Halogen Bonding Driven Crystal Engineering of Iodophthalonitrile Derivatives

Özge Dilara Ateş, ${ }^{a}$ Yunus Zorlu, ${ }^{\text {a }}$ Sibel Demir Kanmazalp, ${ }^{\text {b,c }}$ Yurii Chumakov, ${ }^{\text {b }}$ Ayşe Gül Gürek ${ }^{a}$ Mehmet Menaf Ayhan, ${ }^{a}$ *
${ }^{\text {a }}$ Department of Chemistry, Gebze Technical University, Gebze, 41400 Turkey
${ }^{\text {b }}$ Deparment of Physics, Gebze Technical University, Gebze, 41400 Turkey
${ }^{\text {c }}$ Technical Science Vocational School, Gaziantep University, 27310, Gaziantep, Turkey

Experimental Procedure:

All chemicals were purchased from commercial sources and used without further purification.

4-Aminophthalonitrile: 4-Nitrophthalonitrile ($0.44 \mathrm{~g}, 2.5 \mathrm{mmol}$) was added to a mixture of methanol (10 mL) and concentrated hydrochloric acid (3 mL) and stirred at $70^{\circ} \mathrm{C}$. Iron powder (0.6 g) was added in small portions over 45 min . After 1 h , the mixture was poured into cold water and the precipitate filtered off. Yellowish solid ($0.3 \mathrm{~g}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta=4.31(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, 1 \mathrm{H}), 6.94(\mathrm{~d}, 1 \mathrm{H}), 7.51(\mathrm{~d}, 1 \mathrm{H})$.

4-lodophthalonitrile (2a): 4-Aminophthalonitrile ($0.2 \mathrm{~g}, 1.4 \mathrm{mmol}$) was added to mixture of concentrated hydrochloric acid (6 mL), ice (20 g) and sodium nitrite ($0.15 \mathrm{~g}, 2.15 \mathrm{mmol}$) in water (3 mL) in one portion at $5^{\circ} \mathrm{C}$. After 2 hours, the solution was filtered. The diazonium salt solution was added dropwise to a stirred cool solution of potassium iodide in 5 mL water. The resulting dark brown mixture was stirred for 1 hour. Compound was extracted with toluene from mixture solution. Then organic phase was washed with cold water and cold $5 \% \mathrm{NaHCO}_{3}$, then saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (sat). The toluene solution was dried over anhydrous sodium sulfate. White solid ($0.25 \mathrm{~g}, 70 \%{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=7.86$ (d, 1H), 8.25 (dd, 1H), 8.59 (d,1H). ${ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO): $\delta=102.56,110.01,114.28,115.36,116.14$, 135.01, 142.30, 143.38.

3-Aminophthalonitrile: 3-Nitrophthalonitrile ($0.44 \mathrm{~g}, 2.5 \mathrm{mmoles}$) was added to a mixture of methanol $(10 \mathrm{~mL})$ and concentrated hydrochloric acid (3 mL) and stirred at $70^{\circ} \mathrm{C}$. Iron powder $(0.6 \mathrm{~g})$ was added in small portions over 45 min . After 1 h , the mixture was poured into cold water and the precipitate filtered off. Yellow solid ($0.25 \mathrm{~g}, 70 \%$). ${ }^{1 \mathrm{H}}$ NMR (CDCl_{3}): $\delta=4.73(\mathrm{~s}, 2 \mathrm{H}), 6.97(\mathrm{~d}, 1 \mathrm{H}), 7.09(\mathrm{~d}, 1 \mathrm{H}), 7.41(\mathrm{t}, 1 \mathrm{H})$.

3-lodophthalonitrile (2b): 3-Aminophthalonitrile ($0.2 \mathrm{~g}, 1.4 \mathrm{mmoles}$) was added to mixture of concentrated hydrochloric acid (6 mL), ice (20 g) and sodium nitrite ($0.15 \mathrm{~g}, 2.15 \mathrm{mmol}$) in water (3 mL) in one portion at $5^{\circ} \mathrm{C}$. After 2 hours, the solution was filtered. The diazonium salt solution was added
dropwise to a stirred cool solution of potassium iodide in 5 mL water. The resulting dark brown mixture was stirred for 1 hour. Compound was extracted with toluene from mixture solution. Then organic phase was washed with cold water and cold $5 \% \mathrm{NaHCO}_{3}$, then saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (sat). The toluene solution was dried over anhydrous sodium sulfate. White solid ($0.2 \mathrm{~g}, 56 \%)^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.41$ (t , $1 \mathrm{H}), 7.80(\mathrm{~m}, 1 \mathrm{H}), 8.18(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=144.25,136.43,132.81,125.74,118.65,116.80$, 116.40, 102.82.

