Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2018

Oxyanion clusters with antielectrostatic hydrogen bonding (AEHB) in tetraalkylammonium hypodiphosphates +

Marzieh Emami,^{a,b} Katarzyna Ślepokura,^{*b} Monika Trzebiatowska,^c Nader Noshiranzadeh,^a and Vasyl Kinzhybalo^{*c}

^aDepartment of Chemistry, Faculty of Sciences, University of Zanjan, 45195-313, Zanjan, Iran. ^bFaculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wrocław, Poland. ^cInstitute of Low Temperature and Structure Research, Polish Academy of Science, 50-422 Wrocław, Poland. E-mail: kinzhybalo@gmail.com

Content:

1.	1. Experimental and calculated powder diffraction patterns	page S2
2.	TG/DTA curves	page S3
3.	Crystallographic plots	pages S4–S7
4.	IR spectra	pages S8–S9
5.	Crystallographic data	pages S10-S23
6.	IR data	page S24

Figure S2. TG/DTA curves (blue and red, respectively) of 2 and 4.

Figure S3. Asymmetric units of **1–6** (black bonds), showing the atom-numbering schemes (for P, O and N atoms) and symmetry–independent hydrogen bonds (dashed lines). Displacement ellipsoids are shown at the 50% probability level. Two positions of the disordered hypodiphosphates in **3** and **4** are shown: with higher occupancy factors – black bonds and labels; with lower SOFs (refined isotropically) – transparent bonds and atoms (shown as spheres) and grey labels. Symmetry codes for **2**, **3**, **4**, **5** and **6** are given in Tables S2-S6.

Figure S4. Two different $H_3P_2O_6^-/H_4P_2O_6$ layers in 1. Crystallographically independent anions are drawn in different colours. Molecules of hypodiphosphoric acid are marked in pink. Hydrogen bonds shown as dashed lines. Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x, -y, -z+1; (iv) -x, -y+1, -z+1; (v) x-1, y, z; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) -x+1, -y, -z+1; (ix) -x-1, -y+1, -z+1. AEHB dimers are shadowed with grey background.

Figure S5. Two different chains in 4 formed by $H_3P_2O_6^-$ (4-A,B,D,E)monoanions, and $H_4P_2O_6$ (4-C,F; pink) molecules linked by O–H…O hydrogen bonds (dashed lines). Disorder of anions and acid molecules is shown: with higher occupancy factors – thick bonds and black labels; with lower SOFs (refined isotropically) – transparent bonds and atoms and grey label. Symmetry codes: (i) –*x*+1, –*y*+1, –*z*+1; (ii) –*x*, –*y*+1, –*z*; (iii) –*x*+1, –*y*, –*z*+2; (iv) –*x*, –*y*, –*z*+1.

Figure S6. Chains of hydrogen-bonded (dashed lines) $H_4P_2O_6/H_2O$ molecules running down the *a* axis in **6** joined with each other by O–H…O and O–H…Cl hydrogen bonds giving rise to layers parallel to (011) plane. Symmetry codes: (ii) -x, -y+1, -z+1; (iii) x+1, y, z; (iv) -x, -y+2, -z.

Figure S7. The IR spectra of the compounds **2** (black), **4** (red) and **5** (blue). The letters A, B and C denote the appearance of the structure characteristic for strong hydrogen bonds.

Figure S8. The far IR spectra of the compounds 2 (black), 4 (red) and 5 (blue).

Figure S9. The Raman spectra of the compounds 2 (black), 4 (red) and 5 (blue).

	1-A	1-B	1-C	1-D	1-E	1-F	1-G	1-H	1-I
	$(H_3P_2O_6^-)$	$(H_3P_2O_6^-)$	$(H_4P_2O_6)$	$(H_3P_2O_6^-)$	$(H_3P_2O_6^-)$	$(H_4P_2O_6)$	$(H_3P_2O_6^-)$	$(H_4P_2O_6)$	$(H_3P_2O_6^-)$
P1-P2	2.1812(8)	2.1824(8)	2.1791(8)	2.1817(8)	2.1817(8)	2.1797(8)	2.1832(8)	2.1791(8)	2.1796(8)
P1O1	1.4928(11)	1.4949(11)	1.4912(11)	1.4956(11)	1.4927(11)	1.4920(11)	1.4946(11)	1.4890(11)	1.4918(11)
P1O2	1.5490(11)	1.5439(11)	1.5464(12)	1.5457(11)	1.5478(11)	1.5470(12)	1.5456(11)	1.5470(12)	1.5475(11)
P1O3	1.5505(12)	1.5508(12)	1.5586(12)	1.5497(12)	1.5489(11)	1.5582(12)	1.5506(12)	1.5586(12)	1.5478(11)
P204	1.5045(11)	1.5072(11)	1.4897(11)	1.5060(11)	1.5057(11)	1.4921(11)	1.5049(11)	1.4891(11)	1.5061(11)
P205	1.5122(11)	1.5159(12)	1.5477(12)	1.5131(12)	1.5108(11)	1.5491(12)	1.5128(12)	1.5482(12)	1.5140(11)
P206	1.5648(11)	1.5678(11)	1.5571(12)	1.5678(11)	1.5667(11)	1.5551(12)	1.5648(11)	1.5570(12)	1.5654(11)
O1-P1-O2	115.98(6)	116.32(6)	115.85(7)	116.39(6)	116.07(6)	115.48(7)	115.88(6)	115.74(7)	116.32(6)
O1-P1-O3	114.95(6)	114.70(7)	111.59(7)	114.60(7)	115.02(7)	111.79(7)	114.57(7)	111.64(6)	115.10(7)
O2-P1-O3	103.27(6)	103.28(7)	106.84(7)	103.22(7)	103.17(6)	107.05(7)	103.32(6)	107.02(7)	103.16(6)
O1–P1–P2	110.96(5)	109.93(5)	109.42(5)	110.02(5)	110.97(5)	109.50(5)	110.30(5)	109.63(5)	110.68(5)
O2–P1–P2	104.57(5)	104.50(5)	106.85(6)	104.46(5)	104.55(5)	106.87(6)	105.02(5)	106.95(5)	104.17(5)
O3–P1–P2	106.09(5)	107.23(5)	105.72(5)	107.27(5)	106.00(5)	105.58(5)	106.90(5)	105.25(5)	106.33(5)
O4–P2–O5	116.48(7)	116.51(7)	115.86(7)	116.61(7)	116.43(7)	115.48(7)	116.53(7)	115.67(7)	116.55(7)
O4–P2–O6	108.23(7)	108.33(7)	111.56(7)	108.28(7)	108.26(7)	111.74(7)	108.15(7)	111.73(7)	108.32(7)
O5–P2–O6	110.58(6)	110.16(6)	106.92(7)	110.21(6)	110.63(6)	107.13(7)	110.52(6)	106.74(7)	110.16(6)
O4-P2-P1	107.79(5)	108.10(5)	109.39(5)	108.16(5)	107.84(5)	109.58(5)	107.78(5)	109.46(5)	108.04(5)
O5-P2-P1	107.42(5)	107.04(5)	106.86(6)	106.93(5)	107.38(5)	106.83(5)	107.08(5)	106.71(5)	107.40(5)
O6-P2-P1	105.79(5)	106.21(5)	105.68(6)	106.14(5)	105.74(5)	105.51(5)	106.28(5)	105.98(5)	105.83(5)
O1-P1-P2-O4	68.58(7)	-69.28(7)	-179.79(5)	69.29(7)	-68.43(7)	179.80(5)	-70.25(7)	-179.00(5)	68.17(7)
O2-P1-P2-O4	-165.68(7)	165.21(7)	-53.65(7)	-165.08(7)	165.72(7)	-54.45(7)	164.22(7)	54.79(7)	-166.09(7)
O3-P1-P2-O4	-56.91(7)	56.02(7)	59.91(7)	-55.97(7)	57.09(7)	59.29(7)	54.89(7)	-58.80(7)	-57.51(7)
O1-P1-P2-O5	-57.69(7)	56.97(7)	54.06(7)	-57.06(7)	57.77(7)	54.02(7)	55.85(7)	-53.15(7)	-58.33(7)
O2-P1-P2-O5	68.05(6)	-68.55(6)	-179.79(5)	68.57(6)	-68.07(6)	179.78(5)	-69.68(7)	-179.35(5)	67.42(6)
O3-P1-P2-O5	176.83(6)	-177.73(6)	-66.24(7)	177.69(6)	-176.70(6)	-66.48(7)	-179.00(6)	67.05(7)	176.00(6)
O1-P1-P2-O6	-175.83(6)	174.65(6)	-59.57(7)	-174.70(6)	175.93(6)	-59.76(7)	174.00(6)	60.36(7)	-175.99(6)
O2-P1-P2-O6	-50.08(7)	49.13(7)	66.58(7)	-49.07(7)	50.08(6)	65.99(7)	48.47(7)	-65.84(7)	-50.25(7)
O3-P1-P2-O6	58.69(7)	-60.05(7)	-179.87(5)	60.04(7)	-58.55(7)	179.73(5)	-60.85(7)	-179.44(5)	58.33(7)

