn	CH ₄	0.152	0.540	1.785	0.901	1.657	0.089	0.063
40:60	$\overline{CO_2}$	1.258					0.059	1.199

Table. S2 The parameters of the breakthrough columns studied in this work.

Gas retention was calculated based on the integration of the breakthrough curves.^{1, 2}

Column volume was calculated based on the gas retention of Ar by using the same setup except that the sample column was empty;

Sample volume = Sample weight/Sample density;

Gas in dead space = (Column volume– Sample volume/22.4)/Sample weight;

Sample uptake = Gas retention - Gas in dead space.

			Gravimetric/Volumetric productivity (mmol g ⁻¹ /mmol cm ⁻³)				
Materials	Crystal density (g cm ⁻³)	CO ₂ /CH ₄	99.999%+	99.9%+	99%+		
α-Zn	0.694	10:90			0.088/0.061		
		40:60	_		_		
β-Zn	0.961	10:90	1.49/1.43	2.32/2.23	3.14/3.02		
		40:60	0.75/0.72	0.95/0.91	1.40/1.34		

Table. S3 Comparison of the CH₄ purification productivities of α -Zn and β -Zn.

	CO ₂	CH ₄					
Materials	uptake at	uptake at	CO ₂ :CH ₄	Temperature	IAST	Dof	
	1 bar	1 bar	(v:v)	(K)	selectivity	Kel.	
	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$					
	27.40	0.60	10:90		3.12		
α-Ζη	27.40	9.00	40:60	208	3.25	de la anne de	
0.7.	10.46	0.79	10:90	298	21.68	this work	
p-Zn	40.40	9.78	40:60		20.55		
SIFSIX-3-Zn	57	16	50:50	298	231		
SIFSIX	120	0.7	50.50	202	22	Mature 2012	
-2-Cu-i	120	9.7	30:30	298	33	<i>Nature</i> , 2012 ,	
SIFSIX	41	6.0	50.50	208	5.2	495,80	
-2-Cu	41	0.9	50.50	298	5.5		
ZIF-69	41	12	50:50	298	5.6	Coord. Chem.	
ZIF-78	51	14.5	50:50	298	10.5	Rev. 2011, 255,	
ZIF-82	54	11.5	50:50	298	9.8	1791	
						J. Mater.	
JUC-199	40	11	50:50	298	9	Chem. A, 2016 ,	
						4, 15240	
MOF-5	44.8		50:50	RT	2.3	Energy	
HKUST-1	56.0		50:50	RT	6.5	Environ. Sci.,	
MAF-4	17.9		50:50	RT	4.7	2011 , <i>4</i> , 2177	

Table. S4 Comparison of the IAST CO₂/CH₄ selectivity of different MOFs at 1 bar. The IAST selectivity better than that of β -Zn were highlighted in blue.

	Gas uptake	$(CO_2/CH_4, cm^3 g^{-1})$	CONCH	Temperature		
Materials	Mixed-gas	Single-component	(v.v)	&	Selectivity	Ref.
	ininea gas	single component	(,,,,)	Pressure		
a-Zn	2.5/7.8	27 48/9 60	10:90		2.9ª	
<u>u-zn</u>	8.5/5.6	21.40/9.00	40:60	298 K	2.3ª	this work
ß 7n	11.3/3.3	40 46/9 78	10:90	1 bar	32 ^a	uns work
p-zn	26.8/1.5	40.40/9.78	40:60		29 ^a	
MAF-42	12/0.5	16/5			28 ^b	
oxidized			40.00	298 K		Nat. Commun.,
MAF-42	5/~0	5/~0	40:60	1 bar	700 ^b	2015 , <i>6</i> , 6350
(O100)						
SIFSIX-3-Zn	56/—	57/16	50:50	298 K	350 ^b	Nature, 2012, 495,
SIFSIX-2-Cu-i	70/—	120/9.7	50:50	1 bar	51 ^a	80
			5:95		89 ^a	
CCP-1	,	10/4.0	10:90	298 K	42 ^a	Chem. Sci., 2017 ,
(coordination	/	19/4.0	20:80	2 bar	15 ^a	8, 3109
polymers)			50:50		2 ^a	
				200 V		Sep. Purif.
Cu-BTC	22/7.8	/	25:75	308 K	6.37 ^a	Technol., 2015 ,
				3 bar		146, 136
	29/4.5	/	50:50	202 V	7.0 ^b	Microporo.
MIL-53(Al)				303 K		Mesopor. Mat.,
				1 bar		2009 , <i>120</i> , 221
	120/	261	50.50	298 K	5.2	Dalton Trans.,
ZJNU-54a.	120/	26/	50:50	1 bar	5.2	2016 , <i>45</i> , 13373
MOF-74-Ni					15 ^a	
MOF-74-Co	1	1	50.50	303 K	12 ^a	J. Phys. Chem. C,
MOF-74-Zn	/	/	50:50	1 bar	9ª	2012 , <i>116</i> , 26636
STA-12-Ni					6 ^a	
LIFM-10(Cu)	~110/~17	65.9/20.7	50.50	298 K	7.9 ^b	Chem. Eur. J.
LIFM-11(Cu)	~75/~10	78.0/19.1	50:50	1 bar	5.7 ^b	2016 , 22, 16147
	/	67/7	50:50	303 K	1.0h	J. Mater. Chem. A,
MIL-91(11)				1 bar	180	2016 , <i>4</i> , 1383
	,	1	50.50	303 K	10 59	Sep. Sci. Technol.,
Al-BDC	/	/	50:50	1 bar	10.5"	2015 , <i>50</i> , 874