4,5-Diiodophthalimide and 3,4-Diiodophthalimide: A mixture of oleum ($15 \mathrm{ml}, 30 \%$), phthalimide (10 g , $0.07 \mathrm{~mol})$ and $\mathrm{I}_{2}(17.2 \mathrm{~g}, 0.07 \mathrm{~mol})$ was stirred and heated at $90^{\circ} \mathrm{C}$ for 24 h . The resulting suspension was poured over ice, the precipitate was filtered, washed with water (50 ml), 4\% aq. $\mathrm{K}_{2} \mathrm{CO} 3(50 \mathrm{ml}$) and aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(50 \mathrm{ml})$. The crude product was recrystallized from acetone/water to give $18.1 \mathrm{~g}(65 \%)$ mixture of 4,5-diiodophthalimide and 3,4-diiodophthalimide as an off-white solid. The mixture compounds were used without further purifications.

4,5-Diiodophthaldiamide and 3,4-Diiodophthaldiamide: A mixture of 4,5 diiodophthalimide and 3,4diiodophthalimide ($5.3 \mathrm{~g}, 13.2 \mathrm{mmol}$) and aq. $\mathrm{NH}_{4} \mathrm{OH}(60 \mathrm{ml}, 25 \%)$ was stirred and heated at $60^{\circ} \mathrm{C}$ for 1.5 h . The resulting suspension was filtered, the precipitate was washed with cold water (50 ml), methanol $(50 \mathrm{ml})$ and air-dried to give $3.8 \mathrm{~g}(70 \%)$ mixture of 4,5-Diiodophthaldiamide and 3,4Diiodophthaldiamide as a white solid. The mixture compounds were used without further purifications.

4,5-Diiodophthalonitrile (2c) and 3,4-Diiodophthalonitrile (2d): Trifluoroacetic anhydride (10.6 ml, 75 mmol) was added dropwise to a mixture of 4,5-Diiodophthaldiamide and 3,4-Diiodophthaldiamide (5.5 g , $13 \mathrm{mmol})$, dioxane (100 ml) and pyridine (15 ml) at $0-5^{\circ} \mathrm{C}$. The resulting suspension was stirred at $25^{\circ} \mathrm{C}$ for 12 h , poured over ice and extracted with ethyl acetate (100 ml). The combined organic extracts were washed with water (50 ml), $1 \mathrm{M} \mathrm{HCl}(55 \mathrm{ml})$, aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(150 \mathrm{ml})$, water (50 ml) and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). The solvents were evaporated in vacuum and the residue was crystallized from acetone/water to give mixture of 4,5-diiodophthalonitrile (2c) and 3,4-diiodophthalonitrile (2d). These compounds were separated using silica gel chromatography with ethyl acetate-hexane (1:9) as eluent. 4,5diiodophthalonitrile (2c) ($2.96 \mathrm{~g}, 60 \%$ yield) and 3,4-diiodophthalonitrile (2d) ($0.5 \mathrm{~g}, 10 \%$ yield):

4,5-Diiodophthalonitrile (2c): IR: 2231 (CN) cm ${ }^{-1} .{ }^{1} \mathrm{HNMR}\left(d_{1}-\mathrm{CDCl}_{3}\right): \delta=8.24 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (CDCl3): 142.68, 115.32, 114.95, 113.38 ppm. MALDI-MS (DHB) m/z: $416.8607\left([\mathrm{M}+\mathrm{H}]^{+}\right)$

3,4-Diiodophthalonitrile(2d): IR: $2236(\mathrm{CN}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{HNMR}\left(d_{1}-\mathrm{CDCl} 3\right): \delta=8.22(\mathrm{~d}, 1 \mathrm{H}), 7.46(\mathrm{~d}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (CDCl3): $\delta=144.54,133.63,126.72,116.52,115.83,115.91,113.14,110.64$. MALDI-MS (DHB) m/z: $416.6\left([\mathrm{M}+\mathrm{H}]^{+}\right)$

Figure S1. The orientation of monomers' dipole moments in 1a-1c. 2a-2d.