 $\textbf{Table S1. Selected geometric parameters (Å, °) for [(Et_4N)(H_3P_2O_6)] \cdot 0.5H_4P_2O_6 \cdot 2H_2O(1). H_4P_2O_6 molecules are marked in pink.}$

	2-A	2-B
	$(H_4P_2O_6)$	$(H_2P_2O_6^{2-})$
P1A–P1A ⁱ / P1B–P1B ⁱⁱ	2.1795(11)	2.1863(12)
P1O1	1.4931(12)	1.5026(13)
P1O2	1.5456(12)	1.5169(11)
Р1О3	1.5516(11)	1.5685(12)
O1-P1-O2	111.58(6)	114.75(7)
O1–P1–O3	112.34(7)	108.78(7)
O2–P1–O3	110.69(6)	110.89(6)
$O1-P1-P1A^{i}/B^{ii}$	109.42(5)	108.80(6)
$O2-P1-P1A^{i}/B^{ii}$	107.66(6)	108.80(6)
$O3-P1-P1A^{i}/B^{ii}$	104.82(6)	104.29(6)
$O1-P1-P1A^{i}/B^{ii}-O1A^{i}/B^{ii}$	180	180
$O2-P1-P1A^{i}/B^{ii}-O1A^{i}/B^{ii}$	58.56(7)	-54.34(8)
$O3-P1-P1A^{i}/B^{ii}-O1A^{i}/B^{ii}$	-59.33(7)	64.04(8)
$O1-P1-P1A^{i}/B^{ii}-O2A^{i}/B^{ii}$	-58.56 (7)	54.34(8)
$O2-P1-P1A^{i}/B^{ii}-O2A^{i}/B^{ii}$	180	180
$O3-P1-P1A^{i}/B^{ii}-O2A^{i}/B^{ii}$	62.11(7)	-61.62(7)
$O1-P1-P1A^{i}/B^{ii}-O3A^{i}/B^{ii}$	59.33(7)	-64.04(8)
$O2-P1-P1A^{i}/B^{ii}-O3A^{i}/B^{ii}$	-62.11(7)	61.62(7)
$O3-P1-P1A^{i}/B^{ii}-O3A^{i}/B^{ii}$	180	180

 $\textbf{Table S2. Selected geometric parameters (Å, °) for [(Et_4N)_2(H_2P_2O_6)] \cdot H_4P_2O_6 (\textbf{2}). H_4P_2O_6 molecule is marked in pink.}$

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

	3-A	3-B	3-С	3-D
	$(H_4P_2O_6)$	$(H_3P_2O_6^-)$	$(H_3P_2O_6^-)$	$(H_4P_2O_6)$
				SOF = 0.887(3)
P1–P2 / P1D–P1D ⁱ	2.1722(13)	2.1885(13)	2.1764(13)	2.179(2)
P1-O1	1.478(2)	1.484(2)	1.488(2)	1.480(3)
P1-O2	1.547(2)	1.542(2)	1.531(2)	1.553(4)
Р1-О3	1.548(2)	1.560(2)	1.548(2)	1.557(3)
P2O4	1.498(2)	1.494(2)	1.509(2)	-
Р2-О5	1.533(2)	1.519(2)	1.517(2)	-
P2-O6	1.547(2)	1.554(2)	1.557(2)	-
O1–P1–O2	111.90(14)	111.36(13)	112.44(14)	112.7(2)
O1–P1–O3	110.96(13)	113.95(13)	109.49(13)	108.8(3)
O2–P1–O3	110.67(13)	105.95(14)	111.85(14)	111.5(2)
O1–P1–P2/P1 <i>D</i> ⁱ	108.14(10)	109.60(11)	108.71(10)	111.5(2)
O2–P1–P2/P1D ⁱ	105.46(10)	109.62(10)	108.19(10)	106.6(2)
O3–P1–P2/P1 <i>D</i> ⁱ	109.52(10)	106.15(10)	105.91(11)	105.60(14)
O4–P2–O5	111.56(13)	113.08(13)	114.40(13)	-
O4–P2–O6	115.60(13)	109.57(13)	108.31(13)	-
O5–P2–O6	107.51(13)	111.83(13)	111.64(13)	-
O4-P2-P1	107.58(10)	109.32(10)	109.00(10)	-
O5–P2–P1	109.29(10)	106.98(10)	107.42(10)	-
O6–P2–P1	104.99(10)	105.74(10)	105.68(10)	-
O1–P1–P2/P1 <i>D</i> ⁱ –O4/O1 <i>D</i> ⁱ	64.05(14)	51.66(15)	174.18(14)	180
O2–P1–P2/P1 <i>D</i> ⁱ –O4/O1 <i>D</i> ⁱ	-55.81(14)	174.16(14)	-63.45(14)	56.7(3)
O3–P1–P2/P1 <i>D</i> ⁱ –O4/O1 <i>D</i> ⁱ	-174.93(13)	-71.82(15)	56.61(14)	-62.0(3)
O1–P1–P2/P1 <i>D</i> ⁱ –O5/O2 <i>D</i> ⁱ	-174.66(13)	174.44(13)	-61.36(14)	-56.7(3)
O2–P1–P2/P1D ⁱ –O5/O2D ⁱ	65.48(14)	-63.06(14)	61.02(14)	180
O3–P1–P2/P1D ⁱ –O5/O2D ⁱ	-53.64(14)	50.95(14)	-178.92(13)	61.3(3)
O1–P1–P2/P1D ⁱ –O6/O3D ⁱ	-59.60(14)	-66.22(14)	57.95(14)	62.0(3)
O2–P1–P2/P1 <i>D</i> ⁱ –O6/O3 <i>D</i> ⁱ	-179.45(13)	56.28(15)	-179.67(13)	-61.3(3)
O3–P1–P2/P1 <i>D</i> ⁱ –O6/O3 <i>D</i> ⁱ	61.43(13)	170.30(13)	-59.61(14)	180

