ATwo-foldInterpenetratedZinc-OrganicFramework:LuminescentDetectionof CrO_4^2 -/ $Cr_2O_7^2$ -andChemicalConversionof CO_2

Ying Shi,^a Tian-Qun Song,^{a,b} Chun-Shuai Cao^a and Bin Zhao^{*a}

 ^{a.} Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
 ^{b.} Department of Chemistry, Tianjin University, Tianjin 300072, China

> Identification code 1 C₂₃H_{21.4}N₃O_{8.2}Zn Empirical formula 536.44 Formula weight Temperature/K 120.00(10) Crystal system triclinic **P-1** Space group a/Å 10.1188(7)b/Å 10.9420(11) c/Å 11.7024(10) $\alpha/^{\circ}$ 63.853(9) $\beta/^{\circ}$ 82.358(6) γ/° 72.588(7) Volume/Å³ 1109.81(18) Ζ 2 $\rho_{calc}g/cm^3$ 1.579 μ/mm^{-1} 1.164 F(000) 535.0 Radiation MoK α ($\lambda = 0.71073$) 20 range for data collection/° 5.728 to 50.016 Index ranges $-11 \le h \le 12, -12 \le k \le 13, -7 \le l \le 13$ Independent reflections $3894 [R_{int} = 0.0469, R_{sigma} = 0.0784]$ Goodness-of-fit on F² 0.941 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0544, wR_2 = 0.1313$ Final R indexes [all data] $R_1 = 0.0761$, $wR_2 = 0.1459$

 Table S1. Crystal data and structure refinement for compound 1.

Figure S1. The FT-IR spectra of the ligand (black) and the compound 1 (red).

Figure S2. The PXRD patterns of **1**, synthesized compounds (red) and simulated from the singlecrystal data (black).

Figure S3. The PXRD patterns of compound **1** after immersing in various organic solvents (a) and different pH values from 1.0 to 13.0 (b); the PXRD patterns of compound **1** after heating at different temperatures (c).

Figure S4. The thermogravimetric analyses curve of compound **1**, the weight loss of 14.34% is similar to the calculated value (14.09%).

4-Butyl-1,3-dioxolan-2-one ¹H NMR (300 MHz, CDCl₃)

4-Phenyl-1,3-dioxolan-2-one ¹H NMR (300 MHz, CDCl₃)

4-(Phenoxymethyl)-1,3-dioxolan-2-one ¹H NMR (300 MHz, CDCl₃)

8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 fl (ppm)

4-(Chloromethyl)-1,3-dioxolan-2-one

Figure S5. The ¹H NMR plots of the products converting from the cycloaddition reaction of CO_2 with epoxides.

Figure S6. The PXRD patterns of 1 after five catalytic recyclings and the simulated one from 1.

Figure S7. The CO₂ adsorption/desorption of 1 at 273 K.

Figure S8. The possible mechanism for the reaction of epoxidation.

	5	1						
entry	catalyst	interpenetrated numbers	catalyst (mol %)	pressure (Mpa)	temp (℃)	time (h)	conversion (%)	ref
1^a	$[{Ni(muco)(bpa)(2H_2O)} \cdot 2H_2O]$	3-fold	0.5	0.8	80	12	81.3	1
2^a	$[\{Co(muco)(bpa)(2H_2O)\}\cdot 2H_2O]_n$	3-fold	0.5	0.8	80	12	>99	2
			0.5	0.1	80	12	85.6	
			0.5	0.1	100	15	94.2	
3 <i>a</i>	$[Zn_6(TATAB)_4(DABCO)_3- (H_2O)_3] \cdot 12DMF \cdot 9H_2O$	3-fold	0.42	0.1	100	16	90	3
4 <i>a</i>	${[Zn(DCTP)]\cdot 3H_2O}_n$	2-fold	2.8	0.1	70	12	88	this work
5 ^{<i>a</i>}	$[Zn_4OL_3]_n$	2-fold	0.3	0.1	50	4	55	4
6 ^{<i>b</i>}	MMPF-18	4-fold	0.25	0.1	r.t.	48	96.97	5
7^b	[Cu(bpy) ₂ (EDS)] _n	2-fold	1.0	0.1	r.t.	48	>99	6
8 ^b	${Cu_2((C_{57}H_{36}N_{12})(COO)_4)-$ $(H_2O)_2 \cdot 22(DMF)_n$	2-fold	0.4	0.1	r.t.	60	94	7
	$\begin{aligned} &\{Cu_2((C_{57}H_{36}N_{12})(COO)_4)-\\ &(H_2O)_2{\cdot}7(DMF)\}_n \end{aligned}$	4-fold	0.4	0.1	r.t.	60	49	