Table. S5 Comparison of the experimental CO₂/CH₄ adsorption selectivity of different MOFs. The experimental selectivity better than that of β -Zn were highlighted in blue.

^{a.} breakthrough experiments, ^{b.} mixed-gas adsorption.

	Gas uptake	$(CO_2/CH_4, cm^3 g^{-1})$	CONCH	Temperature		
Materials	Mixed-gas	Single-component	(v;v)	&	Selectivity	Ref.
	ininea gas	single component	(,,,,)	Pressure		
a-Zn	2.5/7.8	27 48/9 60	10:90		2.9ª	
<u>u-211</u>	8.5/5.6	21.10/9.00	40:60	298 K	2.3ª	this work
ß_7n	11.3/3.3	10 16/9 78	10:90	1 bar	32 ^a	uns work
p-2/1	26.8/1.5	40.40/9.78	40:60		29 ^a	
						Microporo.
Zeolite 5 A	47/4.0		40.60	303 K	5 ch	Mesopor.
Zeonic JA	47/4.0		40.00	1.2 bar	50	Mat., 2014,
						200, 1
Zeolite NaX	103/1.6	96/—			61 ^a	
Zeolite EMC-1	116/2.2	108/—			41 ^a	Ind. Eng.
Zeolite NaUSY	42/3.6	27/—	50.50	303	12 ^a	Chem. Res.
Zeolite	85/67	63/	50.50	5 bar	14 ^e	2014 , <i>53</i> ,
SAPO-37	85/0.7	03/				9860
Zeolite DAY	20/4.7	11/—			5 ^a	
	/	90/17	50:50	288 V	17.05 ^b	Chem. Eng.
T-type Zeolite				200 K		<i>J.</i> , 2013 ,
				1 041		230, 380
	96/9	/	50:50	313 K 2 bar		Microporo.
Zeolite 13X					11 3 ª	Mesopor.
Zeonie 15X					11.5	Mat., 2014,
						187, 100
						ACS Appl.
Porous carbon				208 K		Mater.
	/	83/—	50:50	278 K	14.7 ^b	Interfaces
LI@GDY-NH2				1 bar		2017 , <i>9</i> ,
						30002
						J. Chem.
Activated	·/	40/22	50:50	303 K 100 kPa	3.6 ^a	Eng. Data,
carbon beads		47/22				2015 , <i>60</i> ,
						2684

Table. S6 Comparison of the experimental CO_2/CH_4 adsorption selectivity of porous adsorbent materials. The experimental selectivity better than that of β -Zn were highlighted in blue.

^{a.} breakthrough experiments, ^{b.} mixed-gas adsorption.

References

- P.-Q. Liao, H. Chen, D.-D. Zhou, S.-Y. Liu, C.-T. He, Z. Rui, H. Ji, J.-P. Zhang and X.-M. Chen, Energy Environ. Sci., 2015, 8, 1011-1016.
- 2. P.-Q. Liao, N.-Y. Huang, W.-X. Zhang, J.-P. Zhang and X.-M. Chen, Science, 2017, 356, 1193-1196.