Table S3. Selected geometric parameters (Å, °) for $[(Bu_4N)(H_3P_2O_6)] \cdot 0.75H_4P_2O_6$ (3). $H_4P_2O_6$ molecules are marked in pink.

Symmetry code: (i) -x+1, -y+1, -z+1.

	4-A	4-B	4- C	4-D	4-E	4- F
	$(H_3P_2O_6^-)$	$(H_3P_2O_6^-)$	$(H_4P_2O_6)$	$(H_3P_2O_6^-)$	$(H_3P_2O_6^-)$	$(H_4P_2O_6)$
		SOF = 0.8680(12)	SOF = 0.8680(12)	SOF = 0.897(4)		SOF = 0.9273(18)
P1–P2 / P1 <i>C</i> –P1 <i>C</i> ⁱ / P1 <i>F</i> ––P1 <i>F</i> ⁱⁱ	2.1824(9)	2.1795(10)	2.1730(15)	2.1842(12)	2.1812(9)	2.1723(12)
P1O1	1.4978(17)	1.485(2)	1.499(2)	1.4989(17)	1.4854(16)	1.498(2)
P1O2	1.5389(17)	1.5423(17)	1.541(2)	1.531(2)	1.5368(16)	1.5145(18)
P1-O3	1.5523(17)	1.565(2)	1.542(2)	1.5475(17)	1.5578(16)	1.5594(16)
P204	1.4946(16)	1.492(3)	-	1.495(2)	1.4947(17)	-
P2-O5	1.5051(15)	1.5149(18)	-	1.5129(17)	1.5212(16)	-
P206	1.5648(16)	1.545(2)	-	1.5670(17)	1.5449(17)	-
O1-P1-O2	114.23(10)	111.62(12)	113.60(13)	114.73(13)	111.20(9)	112.95(12)
O1–P1–O3	113.93(10)	109.84(12)	111.29(17)	114.11(10)	110.38(9)	113.72(12)
O2–P1–O3	103.21(9)	109.34(11)	108.36(16)	102.76(11)	110.30(9)	107.08(12)
$O1-P1-P2/P1C^{i}/P1F^{ii}$	106.84(7)	111.22(9)	107.79(12)	106.99(8)	109.51(7)	108.79(11)
$O2-P1-P2/P1C^{i}/P1F^{ii}$	108.55(7)	107.81(8)	107.17(11)	108.14(9)	107.48(7)	108.18(9)
$O3-P1-P2/P1C^{i}/P1F^{ii}$	109.99(7)	106.86(9)	108.44(11)	109.96(9)	107.86(6)	105.75(7)
O4–P2–O5	117.51(9)	114.53(12)	-	117.59(11)	113.35(10)	-
O4–P2–O6	107.64(9)	109.10(14)	-	107.88(12)	109.19(10)	-
O5–P2–O6	111.52(9)	111.68(13)	-	111.46(10)	112.01(9)	-
O4–P2–P1	105.69(6)	109.55(9)	-	106.71(7)	111.10(7)	-
O5–P2–P1	107.00(6)	107.03(8)	-	105.27(8)	105.34(7)	-
O6-P2-P1	106.85(6)	104.42(10)	-	107.36(9)	105.54(7)	-
$O1-P1-P2/P1C^{i}/P1F^{ii}-O4/O1C^{i}/O1F^{ii}$	-70.87(10)	178.64(15)	180	67.75(12)	169.12(10)	180
$O2-P1-P2/P1C^{i}/P1F^{ii}-O4/O1C^{i}/O1F^{ii}$	52.77(10)	55.96(14)	57.37(15)	-56.34(13)	-69.96(10)	-56.96(15)
$O3-P1-P2/P1C^{i}/P1F^{ii}-O4/O1C^{i}/O1F^{ii}$	165.01(10)	-61.48(14)	-59.4(2)	-167.82(11)	48.97(10)	57.48(13)
O1–P1–P2/P1 <i>C</i> ⁱ /P1 <i>F</i> ⁱⁱ –O5/O2 <i>C</i> ⁱ /O2 <i>F</i> ⁱⁱ	55.12(10)	-56.64(14)	-57.37(15)	-57.93(11)	-67.77(10)	56.96(15)
O2–P1–P2/P1 <i>C</i> ⁱ /P1 <i>F</i> ⁱⁱ –O5/O2 <i>C</i> ⁱ /O2 <i>F</i> ⁱⁱ	178.76(9)	-179.31(10)	180	177.98(11)	53.16(10)	180
O3–P1–P2/P1 <i>C</i> ⁱ /P1 <i>F</i> ⁱⁱ –O5/O2 <i>C</i> ⁱ /O2 <i>F</i> ⁱⁱ	-69.00(10)	63.24(11)	63.22(17)	66.50(10)	172.08(9)	-65.56(13)
O1–P1–P2/P1 <i>C</i> ⁱ /P1 <i>F</i> ⁱⁱ –O6/O3 <i>C</i> ⁱ /O3 <i>F</i> ⁱⁱ	174.69(9)		59.4(2)	-176.80(11)	50.90(10)	-57.48(13)
O2–P1–P2/P1 <i>C</i> ⁱ /P1 <i>F</i> ⁱⁱ –O6/O3 <i>C</i> ⁱ /O3 <i>F</i> ⁱⁱ	-61.68(10)		-63.22(17)	59.11(13)	171.82(9)	65.56(13)
O3–P1–P2/P1 <i>C</i> ⁱ /P1 <i>F</i> ⁱⁱ –O6/O3 <i>C</i> ⁱ /O3 <i>F</i> ⁱⁱ	50.56(10)		180	-52.37(11)	-69.26(10)	180

Table S4. Selected geometric parameters (Å, °) for $[(Bu_4N)(H_3P_2O_6)] \cdot 0.25(H_4P_2O_6) \cdot 0.52H_2O$ (4). $H_4P_2O_6$ molecules are marked in pink.