Figure S2. Band structures of the titled compounds. The reciprocal coordinates of highsymmetry points are (1a) $\mathrm{X}=(0.5,0,0), \Gamma=(0,0,0), \mathrm{Y}=(0,0.5,0), \mathrm{V}=(0.5,0.5,0), \mathrm{R}=(0.5,0$, $0.5), \mathrm{Z}=(0,0,0.5) ;(\mathbf{1 b}) \mathrm{X}=(0.5,0,0), \Gamma=(0,0,0), Y=(0,0.5,0), \mathrm{D}=(0,0.5,0.5), \mathrm{Z}=(0,0$, $0.5) ;(\mathbf{1 c}) \mathrm{X}=(0.5,0,0), \Gamma=(0,0,0), \mathrm{Y}=(0,0.5,0), \mathrm{T}=(0,0.5,0.5), \mathrm{Z}=(0,0,0.5) ;(2 \mathbf{a}) \mathrm{X}=$
$(0.5,0,0), \Gamma=(0,0,0), Y=(0,0.5,0), V=(0.5,0.5,0), T=(0.5,0,0.5), Z=(0,0,0.5),(\mathbf{2 b}) \mathrm{X}=$ $(0.5,0,0), \Gamma=(0,0,0), Y=(0,0.5,0), \mathrm{E}=(0.5,0.5,0.5), \mathrm{A}=(0.5,0,0.5), \mathrm{Z}=(0,0,0.5),(2 \mathrm{c}) \mathrm{X}=$ $(0.5,0,0), \Gamma=(0,0,0), \mathrm{Z}=(0,0,0.5), \mathrm{T}=(0.5,0,0.5), \mathrm{V}=(0.5,0.5,0.5), \mathrm{R}=(0,0.5,0.5), \mathrm{Y}=$ $(0,0.5,0),(2 d) X=(0.5,0,0), \Gamma=(0,0,0), Y=(0,0.5,0), D=(0,0.5,0.5), Z=(0,0,0.5)$.

Table S1. Comparison of the selected bond lengths (\AA) for compounds 2a-2d.

2a		2b	
C7-N1	$1.159(7)$	C7-N1	$1.138(7)$
C8-N2	$1.147(6)$	C8-N2	$1.148(7)$
C4-I1	$2.083(5)$	C3-I1	$2.085(5)$

2c		2d	
C7-N1	$1.150(3)$	C8-N2	$1.133(19)$
C8-N2	$1.170(2)$	C7-N1	$1.128(17)$
C4-I1	$2.087(17)$	C8a-N2a	$1.121(15)$
C3-I2	$2.085(17)$	C7a-N1a	$1.132(18)$
		C5-I1	$2.092(11)$
		C4-I2	$2.087(13)$
		C5a-I1a	$2.064(12)$
		C4a-I2a	$2.097(13)$

Table S2. Geometric parameters used for the determination of the $\pi \cdots \pi$ interactions between phenyl cycles. For compound 2c the distances between centroids are presented for phenyl rings of $\mathbf{2 c} \mathbf{1}$ and $\mathbf{2 c} \mathbf{2}$ respectively.

d(CgI $\cdots{ }^{\text {CgI' }}$)		α	β	Symmetry transformation for CgI'.
1a	3.99	0	26.5	1/2-X, 1/2-Y,-1/2-Z
1b	4.16	0	32.9	$X,-1+Y, Z$
1c	4.204	0	30.3	X,Y,-1+Z
2a	4.493	0	40.3	$-X, 1-Y,-Z$
	4.356	0	37.6	1-X,2-Y,1-Z
2b	3.845	1.3	24.6	X, 1/2-Y,-1/2+Z
	3.846	1.3	23.9	$X, 1 / 2-Y, 1 / 2+Z$
2c	5.399(10)	0	48.4	1-X,-Y,1-Z
	5.158(10)	0	46.7	1-X,1-Y,1-Z
2d	4.155(8)	0	25.7	X,-1+Y,Z
	4.155(7)	0	28.5	X,-1+Y,Z

Table S3. Calculated parameters for C-(N, I)...Cg (π-ring) interactions analysis.

