SUPPORTING INFORMATION

Simple design for metal-based halogen-bonded cocrystals utilizing the M-Cl…I motif

Katarina Lisac and Dominik Cinčić*

Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia

Email: dominik@chem.pmf.hr Fax: +385 1 4606 341 Tel: +385 1 4606 362

Table of Contents

Table S1.	General and crystallographic data for prepared cocrystals.	4
Table S2.	Geometric parameters for the halogen bonds in prepared cocrystals. Distances between select atoms in a contact are denoted as d , while the corresponding angle is marked with α .	8
Figure S1.	Molecular structure of $(1,4-tfib)(1)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.	9
Figure S2.	Molecular structure of $(1,3-tfib)_2(1)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.	9
Figure S3.	Molecular structure of $(1,2-tfib)(1)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, strong hydrogen and halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.	10
Figure S4.	Molecular structure of $(1,2-tfib)_2(1)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.	10
Figure S5.	Molecular structure of $(ipfb)_2(1)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.	11
Figure S6.	Molecular structure of $(1,3,5-tfib)(1)$ (EtOH) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.	11
Figure S7.	Molecular structure of (ofib)(1) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius	12
Figure S8.	Molecular structure of $(1,3-tfib)(2)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius	12

Figure S9.	Molecular structure of $(1,2-tfib)(2)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.	13
Figure S10.	Molecular structure of $(ipfb)_2(2)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.	13
Figure S11.	Molecular structure of $(1,3,5-tfib)_3(2)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.	14
Figure S12.	Molecular structure of (ofib)(2) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.	14
Figure S13.	PXRD pattern of pure $CoCl_2 * 6H_2O$ reactant	15
Figure S14.	PXRD pattern of pure bpy reactant.	15
Figure S15.	PXRD pattern of pure phen reactant.	16
Figure S16.	PXRD pattern of pure 1*3H ₂ O reactant.	16
Figure S17.	PXRD pattern of pure 2 reactant.	17
Figure S18.	PXRD pattern of pure 1,4-tfib reactant.	17
Figure S19.	PXRD pattern of pure 1,2-tfib reactant	18
Figure S20.	PXRD pattern of pure 1,3,5-tfib reactant.	18
Figure S21.	PXRD patterns of: a) pure $1*3H_2O$, b) 1,4-tfib , c) product obtained from the solution synthesis experiment, d) product obtained by grinding a mixture with a 1:1 molar ratio $1*3H_2O$ to 1,4-tfib in a ball mill for 10 min in the presence of 10 μ L of ethanol, e) calculated diffractogram from structure (1,4-tfib)(1).	19
Figure S22.	PXRD patterns of: a) pure $1*3H_2O$, b) product obtained from the solution synthesis experiment, c) product obtained by grinding a mixture with a 1:1 molar ratio $1*3H_2O$ to $1,3$ -tfib in a ball mill for 30 min in the presence of 30 µL of ethanol, d) product obtained by grinding a mixture with a 1:2 molar ratio $1*3H_2O$ to $1,3$ -tfib in a ball mill for 30 min in the presence of 20 µL of ethanol, e) calculated diffractogram from structure $(1,3$ -tfib) ₂ (1).	19
Figure S23.	PXRD patterns of: a) pure $1*3H_2O$, b) 1,2-tfib , c) product obtained from the solution synthesis experiment, d) product obtained by grinding a mixture with a 1:1 molar ratio $1*3H_2O$ to 1,2-tfib in a ball mill for 30 min in the presence of 20 μ L of ethanol, e) calculated diffractogram from structure (1,2-tfib)(1).	20
Figure S24.	PXRD patterns of: a) pure $1*3H_2O$, b) 1,2-tfib , c) product obtained from the solution synthesis experiment, d) product obtained by grinding a mixture with a 1:2 molar ratio $1*3H_2O$ to 1,2-tfib in a ball mill for 30 min in the presence of 30 μ L of ethanol, e) calculated diffractogram from structure (12tfib) ₂ (1).	20
Figure S25.	PXRD patterns of: a) pure $1*3H_2O$, b) product obtained from the solution synthesis experiment, c) product obtained by grinding a mixture with a 1:2 molar ratio $1*3H_2O$ to ipfb in a ball mill for 30 min in the presence of 30 µL of ethanol, d) calculated diffractogram from structure (ipfb) ₂ (1).	21
Figure S26.	PXRD patterns of: a) pure $1*3H_2O$, b) $1,3,5$ -tfib, c) product obtained from the solution synthesis experiment, d) product obtained by grinding a mixture with a 1:1 molar ratio $1*3H_2O$ to $1,3,5$ -tfib in a ball mill for 10 min in the presence of 45 μ L of ethanol, e) calculated diffractogram from structure $(1,3,5$ -tfib)(1)(EtOH).	21
Figure S27.	PXRD patterns of: a) pure $1*3H_2O$, b) product obtained from the solution synthesis experiment, c) product obtained by grinding a mixture with a 1:1 molar ratio $1*3H_2O$ to ofib in a ball mill for 30 min in the presence of 30 µL of ethanol,	22

