Supporting Information for Structural Motifs in Salts of Sulfathiazole: Implications for Design of Salt Forms in Pharmaceuticals APIs.

Identification code	I	П	III
Empirical formula	C18 H21 N9 O13 S4	C9 H10 B F4 N3 O2 S2	C18 H22 N6 O9 S5
Formula weight	699.68	343.13	626.71
Temperature (K)	173(3)	173(2)	173(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P2(1)/n	P2(1)/c	C2/c
Unit cell dimensions (Å, °)	a = 14.9484(4) b = 8.2585(2) c = 22.9621(6) $\alpha = 90$ $\beta = 100.8180(10)$ $\gamma = 90^{\circ}$	a = 8.0557(2) b = 9.9422(3) c = 17.2090(5) $\alpha = 90$ $\beta = 90.5700(10)$ $\gamma = 90$	a = 17.4737(9) b = 11.6240(5) c = 11.7557(5) $\alpha = 90$ $\beta = 90.072 (2)$ $\gamma = 90$
Volume (Å ³)	2784.32 (12) Å3	1378.22(7)	2387.8 (2)
Ζ	4	4	4
Density (calculated) (Mg/m ³)	1.669	1.654	1.743
Absorption coefficient (mm ⁻¹)	0.42	0.438	0.551
Theta range for data collection	1.79 to 30.07	2.53 to 30.06	2.33 to 30.23
(°)			
Index ranges	$-21 \le h \le 21$	$-11 \le h \le 11$	$-24 \leq h \leq 24$
	$-11 \le k \le 11$	$-13 \le k \le 13$	$-16 \le k \le 16$
	$-30 \le l \le 31$	$-22 \le l \le 24$	$-16 \le l \le 15$
Reflections collected	67503	36555	29335
Independent reflections	8100 [R(int) =	4023 [R(int) =	3526 [R(int) =
	0.046]	0.0309]	0.053]
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F ²	squares on F ²	squares on F ²
Data / restraints / parameters	8100 / 0 / 565	4023 / 0 / 206	3526/ 0 /238
Goodness-of-fit on F ²	1.026	1.096	1.055
Final R indices [I>2sigma(I)]	R1 = 0.039, wR2 =	R1 = 0.0369, wR2 =	R1 = 0.0504, wR2 =
	0.0897	0.0963	0.0961
R indices (all data)	R1 = 0.0638, wR2 =	R1 = 0.0422, wR2 =	R1 = 0.0922, wR2 =
	0.1022	0.1008	0.1134
Largest diff. peak and hole (e.Å ⁻³)	0.415 and -0.392	0.556 and -0.448	0.487 and -0.548

Table S1. Crystal data and structure refinement for I, II, III, V, VI.

Identification code	V	VI
Empirical formula	V C15 H15 N3 O5 S3	C ₂₂ H ₂₇ N ₃ O ₆ S ₃
Formula weight	413.48	525.64
Temperature (K)	173(3)	173(2)
Wavelength (Å)	0.71073	0.71073
Crystal system	Orthorhombic	Triclinic
Space group	Pbcn	P -1
Unit cell dimensions (Å, °)	a = 28.4964(13) b = 8.1448 (3) c = 15.5302 (7)	a = 13.1054(4) b = 13.3838(3) c = 17.8464(4) $\alpha = 109.9580(10)$ $\beta = 92.029(2)$ $\gamma = 111.5910(10)$
Volume (Å ³)	3604.5(3)	2688.99
Ζ	8	4
Density (calculated) (Mg/m ³)	1.524	1.298
Absorption coefficient (mm ⁻¹)	0.444	0.315
Theta range for data collection (°)	2.60 to 20.30	2.28 to 26.14
Index ranges	$-37 \le h \le 36$	$-17 \le h \le 17$
	$-9 \le k \le 10$	$-17 \le k \le 18$
	$-20 \le l \le 20$	$-24 \leq l \leq 24$
Reflections collected	85436	70608
Independent reflections	4115 [R(int) = 0.116]	13884 [R(int) = 0.060
Refinement method	Full-matrix least-	Full-matrix least-
	squares on F ²	squares on F^2
Data / restraints / parameters	4115 / 0 / 354	13884 / 0 / 715
Goodness-of-fit on F ²	1.102	1.208
Final R indices [I>2sigma(I)]	R1 = 0.0537, wR2 =	R1 = 0.0496, wR2 =
	0.0998	0.1100
R indices (all data)	R1 = 0.1032, wR2 =	R1 = 0.0978, wR2 =
	0.1220	0.1382
Largest diff. peak and hole $(e.Å^{-3})$	0.391 and -0.561	0.456 and -0.463

REFCODE	Co-Former	
ADEDIX (polymorphic)	pyridine	
BABYIN	acetonitrile	
BABYOT	N-formylpiperidine	
FIZFUR	4-nitrobenzoic acid	
FURDIF	Dioxane	
HADMUU	18-crown-6/acetonitrile	
KUFWOZ	4-aminobenzamide	
LOFLUP	Glutaric acid	
SOGSEO	dimethylformamide	
STHSAM	sulfanilamide	
SULTHE	theophylline	
WIYLAT	2,4,6-tris(pyridin-2-yl)-1,3,5-triazine	

Table S2. Published Crystal Structures of STZ Co-crystals

Crystal Structure Packing Analysis of CSD Salts

Systems where STZ acts as a base.

BUWDUT

STZ dimers are formed from ⁺NH...N= H-bonds. These are linked into a 2-D sheet in the b-c plane through a collection of NH...F H-bonds (Figure 1). Sheets then stack in a-direction through weaker ring...ring motifs (Figure 2).