C-N...CgI'		N...CgI'	$\boldsymbol{\gamma}$	Symmetry transformation for CgI'.
$\mathbf{1 b}$	$\mathrm{C} 7-\mathrm{N} 1 \ldots \mathrm{Cg}(1)$	3.8595	25.1	$X, 1+Y, Z$
$\mathbf{2 a}$	$\mathrm{C} 7-\mathrm{N} 1 \ldots \mathrm{Cg}(1)$	3.657	21.42	$1-X, 2-Y, 1-Z$
$\mathbf{2 c} \mathbf{c}$	$\mathrm{C} 4-\mathrm{I} 1 \ldots \mathrm{Cg}(1)$	3.754	11.86	$1-X, 1-Y, 1-Z$
		$\mathrm{C} 5-\mathrm{I} 2 \ldots \mathrm{Cg}(1)$	3.757	10.64

Table S4. Donor-acceptor interaction energies $\mathrm{E}^{2}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$ and charge differences (e) for halogen bonding.

Compounds	$\Delta \mathbf{q}_{\text {I }}$	$\Delta \mathbf{q}_{\text {N }}$	Delocalization	$\mathrm{E}^{(2)}$ [$\left.\mathrm{kcal} / \mathrm{mol}\right]$
1a	-0.04	0.034	$\mathrm{LP}(1) \mathrm{N} 1 \rightarrow \sigma^{*}$ (I1-C4)	3.58
1b	-0.009	-	$\mathrm{LP}(3) \mathrm{I} 1 \rightarrow \sigma^{*}(\mathrm{C} 3-\mathrm{I} 1)$	2.15
1c	0.004	-	$\mathrm{LP}(3) \mathrm{I} 1 \rightarrow \sigma^{*}$ ($\left.\mathrm{I} 1-\mathrm{C} 2\right)$	2.5
2 a	-0.025	0.031	$\begin{aligned} & \hline \mathrm{LP}(1) \mathrm{I} 1 \rightarrow \sigma^{*}(\mathrm{C} 8-\mathrm{N} 2) \\ & \sigma(\mathrm{C} 4-\mathrm{I} 1) \rightarrow \mathrm{RY} Y^{*}(4) \mathrm{N} 2 \end{aligned}$	$\begin{aligned} & 1.76 \\ & 1.49 \end{aligned}$
2b	-0.035	0.006	$\sigma(\mathrm{C} 3-\mathrm{I} 1) \rightarrow \mathrm{RY}^{*}(5) \mathrm{N} 2$ $\mathrm{LP}(1) \mathrm{I} 1 \rightarrow \mathrm{RY} Y^{*}(2) \mathrm{N} 2$ $\mathrm{LP}(1) \mathrm{I} 1 \rightarrow \sigma^{*}(\mathrm{C} 8-\mathrm{N} 1)$	$\begin{aligned} & 2.12 \\ & 1.96 \\ & 1.84 \end{aligned}$
2 c	0.024	-0.023	$\begin{aligned} & \sigma(\mathrm{C} 3-\mathrm{I} 2) \rightarrow \mathrm{RY}^{*}(2) \mathrm{N} 1 \\ & \mathrm{LP}(1) \mathrm{I} 2 \rightarrow \sigma^{*}(\mathrm{C} 7-\mathrm{N} 1) \end{aligned}$	$\begin{aligned} & 1.88 \\ & 1.78 \\ & \hline \end{aligned}$
	0.018	-0.027	$\begin{aligned} & \sigma(\mathrm{C} 4-\mathrm{I} 1) \rightarrow \mathrm{RY}^{*}(2) \mathrm{N} 2 \\ & \mathrm{LP}(1) \mathrm{I} 1 \rightarrow \sigma^{*}(\mathrm{C} 8-\mathrm{N} 2) \end{aligned}$	$\begin{aligned} & 2.14 \\ & 1.75 \end{aligned}$
2d1S	-0.024	0.012	LP(1)N2 $\rightarrow \sigma^{*}(\mathrm{C} 5-\mathrm{I} 1)$	2.48
2d1L	-0.004	-0,027	LP(1)N2a $\rightarrow \sigma^{*}$ (C4-I2)	1.35
2d1I	-0.009	-	$\mathrm{LP}(3) \mathrm{I} 1 \rightarrow \sigma^{*}(\mathrm{C} 5 \mathrm{a}-\mathrm{Ila})$	0.24
2d1T	0.011	0.044	$\begin{aligned} & \sigma(\mathrm{C} 5-\mathrm{I} 1) \rightarrow \mathrm{RY}^{*}(1) \mathrm{N} 2 \\ & \sigma(\mathrm{C} 5-\mathrm{I} 1) \rightarrow \mathrm{RY}^{*}(2) \mathrm{N} 2 \\ & \sigma(\mathrm{C} 5-\mathrm{I} 1) \rightarrow \mathrm{RY}^{*}(4) \mathrm{N} 2 \end{aligned}$	$\begin{aligned} & 2.08 \\ & 1.61 \\ & 1.36 \end{aligned}$
	-0.028	-	$\begin{aligned} & \mathrm{LP}(1) \mathrm{I} 1 \rightarrow \mathrm{RY}^{*}(4) \mathrm{I} 1 \mathrm{a} \\ & \mathrm{LP}(1) \mathrm{I} 1 \rightarrow \sigma^{*}(\mathrm{C} 5 \mathrm{a}-\mathrm{Ila}) \end{aligned}$	$\begin{aligned} & 1.32 \\ & 0.92 \end{aligned}$