d) product obtained by grinding a mixture with a 1:2 molar ratio $1*3H_2O$ to **ofib** in a ball mill for 30 min in the presence of 20 µL of ethanol, e) calculated diffractogram from structure (**ofib**)₂(1).

- **Figure S28.** PXRD patterns of: a) pure 2, b) product obtained from the solution synthesis 22 experiment, c) product obtained by grinding a mixture with a 1:1 molar ratio 2 to 1,3-tfib in a ball mill for 30 min in the presence of 30 μ L of ethanol, d) calculated diffractogram from structure (1,3-tfib)(2).
- Figure S29.PXRD patterns of: a) pure 2, b) 1,2-tfib, c) product obtained from the solution23synthesis experiment, d) product obtained by grinding a mixture with a 1:1 molar
ratio 2 to 1,2-tfib in a ball mill for 30 min in the presence of 40 μL of ethanol, e)
calculated diffractogram from structure (1,2-tfib)(2).
- **Figure S30.** PXRD patterns of: a) pure 2, b) **1,2-tfib**, c) product obtained from the solution 23 synthesis experiment, d) product obtained by grinding a mixture with a 1:1 molar ratio **2** to **1,2-tfib** in a ball mill for 30 min in the presence of 40 μ L of ethanol, e) calculated diffractogram from structure (**1,2-tfib**)(**2**).
- **Figure S31.** PXRD patterns of: a) pure 2 b) **1,3,5- tfib**, c) product obtained from the solution 24 synthesis experiment, d) product obtained by grinding a mixture with a 1:1 molar ratio 2 to **1,3,5-tfib** in a ball mill for 30 min in the presence of 40 μ L of ethanol, e) product obtained by grinding a mixture with a 1:3 molar ratio 2 to **1,3,5-tfib** in a ball mill for 20 min in the presence of 40 μ L of ethanol f) calculated diffractogram from structure (**135tfib**)₃(2).
- **Figure S32.** PXRD patterns of: a) pure **2**, b) product obtained from the solution synthesis 24 experiment, c) product obtained by grinding a mixture with a 1:1 molar ratio **2** to **ofib** in a ball mill for 30 min in the presence of 40 μ L of ethanol, d) calculated diffractogram from structure (**ofib**)(**2**).
- TG curve of pure $1*3H_2O$. Figure S33. 25 25 Figure S34. TG curve of pure 2. TG curve of the cocrystal (1,4-tfib)(1). 26 Figure S35. Figure S36. TG curve of the cocrystal $(1,3-tfib)_2(1)$. 26 27 TG curve of the cocrystal (1,2-tfib)(1). Figure S37. Figure S38. TG curve of the cocrystal $(1,2-tfib)_2(1)$. 27 Figure S39. TG curve of the cocrystal $(ipfb)_2(1)$. 28 TG curve of the cocrystal (1,3,5-tfib)(1)(EtOH). Figure S40. 28 TG curve of the cocrystal $(ofib)_2(1)$. 29 Figure S41. Figure S42. TG curve of the cocrystal (1,3-tfib)(2). 29 Figure S43. TG curve of the cocrystal (1,2-tfib)(2). 30 TG curve of the cocrystal $(ipfb)_2(2)$. 30 Figure S44. Figure S45. TG curve of the cocrystal $(1,3,5-tfib)_3(2)$. 31

31

Figure S46. TG curve of the cocrystal (**ofib**)(**2**).

