Supplementary Information

Nanotube-shaped PtFe intermetallics: Control synthesis, crystal structure and their improved electrocatalytic activities

Xuebin Zhang,^a Shujun Tian,^a Wenjing Yu,^a Bingqing Lu,^a Tianyang Shen,^b Lin Xu,^a Dongmei Sun,^{*a} Shoulin Zhang^{*a} and Yawen Tang^a

- ^a Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
- ^b College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Corresponding Authors: sundongmei@njnu.edu.cn; zhangshoulin@njnu.edu.cn

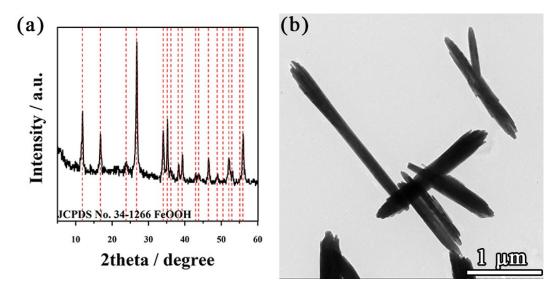
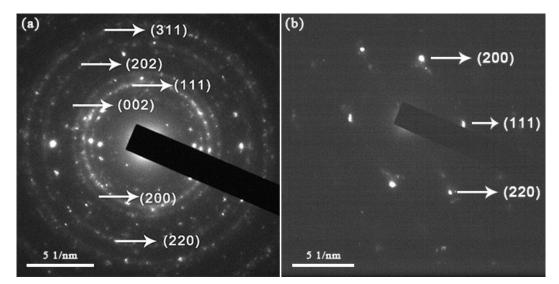
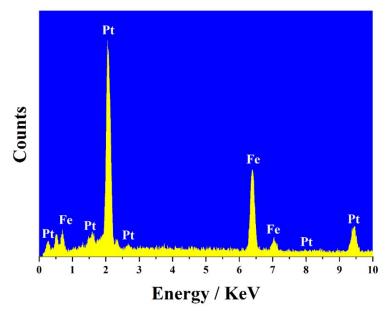
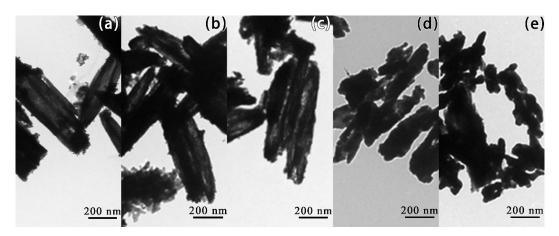
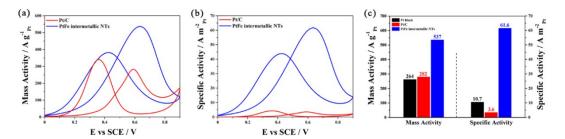
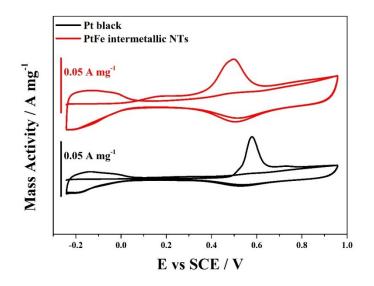
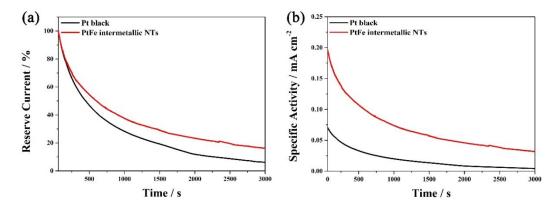



Fig. S1 (a) XRD pattern and (b) TEM image of FeOOH nanorod.

Fig. S2 Selected area electron diffraction patterns of the PtFe intermetallic nanotube of (a) as a whole and (b) a single PtFe intermetallic nanoparticle sitting on the surface of the tube.


Fig. S3 EDX spectrum of order PtFe intermetallic nanotube.


Fig. S4 TEM images of (a) PtFe-300, (b) PtFe-400, (c) PtFe-500, (d) PtFe-600, (e) PtFe-700.

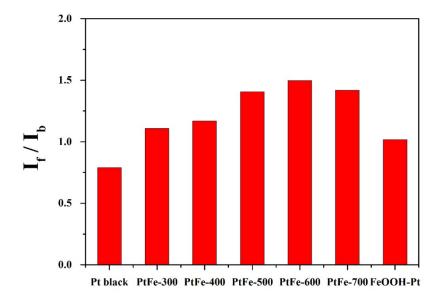

Fig. S5 (a) Mass-normalized, (b) ECSA-normalized cyclic voltammograms of Pt/C (red line) and PtFe intermetallic NTs (blue line) in the N₂-saturated 1 M CH₃OH + 0.5 M H₂SO₄ solution at a scan rate of 50 mV s⁻¹, and (c) the comparison of the corresponding I_f of the related catalysts.

Fig. S6 Cyclic voltammograms of pre-absorbed CO at PtFe intermetallic NTs (red line) and Pt black (black line) in 0.5 M H_2SO_4 solution at the scan rate of 50 mV s⁻¹.

Fig. S7 Chronoamperometry curves of PtFe intermetallic NTs and Pt black in 1 M CH₃OH + 0.5 M H₂SO₄ solution at 0.7 V.

Fig. S8 *I_f/I_b* of PtFe-300, PtFe-400, PtFe-500, PtFe-600, PtFe-700, FeOOH-Pt and Pt black.

No	Catalysts	Mass Activity (A g ⁻¹ Pt)	Specific Activity (A m ⁻² Pt)	Electrolyte	Morphology	Ref.
1	PtFe intermetallic nanotube	536	61.64	0.5 M H ₂ SO ₄ and 1 M CH ₃ OH solution		Our work
2	Ga-Pt intermetallic nanoparticle embedded in graphene	76	14.80	0.5 M KOH and 2M CH ₃ OH solution	(a)	Electrochin . Acta, 2015, 190 , 659-667
3	Pt₃Ti/C inter- metallic nanoparticle	149	0.31	0.1 M HClO ₄ and 1 M CH ₃ OH solution	5.nm	J. Am. Chem. Soc. 2014, 136 , 10206- 10209
4	Pt₃V/C inter- metallic nanoparticle	200	0.38	0.1 M HClO₄ and 1 M CH₃OH solution	5 m	J. Am. Chem. Soc. 2014, 136 , 10206- 10209
5	Pt₃Ti intermetallic nanoparticles	56	6.10	0.5 M HClO ₄ and 0.5 M CH ₃ OH solution	а <u>10 пт</u>	J. Am. Chem. Soc. 2008, 130 , 5452-5458
6	Cubic intermetallic PtCu ₃ nanocages	50	141.0	0.1 M HClO ₄ and 1 M CH ₃ OH solution solution	a	J. Am. Chem. Soc 2012, 134 , 13934–139 37
7	Intermetallic Pt₃Zn nanocrystals	250	9.50	0.5 M methanol and 0.1 M CH ₃ OH solution	b) 0.22 nm (11) (11) (10)	ACS Nano, 2012, 6 , 5642-5647

Table S1 Activity comparison of Pt-based intermetallic catalysts towardmethanol oxidation reaction.