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z.

	5-A	5-B	5-C
	$(H_4P_2O_6)$	$(H_3P_2O_6^-)$	$(H_3P_2O_6^-)$
	SOF =0.963(2)		
P1–P2 / P1A–P1A ⁱ	2.1872(12)	2.1847(8)	2.2211(9)
P1O1	1.4950(17)	1.4916(14)	1.4943(15)
P1O2	1.5385(15)	1.5420(15)	1.5269(16)
Р1О3	1.551(2)	1.5582(14)	1.5745(16)
P2O4	-	1.5106(14)	1.5039(15)
P2O5	-	1.5109(15)	1.5202(16)
P206	-	1.5635(15)	1.5726(17)
O1-P1-O2	111.53(9)	112.28(8)	116.59(9)
O1–P1–O3	110.04(10)	109.85(8)	113.67(9)
O2-P1-O3	111.76(11)	110.26(8)	103.38(9)
O1–P1–P2/P1A ⁱ	110.40(10)	108.49(6)	107.50(6)
O2–P1–P2/P1A ⁱ	106.59(7)	108.05(6)	109.18(7)
O3–P1–P2/P1A ⁱ	106.34(11)	107.78(6)	105.99(7)
O4–P2–O5	-	114.29(8)	115.60(9)
O4–P2–O6	-	112.62(8)	112.57(9)
O5–P2–O6	-	108.21(8)	104.19(9)
O4-P2-P1	-	107.46(6)	107.14(7)
O5-P2-P1	-	109.43(6)	110.46(7)
O6-P2-P1	-	104.32(6)	106.57(7)
O1–P1–P2/P1 <i>A</i> ⁱ –O4/O1 <i>A</i> ⁱ	180	59.43(9)	0.93(9)
O2–P1–P2/P1A ⁱ –O4/O1A ⁱ	58.71(11)	-62.53(9)	-126.42(9)
O3–P1–P2/P1 <i>A</i> ⁱ –O4/O1 <i>A</i> ⁱ	-60.65(12)	178.33(8)	122.82(9)
O1–P1–P2/P1A ⁱ –O5/O2A ⁱ	-58.71(11)	-175.94(8)	127.63(9)
O2–P1–P2/P1A ⁱ –O5/O2A ⁱ	180	62.10(9)	0.29(10)
O3–P1–P2/P1 <i>A</i> ⁱ –O5/O2 <i>A</i> ⁱ	60.63(13)	-57.04(9)	-110.48(9)
O1–P1–P2/P1A ⁱ –O6/O3A ⁱ	60.65(12)	-60.34(9)	-119.78(9)
O2–P1–P2/P1A ⁱ –O6/O3A ⁱ	-60.63(13)	177.70(8)	112.87(9)
O3–P1–P2/P1 <i>A</i> ⁱ –O6/O3 <i>A</i> ⁱ	180	58.56(8)	2.10(9)

Table S5. Selected geometric parameters (Å, °) for $[(Bu_4N)(H_3P_2O_6)] \cdot 0.25(H_4P_2O_6)$ (5). $H_4P_2O_6$ molecules are marked inpink.

Symmetrycode: (i) -x+1, -y+1, -z+1.

Table S6. Selected geometric	parameters (Å, °) for	[(Et ₄ N)Cl]·0.5H	I ₄ P ₂ O ₆ ·3H ₂ O (6). H	I ₄ P ₂ O ₆ molecule is marke	d in pink

	$(H_4P_2O_6)$
P1-P1 ⁱ	2.1863(12)
P1-O1	1.4841(16)
P1-O2	1.5512(16)
P1-O3	1.5524(16)
O1–P1–O2	115.27(9)
O1–P1–O3	115.60(9)
O2–P1–O3	103.03(9)
O1–P1–P1 ⁱ	111.69(7)
O2–P1–P1 ⁱ	105.67(7)
O3–P1–P1 ⁱ	104.45(7)
O1–P1–P1 ⁱ –O1 ⁱ	180
$O2-P1-P1^{i}-O1^{i}$	53.94 (10)
$O3-P1-P1^{i}-O1^{i}$	-54.36 (10)
$O1-P1-P1^i-O2^i$	-53.94 (10)
$O2-P1-P1^{i}-O2^{i}$	180
$O3-P1-P1^{i}-O2^{i}$	71.69 (9)
O1–P1–P1 ⁱ –O3 ⁱ	54.36 (10)
O2–P1–P1 ⁱ –O3 ⁱ	-71.69 (9)
$O3-P1-P1^i-O3^i$	180

Symmetry code: (i) -x+1, -y+1, -z+1.