EXPERIMENTAL DETAILS

	(1,4-tfib)(1)	(1,3-tfib) ₂ (1)	(1,2-tfib)(1)
Molecular formula	$(CoCl_2C_{20}H_{16}N_4)(C_6F_4I_2)$	$(CoCl_2C_{20}H_{16}N_4)(C_6F_4I_2)_2$	$(CoCl_2C_{20}H_{16}N_4)(C_6F_4I_2)$
M _r	844.06	1245.92	844.06
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P 2_1 / c$	C 2/c	$P 2_1/n$
Crystal data:			
<i>a</i> / Å	12.6870(8)	16.5798(17)	7.8226(6)
b / Å	14.1661(10)	15.3912(9)	25.788(2)
c / Å	16.0110(12)	16.652(2)	14.3532(9)
α/°	90	90	90
β/\circ	104.732(7)	119.758(16)	99.146(7)
γ/°	90	90	90
V / Å ³	2783.0(3)	3689.0(9)	2858.6(4)
Ζ	4	4	4
$D_{\rm calc}$ / g cm ⁻³	2783.0(3)	2.243	1.961
$\lambda(MoK_{\alpha}) / \text{\AA}$	0.71073	0.71073	0.71073
Т/К	295	295	295
Crystal size / mm ³	0.55 x 0.22 x 0.14	0.39 x 0.27 x 0.27	0.19 x 0.12 x 0.024
μ/mm^{-1}	3.079	4.029	2.997
F(000)	1612	2324	1612
Refl. collected/unique	5447/3309	3237/2086	5601/3265
Data/restraints/parameters	352	231	352
$\Delta ho_{ m max}$, $\Delta ho_{ m min}$ / e Å ⁻³	0.766; -0.444	0.408; -0.865	0.490; -0.451
$R[F^{2} > 4\sigma(F^{2})]$	0.0476	0.0302	0.0474
$wR(F^2)$	0.0938	0.0619	0.1060
Goodness-of-fit, S	0.995	0.836	0.911

 Table S1. General and crystallographic data for the prepared cocrystals.

	(1,2-tfib) ₂ (1)	(ipfb) ₂ (1)	(1,3,5-tfib)(1)(EtOH)	
Molecular formula	$(CoCl_2C_{20}H_{16}N_4)(C_6F_4I_2)_2$	$(CoCl_2C_{20}H_{16}N_4)(C_6F_5I)_2$	$(CoCl_2C_{20}H_{16}N_4)(C_6F_3I_3)(C_2H_6O)$	
M _r	1245.92	1030.12	1245.92	
Crystal system	orthorhombic	monoclinic	triclinic	
Space group	P bcn	C 2/c	P-l	
Crystal data:				
<i>a</i> / Å	14.5049(5)	8.2507(6)	8.5903(5)	
b / Å	8.5031(4)	12.9627(13)	12.7010(7)	
<i>c</i> / Å	30.2853(13)	32. 399(2)	16.2950(11)	
α / \circ	90	90	69.852(6)	
β/\circ	90	92. 121(6)	88.600(5)	
γ/°	90	90	84.665(5)	
$V/\text{\AA}^3$	3735.3(3)	3462.7(5)	1661.79(18)	
Ζ	4	4	2	
$D_{ m calc}$ / g cm ⁻³	2.216	1.976	1.995	
$\lambda(MoK_{\alpha})$ / Å	0.71073	0.71073	0.71073	
Т / К	295	295	295	
Crystal size / mm ³	0.37 x 0.35 x 0.20	0.57 x 0.30 x 0.11	0.31 x 0.12 x 0.032	
μ/mm^{-1}	3.979	2.518	3.509	
F(000)	2324.0	1972	946	
Refl. collected/unique	3271/2230	3382/2897	5787/ 2467	
Data/restraints/parameters	231	231	377	
$\Delta ho_{ m max}$, $\Delta ho_{ m min}$ / e Å ⁻³	0.562; -0.848	0.731; -0.553	0.508; -0.379	
$R[F^{2} > 4\sigma(F^{2})]$	0.0288	0.0450	0.0350	
$wR(F^2)$	0.0577	0.0736	0.0478	
Goodness-of-fit, S	0.858	1.172	0.646	

