Supporting Information

Synthesis of hollow ZnSe nanospheres with high photocatalytic activity: synergetic effect of cation exchange and selective Cu_{2-x}Se

template etching

Xin Huang, ^{a,b} Yu Zou, *^{b,c} Jian Hao ^{a,d} and Jiang Jiang *^b

^a Department of Chemistry, Shanghai University, Shanghai 200444, China.
^b *i*-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
E-mail: yzou2012@sinano.ac.cn; jjiang2010@sinano.ac.cn
^c State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
^d Fundamental Science Institute of Cultural Heritage Conservation, Shanghai University, Shanghai 200444, China.

Fig. S1 TEM image (a) and XRD pattern (b) of the template $Cu_{2-x}Se$ nanoparticles.

Fig. S2 Size comparision between hollow ZnSe nanospheres and original $Cu_{2-x}Se$ templates.

Fig. S3 The photograph of $Cu_{2-x}Se$ methanol dispersion before (a) and after (b) addition of TBP in air.

Fig. S4. The UV-vis-NIR absorption spectrum of $Cu_{2-x}Se$ nanospheres.

Fig. S5 The time-dependent absorption spectra of MO solution containing P25 (a), bulk ZnSe (b) and hollow ZnSe (c) of the same weight under light irradiation produced by a 300 W Xe lamp with wavelength coverage from 320 nm to 780 nm.

Fig. S6 (a) Absorption spectra of ZnSe hollow nanospheres and TiO_2 aqueous dispersion with the same optical density at 365 nm; (b) Comparision of photocatalytic degradation kinetics of methyl orange solution under 365 nm UV lamp excitation in presence of ZnSe hollow nanospheres and TiO_2 with same optical density at 365 nm.

Fig. S7 TEM image of the hollow ZnSe nanospheres after photocatalytic degradation of MO.