D—H···A	D—H	Н…А	$D^{\dots}A$	<i>D</i> —H··· <i>A</i>
O2A—H2A⋯O5B	0.84	1.71	2.4869(16)	154
$O3A$ — $H3A$ ···O $4F^{i}$	0.84	1.77	2.5355(16)	151
O6 <i>A</i> —H6 <i>A</i> ⋯O1 <i>W</i>	0.84	1.73	2.5661(17)	174
O2 <i>B</i> —H2 <i>B</i> ⋯O5 <i>A</i>	0.84	1.71	2.4669(16)	150
O3 <i>B</i> —H3 <i>B</i> ⋯O1 <i>C</i>	0.84	1.76	2.5266(16)	151
O6 <i>B</i> —H6 <i>B</i> ···O2 <i>W</i>	0.84	1.74	2.5804(16)	174
O2 <i>C</i> —H2 <i>C</i> ···O3 <i>W</i>	0.84	1.67	2.4870(17)	163
O3 <i>C</i> —H3 <i>C</i> ⋯O4 <i>D</i>	0.84	1.71	2.5379(17)	168
O5 <i>C</i> —H5 <i>C</i> ⋯O4 <i>W</i>	0.84	1.68	2.4855(17)	160
O6 <i>C</i> —H6 <i>C</i> ⋯O4 <i>B</i>	0.84	1.71	2.5362(17)	169
O2 <i>D</i> —H2 <i>D</i> ···O5 <i>E</i>	0.84	1.71	2.4670(16)	150
O3 <i>D</i> —H3 <i>D</i> ⋯O4 <i>C</i>	0.84	1.76	2.5238(16)	151
O6 <i>D</i> —H6 <i>D</i> ⋯O5 <i>W</i>	0.84	1.74	2.5782(16)	174
O2 <i>E</i> —H2 <i>E</i> ···O5 <i>D</i>	0.84	1.71	2.4902(16)	154
O3 <i>E</i> —H3 <i>E</i> ⋯O1 <i>F</i>	0.84	1.77	2.5324(16)	150
O6 <i>E</i> —H6 <i>E</i> ···O6 <i>W</i>	0.84	1.73	2.5628(17)	174
O2F— $H2F$ ···O7 W	0.84	1.67	2.4941(17)	166
$O3F$ — $H3F$ ···· $O4A^{ii}$	0.84	1.69	2.5186(17)	169
O5F—H5F…O8W	0.84	1.67	2.4921(17)	167
O6 <i>F</i> —H6 <i>F</i> ⋯O4 <i>E</i>	0.84	1.69	2.5198(17)	168
O2G— $H2G$ ···O5 G ⁱⁱⁱ	0.84	1.70	2.4702(16)	152
O3 <i>G</i> —H3 <i>G</i> ⋯O4 <i>H</i>	0.84	1.76	2.5370(16)	152
O6 <i>G</i> —H6 <i>G</i> ···O9 <i>W</i>	0.84	1.74	2.5762(17)	173
O2H— $H2H$ ···O11 W	0.84	1.68	2.4920(17)	161
O3H— $H3H$ ··· $O4G$	0.84	1.69	2.5262(16)	170
O5 <i>H</i> —H5 <i>H</i> ···O10 <i>W</i>	0.84	1.67	2.4908(17)	165
O6 <i>H</i> —H6 <i>H</i> ⋯O4 <i>I</i>	0.84	1.71	2.5324(16)	164
$O2I - H2I - O5I^{iv}$	0.84	1.72	2.4882(16)	152
O3 <i>I</i> —H3 <i>I</i> ⋯O1 <i>H</i>	0.84	1.77	2.5278(16)	149
O6 <i>I</i> —H6 <i>I</i> ⋯O12 <i>W</i>	0.84	1.73	2.5656(17)	174
$O1W$ — $H1W$ ···O5 B^{v}	0.84	1.93	2.7659(17)	178
$O1W - H2W \cdots O1B$	0.84	1.92	2.7526(17)	172
$O2W - H3W \cdots O5A^{vi}$	0.84	1.92	2.7589(17)	177
O2W—H4 W ···O1 A	0.84	1.95	2.7880(16)	175
O3 <i>W</i> —H5 <i>W</i> ···O1 <i>B</i>	0.84	1.90	2.7357(17)	177
$O3W$ —H6 W ···O4 B^{v}	0.84	1.91	2.7351(18)	168
$O4W - H7W \cdots O1D$	0.84	1.89	2.7338(17)	177
$O4W$ — $H8W$ ···O4 D^{vi}	0.84	1.91	2.7419(17)	172
$O5W$ — $H9W$ ··· $O5E^{v}$	0.84	1.92	2.7611(17)	179
O5 <i>W</i> —H10 <i>W</i> ⋯O1 <i>E</i>	0.84	1.95	2.7852(17)	174
$O6W$ —H11 W ···O5 D^{vi}	0.84	1.92	2.7645(18)	179
O6 <i>W</i> —H12 <i>W</i> ⋯O1 <i>D</i>	0.84	1.91	2.7492(17)	173
O7 <i>W</i> —H13 <i>W</i> ⋯O1 <i>E</i>	0.84	1.90	2.7418(17)	176
$O7W$ —H14 W ···O4 E^{v}	0.84	1.92	2.7394(18)	165
$08W$ —H15 W ···O1 A^{ii}	0.84	1.90	2.7387(17)	176
$O8W$ —H16 W ···O4 A^{vii}	0.84	1.91	2.7401(18)	169
$09W$ —H17 W ···O5 G^{viii}	0.84	1.93	2.7691(17)	177
$O9W$ —H18 W ···O1 G^{iii}	0.84	1.93	2.7718(17)	175
$O10W$ —H19 W ···O4 G^{v}	0.84	1.91	2.7394(17)	171
$O10W - H20W \cdots O1G$	0.84	1.90	2.7403(17)	178
011 <i>W</i> —H21 <i>W</i> …O1 <i>I</i>	0.84	1.90	2.7394(17)	179

Table S7. Hydrogen-bond geometry (Å, °) for $[(Et_4N)(H_3P_2O_6)] \cdot 0.5H_4P_2O_6 \cdot 2H_2O$ (1). Interactions within AEHB anion cluster are marked in blue.

O11W— $H22W$ ···O4 I ^{vi}	0.84	1.91	2.7379(17)	167
O12W—H23 W ···O5 I ^{ix}	0.84	1.92	2.7561(18)	176
O12W—H24 W ···O1 I ^{iv}	0.84	1.92	2.7555(17)	171
C1 <i>A</i> —H1 <i>A</i> 2····O6 <i>G</i>	0.99	2.58	3.5107(19)	157
$C2A$ — $H2A3\cdots O1W^{vi}$	0.98	2.61	3.574(2)	168
C5A—H5A1···O5B	0.99	2.48	3.3820(18)	152
C7 <i>A</i> —H7 <i>A</i> 1···O2 <i>A</i>	0.99	2.41	3.3712(18)	164
C8A—H8A3…O4H	0.98	2.54	3.506(2)	167
C3 <i>B</i> —H3 <i>B</i> 1···O6 <i>D</i>	0.99	2.52	3.4536(19)	157
C3 <i>B</i> —H3 <i>B</i> 2···O3 <i>D</i> ^v	0.99	2.61	3.284(2)	125
C4B—H4B1 \cdots O12 W^{ix}	0.98	2.59	3.552(2)	167
C5 <i>B</i> —H5 <i>B</i> 2···O5 <i>I</i>	0.99	2.45	3.3496(18)	151
C7 <i>B</i> —H7 <i>B</i> 1····O2 <i>I</i> ^{iv}	0.99	2.48	3.4367(18)	162
C8 <i>B</i> —H8 <i>B</i> 1····O4 <i>C</i>	0.98	2.57	3.538(2)	168
C1 <i>C</i> —H1 <i>C</i> 1···O6 <i>I</i> ^{iv}	0.99	2.40	3.246(2)	143
$C1C$ — $H1C2$ ···O1 H^{iv}	0.99	2.42	3.3556(19)	158
C2C—H2C1···O5W	0.98	2.58	3.542(2)	166
C7 <i>C</i> —H7 <i>C</i> 1···O1 <i>E</i>	0.99	2.61	3.2947(19)	127
C3 <i>D</i> —H3 <i>D</i> 1···O4 <i>F</i>	0.99	2.39	3.3368(19)	161
$C3D$ — $H3D2\cdots O6A^{ii}$	0.99	2.45	3.2863(19)	142
$C5D$ — $H5D1\cdots O2G^{ii}$	0.99	2.54	3.5161(19)	171
$C7D$ — $H7D1$ ···O1 G^{iv}	0.99	2.61	3.3146(19)	128
$C3E$ — $H3E1\cdots O1F^{x}$	0.99	2.39	3.3370(19)	160
$C3E$ — $H3E2\cdots O6E^{x}$	0.99	2.43	3.2715(19)	142
C4 <i>E</i> —H4 <i>E</i> 3···O2 <i>W</i>	0.98	2.59	3.554(2)	168
C5 <i>E</i> —H5 <i>E</i> 2···O2 <i>B</i>	0.99	2.59	3.5702(19)	171
C7 <i>E</i> —H7 <i>E</i> 2···O1 <i>A</i>	0.99	2.61	3.2979(19)	127
C1 <i>F</i> —H1 <i>F</i> 2⋯O6 <i>B</i>	0.99	2.54	3.4751(19)	157
$C2F$ — $H2F3$ ···O6 W^{xi}	0.98	2.61	3.568(2)	167
$C5F$ — $H5F1$ ···O5 D^x	0.99	2.48	3.3840(18)	151
$C7F$ — $H7F2$ ···O $2E^x$	0.99	2.43	3.3867(18)	163
C8 <i>F</i> —H8 <i>F</i> 3⋯O1 <i>C</i>	0.98	2.56	3.522(2)	167