	(ofib) ₂ (1)	(1,3-tfib)(2)	(1,2-tfib)(2)
Molecular formula	$(CoCl_2C_{20}H_{16}N_4)(C_4F_8I_2)_2$	$(CoCl_2C_{24}H_{16}N_4)(C_6F_4I_2)$	$(CoCl_2C_{24}H_{16}N_4)(C_6F_4I_2)$
M _r	1349.88	892.10	892.10
Crystal system	orthorhombic	triclinic	monoclinic
Space group	P bca	P-l	$P 2_1/c$
Crystal data:			
<i>a</i> / Å	28.625(5)	8.1204(7)	13. 4604(9)
b / Å	16.4514(14)	13.9649(8)	23. 4681(15)
<i>c</i> / Å	16.8783(10)	14.1470(7)	9. 7735(9)
α/°	90	99.902(4)	90
β/°	90	100.089(5)	102.252(7)
γ/°	90	105.734(6)	90
V / Å ³	7948.4(15)	1478.96(18)	3017.0(4)
Ζ	8	2	4
$D_{\rm calc}$ / g cm ⁻³	2.256	2.003	1.964
$\lambda(MoK_{\alpha}) / \text{\AA}$	0.71073	0.71073	0.71073
Т / К	295	295	295
Crystal size / mm ³	0.30 x 0.23 x 0.15	0.49 x 0.20 x 0.08	0.31 x 0.077 x 0.044
μ/mm^{-1}	3.776	2.903	2.846
F(000)	5032	854.0	1708
Refl. collected/unique	6968/4158	3659/2167	6922/3893
Data/restraints/parameters	496	388	388
$\Delta ho_{ m max}$, $\Delta ho_{ m min}$ / e Å ⁻³	0.915; -0.514	0.548; -0.453	0.700; -0.654
$R[F^{2} > 4\sigma(F^{2})]$	0.0328	0.0382	0.0474
$wR(F^2)$	0.0665	0.0744	0.0795
Goodness-of-fit, S	0.800	0.806	0.996

	(ipfb) ₂ (2)	(1,3,5-tfib) ₃ (2)	(ofib)(2)	
Molecular formula	$(CoCl_2C_{24}H_{16}N_4)(C_6F_5I)_2$	$(CoCl_2C_{24}H_{16}N_4)(C_6F_3I_3)_3$	$(CoCl_2C_{24}H_{16}N_4)(C_4F_8I_2)$	
$M_{ m r}$	1078.16	2019.52	944.08	
Crystal system	monoclinic	triclinic	monoclinic	
Space group	C 2/c	P-1	I 2/a	
Crystal data:				
<i>a</i> / Å	7.9892(4)	9. 5760(4)	13.7036(12)	
b / Å	13.5176(7)	13.1124(6)	15.5273(10)	
<i>c</i> / Å	33.897(2)	21. 2891(10)	15.8979(11)	
α/°	90	100.877(4)	90	
β/\circ	92.075(5)	99.440(4)	111.746(9)	
γ/\circ	90	96.238(4)	90	
$V/\text{\AA}^3$	3658.3(4)	2562.6(2)	3142.0(4)	
Ζ	4	2	4	
$D_{ m calc}$ / g cm ⁻³	1.958	2.617	1.996	
$\lambda(\mathrm{Mo}K_{lpha})$ / Å	0.71073	0.71073	0.71073	
Т / К	295	295	295	
Crystal size / mm ³	0.32 x 0.25 x 0.058	0.50 x 0.24 x 0.071	0.42 x 0.28 x 0.15	
μ/mm^{-1}	2.388	5.929	2.756	
F(000)	2068	1830	1804	
Refl. collected/unique	3563 / 2695	10011 / 6539	2765 2305	
Data/restraints/parameters	249	604	205	
$\Delta ho_{ m max}$, $\Delta ho_{ m min}$ / e Å ⁻³	0.350; -0.439	1.276; - 1.584	1.379; -1.434	
$R[F^{2} > 4\sigma(F^{2})]$	0.0338	0.0485	0.0599	
$wR(F^2)$	0.0598	0.1161	0.1582	
Goodness-of-fit, S	1.053	1.028	1.074	