Table S2. Comparison of the catalytic activity of some reported interpenetrated-MOFs for the cycloaddition reaction of CO₂ with epoxides.

^{*a*} The epoxide is styrene oxide, ^{*b*} The epoxide is propylene oxide.

Figure S9. The solid-state photoluminescence spectra of H₂DCTP (λ_{excited} = 320 nm) and the emission spectra of compound 1 (λ_{excited} = 320 nm).

Figure S10. The luminescence intensity of $1-\text{CrO}_4^{2-}$ (a) and $1-\text{Cr}_2\text{O}_7^{2-}$ (b) under mixed anions (5×10⁻³ M).

Figure S11. The PXRD patterns of 1 after five luminescent recyclings and the simulated one from compound 1.

Figure S12. The UV-vis spectra of the K_2CrO_4 and $K_2Cr_2O_7$ solutions.

entry	molecular formula	analyte($CrO_4^{2-}/Cr_2O_7^{2-}$)	LOD(mol/L)	ref
1	[Y(BTC)(H ₂ O) ₆] _n :0.1Eu	CrO ₄ ²⁻ /Cr ₂ O ₇ ²⁻	3.0×10 ⁻⁸ /4.0×10 ⁻⁸	8
2	Eu ³⁺ @MIL-121	$Cr_2O_7^{2-}$	5.4×10 ⁻⁸	9
3	{[Tb ₄ Mn-(BPDC) ₃ (µ ₃ -H) ₄ - (HCOO) _{1.5} (H ₂ O) ₄]·2.5OH·8H ₂ O} _n	$Cr_2O_7^{2-}$	10-7	10
4	$\{[Zn_3(bpanth)(oba)_3] \cdot 2DMF\}_n$	CrO ₄ ²⁻ /Cr ₂ O ₇ ²⁻	1.54×10 ⁻⁶ /2.38×10 ⁻⁶	11
5	$\{[Zn(DCTP)] \cdot 2.5H_2O\}_n$	CrO4 ²⁻ /Cr ₂ O ₇ ²⁻	1.0×10 ⁻⁶ /1.5×10 ⁻⁶	this work
6	$[Cd(IPA)(L)]_n$	CrO ₄ ²⁻ /Cr ₂ O ₇ ²⁻	2.52×10 ⁻⁶ /2.26×10 ⁻⁶	12
	$[Zn(IPA)(L)]_n$	CrO ₄ ²⁻ /Cr ₂ O ₇ ²⁻	1.83×10 ⁻⁵ /1.2×10 ⁻⁵	
7	$\{[Zn_3(tza)_2(\mu_2-OH)_2(H_2O)_2]\cdot H_2O\}_n$	CrO4 ²⁻ /Cr ₂ O ₇ ²⁻	4.0×10 ⁻⁶ /1.0×10 ⁻⁶	13
8	[Zn ₂ (TPOM)(NH ₂ -BDC) ₂]·4H ₂ O	CrO ₄ ²⁻ /Cr ₂ O ₇ ²⁻	4.8×10 ⁻⁶ /3.9×10 ⁻⁶	14
9	$\{[Zn(btz)]_n\}$	CrO ₄ ²⁻ /Cr ₂ O ₇ ²⁻	1.0×10 ⁻⁵ /2.0×10 ⁻⁶	15
	$\{[Zn_2(ttz)H_2O]_n\}$	CrO ₄ ²⁻ /Cr ₂ O ₇ ²⁻	2.0×10 ⁻⁵ /2.0×10 ⁻⁵	
10	${[Cd(L)(BPDC)] \cdot 2H_2O}_n$	$Cr_{2}O_{7}^{2}$	3.76×10 ⁻⁵	16
	$\{[Cd(L)(SDBA)(H_2O)] \cdot 0.5H_2O\}_n$	$Cr_2O_7^{2-}$	4.86×10 ⁻⁵	