Symmetrycodes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x, -y, -z+1; (iv) -x, -y+1, -z+1; (v) x-1, y, z; (vi) x+1, y, z; (vii) x+1, y+1, z; (viii) -x+1, -y, -z+1; (ix) -x-1, -y+1, -z+1; (x) -x+1, -y+1, -z; (xi) -x+2, -y+1, -z.

Table S8. Hydrogen-bond geometry (Å, °) for $[(Et_4N)_2(H_2P_2O_6)] \cdot H_4P_2O_6$ (2)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
$O2A$ — $H2A$ ···O2 B^{ii}	0.84	1.64	2.4754(18)	173
O3 <i>A</i> —H3 <i>A</i> ⋯O1 <i>B</i>	0.84	1.63	2.4631(15)	172
$O3B$ — $H3B$ ···· $O1A^{iii}$	0.84	1.71	2.5483(15)	172
C1—H12···O2 <i>B</i> ⁱⁱ	0.99	2.45	3.263(2)	140
C3—H32···O1 A^{iv}	0.99	2.58	3.294(2)	129
C6—H61 \cdots O1 A^{iv}	0.98	2.55	3.527(3)	175
C8—H83…O1 <i>A</i> ^v	0.98	2.60	3.571(2)	172

Symmetrycodes: (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) x, y+1, z-1; (v) -x, -y+1, -z+1.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
$O2A$ — $H2A$ ···O5 B^{ii}	0.84	1.74	2.570(3)	168
$O3A$ — $H3A$ ···O4 C^{ii}	0.84	1.73	2.545(3)	164
$O5A$ — $H5A$ ···O5 C^{ii}	0.84	1.67	2.511(3)	176
O6 <i>A</i> —H6 <i>A</i> ⋯O5 <i>B</i>	0.84	1.69	2.530(3)	174
O2 <i>B</i> —H2 <i>B</i> ⋯O4 <i>A</i>	0.84	1.72	2.541(3)	164
O3 <i>B</i> —H3 <i>B</i> ⋯O4 <i>C</i>	0.84	1.77	2.606(3)	177
O6 <i>B</i> —H6 <i>B</i> ⋯O1 <i>A</i>	0.84	1.71	2.548(3)	173
O2 <i>C</i> —H2 <i>C</i> ···O4 <i>B</i>	0.84	1.63	2.459(3)	169
O3 <i>C</i> —H3 <i>C</i> ⋯O1 <i>B</i>	0.84	1.73	2.540(3)	162
O6 <i>C</i> —H6 <i>C</i> ···O1 <i>D</i> ⁱ	0.84	1.71	2.552(5)	175
$O6C$ — $H6C$ ···O1 X^{i}	0.84	1.50	2.33(2)	169
O2 <i>D</i> —H2 <i>D</i> ⋯O1 <i>C</i>	0.84	1.68	2.491(5)	161
O2X— $H2X$ ···O1 C	0.84	1.68	2.52(3)	175
O3 <i>D</i> —H3 <i>D</i> ⋯O5 <i>C</i>	0.84	1.77	2.603(3)	171
$C1A$ — $H1A2\cdots O3B^{iii}$	0.99	2.60	3.363(4)	134
$C9A$ — $H9A2$ ···O $4A^{iv}$	0.99	2.47	3.408(4)	158
C1 <i>B</i> —H1 <i>B</i> 2⋯O1 <i>C</i>	0.99	2.34	3.161(4)	140
C5 <i>B</i> —H5 <i>B</i> 2⋯O1 <i>D</i> ⁱ	0.99	2.60	3.334(5)	132
C9 <i>B</i> —H9 <i>B</i> 1····O1 <i>A</i> ^v	0.99	2.38	3.271(4)	149
0 - 1 + 1 + 1	1 (**)	12/2 1/2	+2/2 () $+1$ ()	1 2 /2 1 /2

Table S9. Hydrogen-bond geometry (Å, °) for $[(Bu_4N)(H_3P_2O_6)] \cdot 0.75H_4P_2O_6$ (**3**). Interactions within AEHB anion cluster are marked in blue.

Symmetrycodes: (i) -x+1, -y+1, -z+1; (ii) -x+3/2, y-1/2, -z+3/2; (iii) x+1, y, z; (iv) -x+3/2, y+1/2,

-z+3/2; (v) -x+1, -y, -z+1.