Table S2. Geometric parameters for the halogen bonds in prepared cocrystals. Distances between select atoms in a contact are denoted as d, while the corresponding angle is marked with α .

compound	D –I····A	<i>d(D–</i> I) / Å	$d(I\cdots A) / \text{\AA}$	α/°	symmetry operator
(1,4-tfib)(1)	C24–I2…Cl1	2.096(7)	3.061(2)	175	2- <i>x</i> , 1/2+ <i>y</i> , 1.5- <i>z</i>
	C21–I1…I1	2.072(8)	3.8506(8)	147	1-x, 1-y, 1-z
(1,3-tfib) ₂ (1)	C11–I1…Cl1	2.092(5)	3.242(1)	165	1/2- <i>x</i> , 1/2+ <i>y</i> , 1.5- <i>z</i>
	C13–I2…Cl1	2.099(5)	3.225(1)	177	- <i>x</i> , <i>y</i> , <i>1</i> .5- <i>z</i>
(1,2-tfib)(1)	C21–I1…Cl1	2.093(8)	3.198(2)	177	-1/2+x,1/2-y,1/2+z
	C22–I2····Cl2	2.111(7)	3.199(2)	170	<i>x,y,1+z</i>
(1,2-tfib) ₂ (1)	C11–I1…Cl1	2.095(4)	3.085(1)	177	<i>x</i> , <i>y</i> , <i>z</i>
	C12–I…F4	2.074(4)	3.259(3)	154	<i>x,-1+y,z</i>
(ipfb) ₂ (1)	C11–I1…Cl1	2.100(5)	3.094(1)	176	<i>x</i> , <i>y</i> , <i>z</i>
(1,3,5-tfib)(1)(EtOH)	C21–I1····Cl2	2.096(5)	3.235(1)	175	<i>x</i> , <i>y</i> , <i>z</i>
	C23–I2····Cl1	2.080(8)	3.343(2)	161	<i>-1+x,1+y,z</i>
(ofib) ₂ (1)	C21–I1····Cl1	2.156(7)	3.153(1)	176	<i>x</i> , <i>y</i> , <i>z</i>
	C24–I2Cl1	2.157(6)	3.194(1)	174	1-x, -1/2+y,1.5-z
	C25–I3Cl2	2.171(9)	3.170(1)	175	1.5-x, -1/2+y, z
	C27–I4····Cl2	2.125(9)	3.159(1)	175	-1/2+x,1/2-y,1-z
(1,3-tfib)(2)	C25–I1····Cl1	2.105(7)	3.188(2)	168	2-x, 1-y, 1-z
	C27–I2····Cl2	2.105(8)	3.174(2)	176	2-x, 1-y,-z
(1,2-tfib)(2)	C25–I1…Cl1	2.106(7)	3.396(1)	176	1-x, 1-y, 1-z
	C26–I2····Cl2	2.110(6)	3.153(1)	171	<i>x</i> , <i>y</i> , <i>z</i>
(ipfb) ₂ (2)	C13–I1…Cl1	2.093(4)	3.136(1)	178	<i>x</i> , <i>y</i> , <i>z</i>
(1,3,5-tfib) ₃ (2)	C26–I1····Cl2	2.079(8)	3.471(2)	155	1-x,-y,-z
	C28–I2…Cl1	2.092(9)	3.367(2)	163	1-x, 1-y,-z
	C36–I6…Cl1	2.095(8)	3.240(2)	168	<i>x</i> , <i>l</i> + <i>y</i> , <i>l</i> + <i>z</i>
	C32–I4…I5	2.078(9)	3.906(1)	165	-1+x, y, z
	C40–I8…I8	2.081(9)	3.768(1)	144	1-x, 1-y, 1-z
(ofib)(2)	C13–I1…Cl1	2.07(1)	3.167(2)	178	1/2-x,1/2-y,1/2-z

Figure S1. Molecular structure of (1,4-tfib)(1) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.

