Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI) for CrystEngComm

Potential for improved transport in core-shell CuInS₂ nanoparticle solar cells from an Ag surface termination

Yicong Hu, Rob Patterson*, Robert Lee-Chin, Jianghui Zheng, Ning Song, Long Hu, Gavin Conibeer, Shujuan Huang

Figure S1. TEM images showing the morphology of Ag:CuInS₂ synthesized at 80°C for 30 mins with (a) 0.0625 mmol, (b) 0.125 mmol and, (c) 0.25 mmol of the Ag precursor. The image in (c) shows the formation of a new phase, identified as Ag_2S by XRD. Also, Ag: CuInS2 nanoparticles synthesized using 0.125 mmol of Ag precursor with different growth times of (d) 30 mins, (e) 45 mins and, (f) 1 hour are shown.

Figure S2. J-V curves of Zn:CuInS₂, Ag:CuInS₂ and pure CuInS₂ solar cells. For CuInS₂, J_{sc} =0.15 *mA/cm*², V_{oc} = 291 *mV*, FF = 44.9%, and PCE = 0.02%.