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O2 <i>A</i> —H2 <i>A</i> ⋯O4 <i>B</i>	0.84	1.59	2.428(3)	172
O2A— $H2A$ ···O1 X	0.84	1.86	2.696(10)	178
O3A— $H3A$ ···O $5A$ ⁱⁱⁱ	0.84	1.70	2.521(2)	167
O6 <i>A</i> —H6 <i>A</i> ⋯O1 <i>W</i>	0.84	1.75	2.580(2)	171
O2 <i>B</i> —H2 <i>B</i> ⋯O4 <i>A</i>	0.84	1.68	2.469(2)	155
O3 <i>B</i> —H3 <i>B</i> ⋯O1 <i>A</i>	0.84	1.73	2.535(3)	161
O6 <i>B</i> —H6 <i>B</i> ⋯O1 <i>C</i>	0.84	1.68	2.511(4)	167
O2X— $H2X$ ···O4 A	0.84	1.76	2.480(9)	143
O3X— $H3X$ ···O1 Y	0.84	1.87	2.502(14)	131
O6 <i>X</i> —H6 <i>X</i> ⋯O1 <i>A</i>	0.84	2.22	2.861(8)	133
O2 <i>C</i> —H2 <i>C</i> ⋯O1 <i>B</i>	0.84	1.73	2.545(3)	162
$O3C$ — $H3C$ ··· $O5B^{i}$	0.84	1.70	2.432(3)	145
$O3Y$ — $H3Y$ ···O $5X^{i}$	0.84	1.82	2.572(15)	148
O2D— $H2D$ ···O4 E	0.84	1.59	2.399(3)	160
$O3D$ — $H3D$ ··· $O5D^{iv}$	0.84	1.71	2.494(2)	155
O6 <i>D</i> —H6 <i>D</i> ···O2 <i>W</i>	0.84	1.77	2.601(3)	170
O2Z—H2Z⋯O4E	0.84	2.01	2.754(13)	147
O6Z—H6Z⋯O2W	0.84	2.16	2.992(16)	169
O2E— $H2E$ ···O4 D	0.84	1.64	2.461(2)	167
O2E— $H2E$ ···O4Z	0.84	1.56	2.345(13)	154
O3E— $H3E$ ···O1 D	0.84	1.71	2.545(2)	172
O3E— $H3E$ ··· $O1Z$	0.84	1.94	2.775(11)	172
O6 <i>E</i> —H6 <i>E</i> ⋯O1 <i>F</i>	0.84	1.67	2.512(3)	178
O6 <i>E</i> —H6 <i>E</i> ⋯O1 <i>Q</i>	0.84	1.67	2.494(16)	168
$O2F$ — $H2FE$ ···O5 E^{ii}	1.07(3)	1.37(3)	2.420(2)	164(2)
O3F— $H3F$ ··· $O1E$	0.84	1.74	2.542(2)	160
$O2Q$ — $H2QE$ ···O5 E^{ii}	1.23(3)	1.37(3)	2.53(2)	153(2)
$O3Q$ — $H3Q$ ···O1 E^{ii}	0.84	1.61	2.394(16)	155
$O1W$ —H1 W ···O5 A^{iii}	0.84	1.99	2.775(2)	156
$O1W$ — $H2W$ ··· $O1A^{iii}$	0.84	2.03	2.781(2)	149
$O2W$ —H3 W ···O5 D^{iv}	0.84	1.94	2.761(2)	164
O2 <i>W</i> —H3 <i>W</i> ⋯O3Z	0.84	2.18	2.827(12)	133
$O2W$ —H3 W ···O5 Z^{iv}	0.84	2.58	3.387(12)	163
$O2W$ —H4 W ···O1 D^{iv}	0.84	2.12	2.837(3)	144
$O2W$ —H4 W ···O1 Z^{iv}	0.84	1.86	2.501(14)	132
C1 <i>A</i> —H1 <i>A</i> 2···O2 <i>B</i>	0.99	2.51	3.377(3)	146
$C2A$ — $H2A1\cdots O5E^{v}$	0.99	2.51	3.454(3)	159
$C2A$ — $H2A2\cdots O3Q^{v}$	0.99	2.48	3.394(19)	154
C5A—H5A1···O2B	0.99	2.56	3.425(3)	146
$C9A$ — $H9A1\cdots O5E^{v}$	0.99	2.39	3.271(3)	148
C13A—H13A····O3F ^{vi}	0.99	2.55	3.509(3)	162
C1 <i>B</i> —H1 <i>B</i> 2⋯O2 <i>C</i>	0.99	2.34	3.284(3)	159
C5 <i>B</i> —H5 <i>B</i> 1···O6 <i>B</i> ⁱ	0.99	2.50	3.392(3)	149
$C5B$ — $H5B1\cdots O3X^{i}$	0.99	2.37	3.212(6)	142
$C5B$ — $H5B2\cdots O1C^{i}$	0.99	2.57	3.210(3)	122
C8 <i>B</i> —H8 <i>B</i> 3····O1 <i>C</i> ⁱ	0.98	2.57	3.526(5)	164
C9 <i>B</i> —H9 <i>B</i> 1⋯O1 <i>D</i>	0.99	2.50	3.385(3)	148
C10 <i>B</i> —H10 <i>C</i> ···O3 <i>W</i> ⁱ	0.99	2.58	3.434(15)	144
C15 <i>B</i> —H15 <i>C</i> ···O1 <i>F</i>	0.99	2.60	3.322(3)	130
$C1C$ — $H1C1$ ···O3 W^{i}	0.99	2.47	3.204(15)	131
C1 <i>C</i> —H1 <i>C</i> 2····O3 <i>B</i>	0.99	2.43	3.256(3)	140

Table S10. Hydrogen-bond geometry (Å, °) for $[(Bu_4N)(H_3P_2O_6)] \cdot 0.25(H_4P_2O_6) \cdot 0.52H_2O$ (4). Interactions within AEHB anion cluster are marked in blue.

C5C—H5C1···O5B	0.99	2.36	3.267(3)	151	
C9 <i>C</i> —H9 <i>C</i> 2···O2 <i>D</i> ^{vii}	0.99	2.54	3.368(3)	141	
$C9C$ — $H9C2\cdots O2Z^{vii}$	0.99	2.40	3.275(12)	147	
C11 <i>C</i> —H11 <i>F</i> ···O2 <i>D</i> ^{vii}	0.99	2.42	3.328(3)	153	
$C1D$ — $H1D2\cdots O2F^{i}$	0.99	2.41	3.231(3)	140	
$C1D$ — $H1D2\cdots O2Q^{i}$	0.99	2.22	3.02(2)	137	
$C5D$ — $H5D1$ ···O2 E^{viii}	0.99	2.54	3.511(3)	167	
$C5D$ — $H5D2$ ···O3 Q^{i}	0.99	2.58	3.34(2)	134	
C9D—H9D1⋯O6A	0.99	2.37	3.320(3)	161	

Symmetrycodes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) -x+1, -y, -z+2; (iv) -x, -y, -z+1; (v) x, y, z+1; (vi) -x, -y+1, -z+1; (vii) -x+1, -y, -z+1; (viii) x+1, y, z+1.