Figure S2. Molecular structure of $(1,3-tfib)_2(1)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.

Figure S3. Molecular structure of (1,2-tfib)(1) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.

Figure S4. Molecular structure of $(1,2-tfib)_2(1)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.

Figure S5. Molecular structure of $(ipfb)_2(1)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.

Figure S6. Molecular structure of (**135tfib**)(1)(EtOH) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.

Figure S7. Molecular structure of $(ofib)_2(1)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.

Figure S8. Molecular structure of (1,3-tfib)(2) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.

Figure S9. Molecular structure of (1,2-tfib)(2) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.

Figure S10. Molecular structure of $(ipfb)_2(2)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.

Figure S11. Molecular structure of $(1,3,5-tfib)_3(2)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.

Figure S12. Molecular structure of **(ofib)(2)** showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, halogen bonds are marked with blue dashed lines, and H atoms are shown as small spheres of arbitrary radius.

Figure S13. PXRD pattern of pure $CoCl_2 * 6H_2O$ reactant.

Figure S14. PXRD pattern of pure bpy reactant.

Figure S15. PXRD pattern of pure phen reactant.

Figure S16. PXRD pattern of pure 1*3H₂0 reactant.

Figure S17. PXRD pattern of pure 2 reactant.

Figure S18. PXRD pattern of pure 1,4-tfib.

Figure S19. PXRD pattern of pure 1,2-tfib.

Figure S20. PXRD pattern of pure 1,3,5-tfib.

Figure S21. PXRD patterns of: a) pure $1*3H_2O$, b) **1,4-tfib**, c) product obtained from the solution synthesis experiment, d) product obtained by grinding a mixture with a 1:1 molar ratio $1*3H_2O$ to **1,4-tfib** in a ball mill for 10 min in the presence of 10 µL of ethanol, e) calculated diffractogram from structure (**1,4-tfib**)(**1**).

Figure S22. PXRD patterns of: a) pure $1*3H_2O$, b) product obtained from the solution synthesis experiment, c) product obtained by grinding a mixture with a 1:1 molar ratio $1*3H_2O$ to 1,3-tfib in a ball mill for 30 min in the presence of 30 µL of ethanol, d) product obtained by grinding a mixture with a 1:2 molar ratio $1*3H_2O$ to 1,3-tfib in a ball mill for 30 min in the presence of 20μ L of ethanol, e) calculated diffractogram from structure (1,3-tfib)₂(1).

Figure S23. PXRD patterns of: a) pure $1*3H_2O$, b) **1,2-tfib**, c) product obtained from the solution synthesis experiment, d) product obtained by grinding a mixture with a 1:1 molar ratio $1*3H_2O$ to **1,2-tfib** in a ball mill for 30 min in the presence of 20 µL of ethanol, e) calculated diffractogram from structure (**1,2-tfib**)(**1**).

Figure S24. PXRD patterns of: a) pure $1*3H_2O$, b) **1,2-tfib**, c) product obtained from the solution synthesis experiment, d) product obtained by grinding a mixture with a 1:2 molar ratio $1*3H_2O$ to **1,2-tfib** in a ball mill for 30 min in the presence of 30 µL of ethanol, e) calculated diffractogram from structure (**12tfib**)₂(**1**).

Figure S25. PXRD patterns of: a) pure $1*3H_2O$, b) product obtained from the solution synthesis experiment, c) product obtained by grinding a mixture with a 1:2 molar ratio $1*3H_2O$ to **ipfb** in a ball mill for 30 min in the presence of 30 µL of ethanol, d) calculated diffractogram from structure (**ipfb**)₂(1).