Table S3. Comparison of the detective limit in some reported $CrO_4^{2-}/Cr_2O_7^{2-}$ sensors.

Table S4. The ICP results of compound 1 after catalytic recyclings (filter liquor) and luminescent recyclings (solid sample), respectively.

	Compound 1
Compound 1 after recyclings (Zn ²⁺ of filter liquor)	0.68 ppm
Compound 1 as CrO_4^{2-} sensor after luminescent recyclings (Cr^{6+} of solid sample)	Below detection limit
Compound 1 as $Cr_2O_7^{2-}$ sensor after luminescent recyclings (Cr^{6+} of solid sample)	Below detection limit

References

1 B. Ugale, S. S. Dhankhar, C. M. Nagaraja, Inorg. Chem., 2016, 55, 9757-9766.

- 2 B. Ugale, S. S. Dhankhar, C. M. Nagaraja, Cryst. Growth Des., 2017, 17, 3295-3305.
- 3 Y. H. Han, Z. Y. Zhou, C. B. Tian, S. W. Du, Green Chem., 2016, 18, 4086-4091.
- 4 J. W. Li, Y. W. Ren, C. R. Qi, H. F. Jiang, Eur. J. Inorg. Chem., 2017, 1478-1487.
- 5 W. Y. Gao, C. Y. Tsai, L. Wojtas, T. Thiounn, C. C. Lin, S. Q. Ma, *Inorg. Chem.*, 2016, 55, 7291-7294.
- 6 G. Y. Zhang, G. F. Wei, Z. P. Liu, S. R. J. Oliver, H. H. Fei, Chem. Mater., 2016, 28, 6276-6281.

- 7 P. Z. Li, X. J. Wang, J. Liu, J. Liang, J. Y. J. Chen, Y. L. Zhao, *CrystEngComm*, 2017, 19, 4157-4161
- 8 T. W. Duan, B. Yan, H. Weng, Microporous and Mesoporous Materials, 2015, 217, 196-202.
- 9 J. N. Hao, B. Yan, New J. Chem., 2016, 40, 4654-4661.
- 10 J. Dong, H. Xu, S. L. Hou, Z. L. Wu, B. Zhao, Inorg. Chem., 2017, 56, 6244-6250.
- 11 Z. Q. Yao, G. Y. Li, J. Xu, T. L. Hu, X. H. Bu, Chem. Eur. J., 2018, 24, 3192-3198.
- 12 B. Parmar, Y. Rachuri, K. K. Bisht, R. Laiya, E. Suresh, Inorg. Chem., 2017, 56, 2627-2638.
- 13 T. Q. Song, J. Dong, H. L. Gao, J. Z. Cui, B. Zhao, Dalton Trans., 2017, 46, 13862-13868.
- 14 R. Lv, J. Y. Wang, Y. P. Zhang, H. Li, L. Y. Yang, S. Y. Liao, W. Gu, X. Liu, *J. Mater. Chem. A*, 2016, 4, 15494-15500.
- 15 C. S. Cao, H. C. Hu, H. Xu, W. Z. Qiao, B. Zhao, CrystEngComm, 2016, 18, 4445-4451.
- 16 S. G. Chen, Z. Z. Shi, L. Qin, H. L. Jia, H. G. Zheng, Cryst. Growth Des., 2017, 17, 67-72.