Electronic Supplementary Information

Two interpenetrated metal-organic frameworks with a slim ethynyl-based ligand: designed for selective gas adsorption and structural tuning

Xiang-Jing Kong, Yong-Zheng Zhang, Tao He, Xue-Qian Wu, Ming-Ming Xu,

Si-Nan Wang, Lin-Hua Xie, Jian-Rong Li*

† Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P. R. China.

E-mail: jrli@bjut.edu.cn

Scheme S1. The synthesis of ligand H_4BTEB : (a) Pd(PPh₃)₂Cl₂, CuI, PPh₃, Et₃N, THF/H₂O, 70 °C, 48 h; and (b) NaOH, THF/MeOH/H₂O, 70 °C, 24 h.

Fig. S1. ¹H NMR spectrum of 2.

Fig. S2. ¹H NMR spectrum of H₄BTEB.

Fig. S3. CO₂ sorption isotherms at 195 K for BUT-43 (a) and BUT-44 (b).

Fig. S4. Pore size distributions evaluated by using the N_2 adsorption data for BUT-43 (a) and BUT-44 (b).

Fig. S5. FT-IR spectra of H₄BTEB and BUT-43.

Fig. S6. FT-IR spectra of H₄BTEB and BUT-44.

Fig. S7. TGA curves of BUT-43.

Fig. S8. TGA curves of BUT-44.

Fig. S9. Topological network representations of the ligand BTEB⁴⁻ (a), 4-connected Cu₂ cluster (b), and two-fold interpenetrated 4-connected network of BUT-43 (c).

Fig. S10. The slightly deformed Zr₆ cluster in BUT-44.

Fig. S11. Topological network representations of the ligand BTEB⁴⁻ (a), Zr₆ cluster (b), and two-fold interpenetrated 4,8-connected network of BUT-44 (c).

Fig. S12. C_2H_2 , CO_2 , and CH_4 adsorption isotherms recorded at 273 K for BUT-43 (a) and -44 (b); IAST C_2H_2/CH_4 and C_2H_2/CO_2 selectivities in BUT-43 (c) and BUT-44

(d) at 273 K.

Fig. S13. The isosteric heats of adsorption (Qst) of C_2H_2 , CO_2 , and CH_4 in BUT-43 (a) and BUT-44 (b).

Fig. S14. C₂H₂ (a) CO₂ (b) CH₄ (c) adsorption isotherms of BUT-43 and C₂H₂ (d) CO₂ (e) CH₄ (f) of BUT-44 measured at 273 and 298 K, and their Toth fits.

Fig. S15. C₂H₂, CO₂ and CH₄ adsorption isotherms of BUT-43 at 273K (a) and 298 K (b) and of BUT-44 at 273K (c) and 298 K (d), and their single-site Langmuir-Freundlich isotherm fits.

Formula	$C_{42}H_{22}Cu_2O_{10}$
М	813.67
Crystal system	monoclinic
Space group	<i>C</i> 2/ <i>c</i>
<i>a/</i> Å	42.7196(15)
b/ Å	23.6272(18)
<i>c/</i> Å	21.5936(9)
α/ °	90
β/ °	120.317(4)
γ/ °	90
V/ Å ³	18814.8(19)
Z	8
$D_{\rm C}/{ m g~cm^{-3}}$	0.575
μ /mm ⁻¹	0.756
<i>T</i> /K	100.01(10)
Reflections collected	30784
Independent reflections	14747 [$R_{int} = 0.0970, R_{sigma} = 0.1321$]
Goodness-of-fit on F^2	1.040
$R_1^{a}, w R_2^{b} [I > 2\sigma(I)]$	$R_1 = 0.0991, wR_2 = 0.2629$
R_1^a , wR_2^b (all data)	$R_1 = 0.1478, wR_2 = 0.2937$
Largest diff. peak and hole (e.Å ⁻³)	0.61 / -0.63

 Table S1. The crystallographic data and structure refinement for BUT-43.

 $R_1^{a} = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$

 $wR_2^{b} = \{ \Sigma[w(F_o^2 - F_c^2)^2] / [w(F_o^2)^2] \}^{1/2}, [F_o > 4\sigma(F_o)] \}$

Formula	C ₄₂ H ₂₆ O ₁₆ Zr ₃
М	1060.22
Crystal system	orthorhombic
Space group	Стст
a∕ Å	25.068(5)
b/ Å	42.667(2)
<i>c/</i> Å	13.8078(11)
a/ °	90
β/°	90
γ/ °	90
$V/Å^3$	14768(3)
Ζ	8
$D_{\rm C}/{ m g~cm^{-3}}$	0.946
μ /mm ⁻¹	3.768
<i>T/</i> K	100.01(10)
Reflections collected	15455
Independent reflections	6978 [$R_{\text{int}} = 0.0755$, $R_{\text{sigma}} = 0.0984$]
Goodness-of-fit on F^2	0.943
$R_1^{a}, wR_2^{b} [I > 2\sigma(I)]$	$R_1 = 0.0711, wR_2 = 0.1909$
R_1^{a} , wR_2^{b} (all data)	$R_1 = 0.1010, wR_2 = 0.2160$
Largest diff. peak and hole (e.Å ⁻³)	1.30 / -1.53

 Table S2. The crystallographic data and structure refinement for BUT-44.

 $R_1^{a} = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$

 $wR_2^{b} = \{\Sigma[w(F_o^2 - F_c^2)^2] / [w(F_o^2)^2]\}^{1/2}, [F_o > 4\sigma(F_o)]$