Figure S26. PXRD patterns of: a) pure $1*3H_2O$, b) **1,3,5-tfib**, c) product obtained from the solution synthesis experiment, d) product obtained by grinding a mixture with a 1:1 molar ratio $1*3H_2O$ to **1,3,5-tfib** in a ball mill for 10 min in the presence of 45 µL of ethanol, e) calculated diffractogram from structure (**1,3,5-tfib**)(1)(EtOH).

Figure S27. PXRD patterns of: a) pure $1*3H_2O$, b) product obtained from the solution synthesis experiment, c) product obtained by grinding a mixture with a 1:1 molar ratio $1*3H_2O$ to **ofib** in a ball mill for 30 min in the presence of 30 µL of ethanol, d) product obtained by grinding a mixture with a 1:2 molar ratio $1*3H_2O$ to **ofib** in a ball mill for 30 min in the presence of 20 µL of ethanol, e) calculated diffractogram from structure (**ofib**)₂(1).

Figure S28. PXRD patterns of: a) pure **2**, b) product obtained from the solution synthesis experiment, c) product obtained by grinding a mixture with a 1:1 molar ratio **2** to **1,3-tfib** in a ball mill for 30 min in the presence of 30 μ L of ethanol, d) calculated diffractogram from structure (**1,3-tfib**)(**2**).

Figure S29. PXRD patterns of: a) pure 2, b) **1,2-tfib**, c) product obtained from the solution synthesis experiment, d) product obtained by grinding a mixture with a 1:1 molar ratio 2 to **1,2-tfib** in a ball mill for 30 min in the presence of 40 μ L of ethanol, e) calculated diffractogram from structure (**1,2-tfib**)(2).

Figure S30. PXRD patterns of: a) pure 2, b) **1,2-tfib**, c) product obtained from the solution synthesis experiment, d) product obtained by grinding a mixture with a 1:1 molar ratio 2 to **1,2-tfib** in a ball mill for 30 min in the presence of 40 μ L of ethanol, e) calculated diffractogram from structure (**1,2-tfib**)(2).

Figure S31. PXRD patterns of: a) pure 2 b) **1,3,5-tfib**, c) product obtained from the solution synthesis experiment, d) product obtained by grinding a mixture with a 1:1 molar ratio 2 to **1,3,5-tfib** in a ball mill for 20 min in the presence of 40 μ L of ethanol, e) product obtained by grinding a mixture with a 1:3 molar ratio 2 to **1,3,5-tfib** in a ball mill for 30 min in the presence of 40 μ L of ethanol f) calculated diffractogram from structure (**1,3,5-tfib**)₃(**2**).

Figure S32. PXRD patterns of: a) pure **2**, b) product obtained from the solution synthesis experiment, c) product obtained by grinding a mixture with a 1:1 molar ratio **2** to **ofib** in a ball mill for 30 min in the presence of 40 μ L of ethanol, d) calculated diffractogram from structure (**ofib**)(**2**).

Figure S33. TG curve of pure $1*3H_2O$.

Figure S34. TG curve of pure 2.

Figure S35. TG curve of the cocrystal (1,4-tfib)(1).

Figure S36. TG curve of the cocrystal (1,3-tfib)₂(1).

Figure S37. TG curve of the cocrystal (1,2-tfib)(1).

Figure S38. TG curve of the cocrystal (1,2-tfib)₂(1).

Figure S39. TG curve of the cocrystal $(ipfb)_2(1)$.

Figure S40. TG curve of the cocrystal (1,3,5-tfib)(1)(EtOH).

Figure S41. TG curve of the cocrystal (ofib)₂(1).

Figure S42. TG curve of the cocrystal (1,3-tfib)(2).

Figure S43. TG curve of the cocrystal (1,2-tfib)(2).

Figure S44. TG curve of the cocrystal (ipfb)₂(2).

Figure S45. TG curve of the cocrystal (1,3,5-tfib)₃(2).

Figure S46. TG curve of the cocrystal (ofib)(2).