Figure S1. Formation of 2-D sheet in STZ.SiF₆

Figure S2. Packing of sheets along a-axis.

UDAKOA

STZ molecules form a 1-D chain through a NH...O=S H-bond. These are supported by two NH...O bonds to the water molecules (Figure 3) and an OH...O=S hydrogen bond then links these chains into a 2-D sheet (Figure 4). The sheets are linked into the final 3-D structure by the NO_3^- anions forming an OH...O and NH...O hydrogen bonds (Figure 5).

Figure S3. 1-D chain formed between STZ and H_2O in UDAKOA.

Figure S4. 2-D sheet formed through NO₃/H₂O interactions.

Figure S5. Completion of 3-D structure through packing of 2-D sheet.

KUFWIT

STZ molecules dimerise through a $R^2_2(16)$ motif (NH...O=S bond). These dimers then form a 1-D chain through further NH...N and NH...O=S bonds, the carboxylate anion links to the chain through two NH...O bonds (Figure 6). To this the neutral acid H-bonds through an OH...O interaction. These chains then interweave between each other through π ... π and CH...O interactions to form final crystal structure (Figure 7).

Figure S6. Formation of 1-D ribbon.

Figure S7. Interlocking of 1-D chains.

LOFMAW

Polymorphic system.

Form I

1-D ladder form between both components along the a-axis formed by NH...O, OH...O and NH...N H-bonds (Figure 8), which are linked through NH...O bonds to form a 2-D sheet motif (Figure 9), which forming the final 3-D structure through NH...O bonds.

Figure S8. Ladder motif in LOFMAW.

Figure S9. 2-D sheet formed by linking 1-D chains.

Form II (LOFMAW01)

1-D chain is formed between STZ and oxalate anions through NH...O=S and NH...O H-bonds (Figure 10), which are interlinked into a 2-D sheet through oxalate to oxalate hydrogen bonds (Figure 11). 3-D structure is constructed through interweaving of the 2-D motifs held together by weak CH...O bonds (Figure 12).

Figure S10. 1-D Chain of STZ...oxalate anions.

Figure S11. 2-D sheet formed between the 1-D chains.

Figure S12. Final 3-D packing through interweaving of 2-D layers.

Systems where STZ acts as an acid.

BUHMOI

Components are bound in a pair through NH...N R²₂(8) H-bond. STZ molecules form a 1-D chain through NH...O=S bond and chains combine into a 2-D sheet by NH...O=S interaction (Figure 13). 3-D structure is formed by stacking the sheets along the a-axis through weaker NH...S bonds.

Figure S13. 2-D sheet structure in BUHMOI

DOWPUC

STZ molecules form a 2-D sheet in *ab* plane through NH...O=S H-bonds (Figure 14). The counterion bonds to the STZ through a NH...N_{ring} H-bond, weker CH...N bonds between these molecules links the sheet together to form the final structure (Figure 15).

Figure S14. Formation of 2-D sheet in DOWPUC.

Figure S15. Packing of second molecule into 2-D to form 3-D structure.

DOWQAJ

Channel clathrate with a 1-D chain of piperazine molecules (along a-axis) within a STZ channel formed by NH...O=S bonds (Figure 16), which a linked through further NH...O=S bonds to form 3-D structure.

Figure S16. 1-D channel formed from STZ molecules with piperazine inclusion.

Figure S17. Interlocking channels to form final structure.

HSLSTZ

2-D sheet formed through direct interaction of the two sulfonamides (Figure 18) through a collection of NH...O=S and NH...N H-bonds. These are linked through a NH...O=S H-bond forming the final structure (Figure 19).

Figure S18. 2-D sheet formed for HSLSTZ

Figure S19. Stacking of 2-D sheets to form 3-D structure.

OHUWAR

The two components of the salt form a tetramer through a $R^{4}(18)$ set of NH...N and OH...N hydrogen bonds. These are linked into a 1-D ribbon through NH...N hydrogen bonds (Figure 20), which further forms a 2-D sheet with C-H...O=S links (Figure 21). Final structure formed by stacking along a-axis with further CH...O=S bonds.

Figure S20. Linking of tetramers into 1-D chain.

Figure S21. 2-D sheet in *bc* plane.

OHUWEV

STZ molecules form a 2-D sheet through NH...O=S bonds (Figure 22), these are linked through pairs of anions with OH...N/NH...N hydrogen bonds to form the final structure.

OHUWIZ

STZ molecules form a dimer and are linked together with anion dimers to form a 1-D chain through a range of hydrogen bonds (Figure 23). These chains are linked through NH...O=S bonds to form a 2-D structure which are stacked in the c-axis with weak CH...O=S bonds to give the final structure.

Figure S23. 1-D linked chain of molecules in OHUWIZ

QEDWAZ

STZ molecules link through NH...O=S bonds to form a 1-D ribbon, which are linked though dimers of counterion with OH...N bonds to form 2-D sheet (Figure 24). Final structure is formed by stacking held together with NH...O=S H-bonds.

Figure S24. 2-D sheet in QEDWAZ structure.

XIFPEI01

1-D ribbon is formed through the two components (Figure 25) by a combination of NH...O=S interactions between both species, a second NH...O=S H-bond then links these chains into a 2-D structure (Figure 26). Final structure is formed from stacking of these sheets with interweaving of thiazole rings (Figure 27).

Figure S25. 1-D ribbon in XIFPEI

Figure S26. Rotation of Figure 25 chain, then linked through NH...O=S bonds.

Figure S27. Stacking of 2-D sheets into final structure.

Salt II (BF4)

Salt III (SO₄)

Figure S28. Morphologies of STZ salts studied.