Table S5. Electron Density, $\boldsymbol{\rho}$, Laplacian, $\boldsymbol{\nabla}^{2} \boldsymbol{\rho}$ (a.u.) at the halogen bonds' critical points and interaction energies ($\Delta \mathrm{E}, \mathrm{kcal} / \mathrm{mol}$) in 1a-1c, 2a-2c, 2d1S, 2d1L, 2d1I. For 2b and 2c the interaction energy in brackets denotes $\Delta \mathrm{E}$ per one XB while in 2d1S and 2d1I the two values for $\Delta \mathrm{E}$ refer to dimer and trimer respectively.

Compounds	$\mathbf{X B}$	$\boldsymbol{\rho}$	$\nabla^{2} \boldsymbol{\rho}$
$\mathbf{1 a}$	$\mathrm{I} \cdots \mathrm{N} 1$	0.013	0.041
$\mathbf{1 b}$	$\mathrm{I} 1 \cdots \mathrm{I} 1$	0.009	0.02
$\mathbf{1 c}$	$\mathrm{I} 1 \cdots \mathrm{I} 1$	0.009	0.02
$\mathbf{2 a}$	$\mathrm{I} 1 \cdots \mathrm{~N} 2$	0.011	0.034
$\mathbf{2 b}$	$\mathrm{I} 1 \cdots \mathrm{~N} 2$	0.011	0.034
$\mathbf{2 c}$	$\mathrm{I} 1 \cdots \mathrm{~N} 2$	0.01	0.031
	$\mathrm{I} 2 \cdots \mathrm{~N} 1$	0.009	0.028
$\mathbf{2 d 1 S}$	$\mathrm{I} 1 \cdots \mathrm{~N} 2$	0.012	0.038
$\mathbf{2 d 1 L}$	$\mathrm{I} 2 \cdots \mathrm{~N} 2 \mathrm{a}$	0.009	0.028
$\mathbf{2 d 1 I}$	$\mathrm{I} 1 \cdots \mathrm{I} 1 \mathrm{a}$	0.011	0.027

Table S6. Natural charges and their differences (e) for halogen bonding.

	Atoms	q(monomer)	q(dimer)	$\Delta \mathbf{q}$
1a	I1	0.209	0.249	-0.04
	N1	-0.306	-0.34	0.034
$\mathbf{1 b}$	I1	0.245	0.254	-0.009
$\mathbf{1 c}$	I1	0.211	0.207	0.004
$\mathbf{2 a}$	I1	0.244	0.269	-0.025
	N2	-0.261	-0.292	0.031
	N1	-0.271	-0.275	0.004
$\mathbf{2 b}$	I1	0.272	0.307	-0.035
	N2	-0.254	-0.302	0.048
	N1	-0.262	-0.269	0.006
	I1	0.276	0.293	0.018
	N1	-0.266	-0.289	-0.022
	2c	I2	0.271	0.295
	N2	-0.265	-0.292	-0.024
$\mathbf{2 d - 1 S}$	I1	0.294	0.318	-0.024
	N2	-0.25	-0.262	0.012
	2d-1L	I2	0.294	0.298
$\mathbf{2 d - 1 I}$	N2a	-0.26	-0.287	$-0,004$
	I1a	0.31	0.31	0.06
	I1	0.275	0.266	-0.009
2d-1T	I1a	0.294	0.322	-0.028
	I1	0.31	0.32	0.011
	N2	-0.25	-0.294	0.044

