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Figure S1. Morphology of reaction-fracture fronts observed on dehydration of NiSO4 6(H2O) (a) and 
K2C2O4 H2O (b) 
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Figure S2. Cracks appearing on faces of CuCl2ˑ2(H2O) crystal during first 30 min of dehydration in 
vacuum at 27 °C. Cracks are elongated as c axis of initial structure (long axis of initial crystals). 

 

 

Figure S3. Starting fracture morphology on the dehydration of CuCl2ˑ2(H2O) within first 3 hour of 
dehydration in vacuum at 27 °C. Cross sectional view near the reaction interface. 
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Figure S4. Schematic structure transformation showing coupling of [CuCl4(H2O)2] chains lying in (110) 
plane of the initial hydrate into 2D CuCl2 sheets lying in (001) plane of the final anhydrous product. 

Positions of water are shaded in the initial structure. 
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Calculation of the transformation strain tensor 

In case of uniform deformation of a volume, any vector r0 from the initial volume transforms 

to a corresponding vector r1 in the deformed volume according to relation  

 1 0r r F   (S1) 

where F is known as the deformation gradient tensor. By combining three non-coplanar 

vectors from the initial volume into a matrix R0 (vectors as columns) we can write 

 1 0R FR   (S2) 

which gives a corresponding matrix R1 of three non-coplanar vectors from the deformed 

volume. Due to selection of non-coplanar vectors, it can be determined that 

 1

01

F R R .  (S3) 

The corresponding Green-Lagrangian strain tensor   is by definition 

  
1

2

T  F F E   (S4) 

where E is the identity tensor. The deformation necessary to transform CuCl2 lattice into 

CuCl2ˑ2(H2O) lattice can be determined from this by defining R1 (for hydrate) and R0 (for 

anhydrous phase in orientation I) according to cells’ basis vectors and structure relationships 

given by Table 1. 
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This gives following strain tensor for orientation I (in coordinates of the hydrate structure) 

 I

0.789 0 0.032

0 0.095 0

0.032 0 0.039


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  (S6) 
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Further calculation of eigenvalues and eigenvectors of this tensor allows obtaining the 

diagonalized form of the strain tensor (Eq (8) in the main text) and orientation of principal 

axes corresponding to the orientation I (given in the text as angles between corresponding 

axes). Orientations of principal axes for the product phase orientation II can be obtained by 

applying corresponding mirror symmetry operation to the system for orientation I. 

Similar calculations for orientations III and IV give slightly different principal strains 

 III

0.802 0 0

0 0.095 0

0 0 -0.045
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Axes (X, Y, Z) of the corresponding principal systems for III are oriented as following: Y∥c 

of the initial structure, angle between X and a axis of CuCl2:  , 6.96a X , angle between X 

and b axis of the hydrate structure  , 38.38b X . Principal system for orientation IV is 

obtained by the mirror symmetry operation between III and IV. 

Determination of the stressed state of I+II composition in the region of main crack tip 

To estimate the elastic energy density for the region near main crack tip we can assume 

formation of 1:1 composition of two orientations (I and II) in this region. The apparent 

elasticity tensor of the composition can be estimated following an approach similar to Hill’s 

method of averaging elastic moduli of polycrystalline material
S1
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where C’s and S’s are 6x6 Voight matrix notations of corresponding elasticity and compliance 

tensors (S=C
-1

). By applying the rotation transforms to the matrices C
I/II

 and S
I/II

 (whose 

coefficients are defined by Table 3 in the main text) required for the transition to the local 

Cartesian system of the main crack tip (local Cartesian axes 1, 2 and 3 are parallel to a, c and 

b axes of the initial structure) we obtain the stiffness matrix of an effectively orthorhombic 

material  
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An apparent strain tensor of the composition can be estimated from average deformation 

gradient tensor 

  comp I II1

2
 F F F   (S10) 

where F
I/II

 are deformation gradient tensors for orientations I and II transformed by rotation 

operations from the principal systems of I and II to the local Cartesian system of the main 

crack tip. By performing these calculations one can obtain  
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