D—H…A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O2 <i>A</i> —H2 <i>A</i> ⋯O4 <i>B</i>	0.84	1.66	2.456 (2)	157
O3 <i>A</i> —H3 <i>A</i> ⋯O1 <i>B</i>	0.84	1.76	2.539 (3)	153
$O2X$ — $H2X$ ···O4 B^{i}	0.84	1.74	2.56 (4)	165
O3 <i>X</i> —H3 <i>X</i> ⋯O1 <i>B</i>	0.84	1.66	2.36 (6)	139
O2 <i>B</i> —H2 <i>B</i> ⋯O4 <i>C</i>	0.84	1.66	2.493 (2)	174
O3 <i>B</i> —H3 <i>B</i> ⋯O1 <i>C</i>	0.84	1.71	2.545 (2)	174
O6 <i>B</i> —H6 <i>B</i> ⋯O1 <i>A</i> ⁱ	0.84	1.70	2.534 (2)	171
$O6B$ — $H6B$ ···O1 X^{i}	0.84	1.65	2.49 (4)	173
O2C— $H2C$ ··· $O5C$ ⁱⁱ	0.84	1.62	2.437 (2)	166
O3 <i>C</i> —H3 <i>C</i> ⋯O5 <i>B</i>	0.84	1.80	2.613 (2)	162
O5C— $H5C$ ··· $O2C$ ⁱⁱ	0.84	1.62	2.437 (2)	164
O6 <i>C</i> —H6 <i>C</i> ···O5 <i>B</i>	0.84	1.81	2.628 (2)	164
$C1A$ — $H1AA$ ···O2 C^{ii}	0.99	2.60	3.346 (2)	132
C5 <i>A</i> —H5 <i>AA</i> ···O1 <i>C</i>	0.99	2.56	3.515 (3)	161
C5 <i>A</i> —H5 <i>AB</i> ⋯O5 <i>C</i> ^{ïi}	0.99	2.52	3.329 (2)	139
C1 <i>B</i> —H1 <i>BA</i> ···O1 <i>B</i>	0.99	2.47	3.308 (2)	143
C1 <i>B</i> —H1 <i>BB</i> ⋯O2 <i>X</i>	0.99	2.45	3.42 (4)	166
C3 <i>B</i> —H3 <i>BA</i> ···O1 <i>B</i>	0.99	2.57	3.366 (2)	137
C6 <i>B</i> —H6 <i>BB</i> ⋯O2 <i>X</i> ⁱⁱⁱ	0.99	2.50	3.12 (5)	120
C13B—H13D····O6B ^{iv}	0.99	2.49	3.474 (2)	175

Table S11. Hydrogen-bond geometry (Å, °) for $[(Bu_4N)(H_3P_2O_6)] \cdot 0.25(H_4P_2O_6)(5)$. Interactions within AEHB anion cluster are marked in blue.

Symmetrycodes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+2; (iii) x, -y+3/2, z+1/2; (iv) -x+1, y+1/2, -z+3/2.

Table S12. Hydrogen-bond geometry (Å, °) for $[(Et_4N)Cl] \cdot 0.5H_4P_2O_6 \cdot 3H_2O$ (6)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
$O2$ — $H2\cdots O1W^{ii}$	0.84	1.69	2.524(2)	176
O3—H3…O2 <i>W</i>	0.84	1.66	2.488(2)	170
O1 <i>W</i> —H1 <i>W</i> ····Cl1	0.84	2.31	3.151(2)	178
O1 <i>W</i> —H2 <i>W</i> ⋯O1	0.84	1.87	2.710(2)	177
O2W—H3 W ···Cl1 ⁱⁱⁱ	0.84	2.26	3.0930(19)	172
O2 <i>W</i> —H4 <i>W</i> ⋯O3 <i>W</i>	0.84	1.82	2.659(3)	175
O3 <i>W</i> —H5 <i>W</i> ⋯Cl1	0.84	2.31	3.149(2)	174
O3W—H6 W ···Cl1 ^{iv}	0.84	2.35	3.171(2)	167

Symmetrycodes: (ii) -x, -y+1, -z+1; (iii) x+1, y, z; (iv) -x, -y+2, -z.

2		4		5		Assignment
IR	Raman	IR	Raman	IR	Raman	
3391m		3392m		3387m		vH ₂ O
3029m						2
3019m	3019s		3006sh		2998sh	vasCH3
3000m	3001vs	2968m2962sh	2973s	2966m	2967s	v _{as} CH ₂
2984m	2988vs	2944m	2942sh	2960sh	2939sh	vH ₂ O
2959m			2926vs	2944m	2927vs	
2920w	2955vs					vsCH3
2891w		2876m	2872vs	2876m	2875vs	$v_s CH_2$
		2739w	2742vw	2737w	2741vw	overtone
2678m		2688w		2685w		vOHO (A band)
2289m		2283m		2279m		vOHO (B band)
1622m		1634m		1634m		vOHO (C band)
1481m	1487w	1487m	1480m	1486m	1480m	
1470m	1480sh	1466w	1469m	1466w	1469m	$\delta_{as}CH_3$
1461m	1461m	1460sh	1450m	1460sh	1450m	
	1443m					
1405m		1426vw		1424vw		$\delta_s CH_2$
1400m		1382w		1381w		
1376w	1394vw	1365vw		1366vw		
1367vw	1351w	1348vw		1350vw		
1306m	1300w		1322m		1322m	ωCH ₂ δΟΗ
1214s	1186vw	1193sh	1149w	1196sh	1149vw	τCH_2
1194s	1147vw	1149vs	1132w	1148vs	1131w	νH ₂ O δOHO
1186s	1122w	1112sh	1106vw	1112sh		vPO
1097vs	1081w		1065sh		1069sh	vCC
1081vs	1071m		1054m		1054m	vCN
1032s	1034w	1024s	1036w	1025s	1036sh	vPO
1027sh	1004	007	1005	007	1004	DO
1005s	1004w	987vs	1005vw	987vs	1004vw	vPO
000	007	002	973vw	007	969vw	$\tau H_2 O$
908s	896w	903s	912w 900w	906s	911w	vPOpCH ₂
700-	888sh	8835	880vw	889sh	880vw	ρCH_3
/99s	801vw	802w		804W		VCCN
/895	/89VW	729		720m		UCCCN
	6610	/ 38111	661	/ 39111	656	SPO
	550m	517-	004W	517-	030VW	oro
195-	559W	51/S 482a	496	51/S 492a	477	SDO
4858	493VW	482S	486W	4828	4//\W	opo
472-451-	460	449~	400VW	440 -		SDO
4/28 4518	409W	4488	202	4498	207	0PO SPO
240ab	392W 312W	201m 279m	302W	300m	297W 266a 252ah	0PU
240811	2015II 256m	291111 278111	2008 234811	279111	2008 232811	VPP
109m	230m	10.4m		100m		SDO SCCCN
198111		194111		199111		opt occcn
155W 85m						iattice
Key: s-very strong, s-strong, m-medium, w-weak, vw-very weak; v_s -symmetric stretching, v_{as} -asymmetric						
stretching, v_s -symmetric stretching, v_{as} -asymmetric stretching, δ_{as} -asymmetric bending, δ_s , δ -symmetric						
bending (scissoring), ρ -rocking, ω -wagging, τ -twisting (torsion), T-translation, L-libration.						

Table S13. The assignment of the bands of compounds **2**, **4** and **5** at room temperature. The abbreviations are explained at the foot of the table.